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Abstract. We consider the general networks of elastic strings with Neumann

boundary feedbacks and collocated observations in this paper. By selecting an

appropriate multiplier, we show that this system is input-output L2-well-posed.
Moreover, we verify its regularity by calculating the input-output transfer func-

tion of system. In the end, by choosing an appropriate multiplier, we give a
method to construct a Lyapunov functional and prove the exponential decay

of tree-shaped networks with one fixed root under velocity feedbacks acted on

all leaf vertices.

1. Introduction and main results. Generally, the motion of elastic strings on
network can be formulated by means of a graph ([12, 15, 24, 25]). In this paper,
we always suppose that G = (V (G), E(G)) is a connected planar metric graph with
the vertex set V (G) = {p1, p2, . . . , pm} and the edge set E(G) = {e1, e2, . . . , en}.
Thus, every edge ej with the length `j of G can be parameterized by a continuous
function πj with respective to its arc length. If every edge of G is assigned to a
direction that coincides with the arc length increasing, G becomes a digraph. Denote
by IE(G) = {1, 2, . . . , n}, IV (G) = {1, 2, . . . ,m} and IE(pj) = I +

E (pj) ∪ I −E (pj),

where I +
E (pj) and I −E (pj)

I +
E (pj) = {k ∈ IE(G) |pj is the starting point (tail) of the edge ek, ek ∈ E }

and

I −E (pj) = {k ∈ IE(G) |pj is the final point (head) of the edge ek, ek ∈ E } .

Then, the number of elements in sets IE(pj), I+
E (pj) and I−E (pj) are the degree

(deg(pj)), out-degree (deg+(pj)) and in-degree (deg−(pj)) of the vertex pj , respec-
tively. The boundary and the interior of G are defined respectively by

∂G = {pj ∈ V (G)|deg(pj) = 1} and Int(G) = {pj ∈ V (G)|deg(pj) > 1}.
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Denote the set (
⋃n
k=1 ek)

⋃
V (G) by G for convenience, we thus can use a func-

tion w(z, t), from G × [0,+∞) to R, to describe the dynamic behavior of a one-
dimensional (1-d) wave equations on network G, where z stands for any point of
the set G and t is the time. Especially, w(p, t) is the value of w(z, t) at the ver-
tex p ∈ V (G), which describes the dynamic behavior of the vertex p with the
time t. Let the restriction of w(z, t) to the j-th edge be parametrized by wj(x, t),
that is, wj(x, t) = w(z, t)|z∈ej = w(πj(x), t). Without loss of generality, we as-
sume that every edge has the unit length. We fix a partition of the vertex set
V (G) = D∪∂GN ∪ (Int(G) \D), where ∂GN = ∂G \D. Thus, the string equations
on a continuous type network G can be formulated by (see also [8, 13, 15, 16, 22, 24])



ρj(x)wj,tt(x, t) = (Tj(x)wj,x)x(x, t), x ∈ (0, 1), j ∈ IE(G),

∀p ∈ D, wi(1, t) = wk(0, t) = w(p, t) = 0, i ∈ I−E (p), k ∈ I+
E (p),

∀p ∈ ∂GN , either Tk(1)wk,x(1, t) = u(p, t), k ∈ I−E (p),

or − Tk(0)wk,x(0, t) = u(p, t), k ∈ I+
E (p),

∀p ∈ Int(G) \D, wi(1, t) = w(p, t) = wk(0, t), i ∈ I−E (p), k ∈ I+
E (p),

and
∑

i∈I−E (p)

Ti(1)wi,x(1, t)−
∑

k∈I+E (p)

Tk(0)wk,x(0, t) = u(p, t),

(1)

where ρj(x) and Tj(x) (j = 1, . . . , n) are positive and bounded continuous functions,
which are the mass density and the tension of the j-th string, respectively, u(p, t)
is the input signal at the vertex p. The input u(p, t) may be zero, then F = {p ∈
V (G)|u(p, t) ≡ 0} is called the free vertex set. That is, there no is input signal at
the free vertex p. p ∈ D is called a fixed vertex of G, since w(p, t) = 0. Thus, the
network G is fixed on D, called the Dirichlet set. In this paper, we assume that D is
not empty and V (G) \D = {p1 , p2 , . . . , pm0

}, where m0 is the number of vertices

in the set V (G) \D. The output of system (1) is

yk(t) = wt(pk , t) for pk /∈ F, k = 1, . . . ,m0, (2)

where wt(pk , t) is the derivative of w(pk , t) with respective to time t.
One of the objective of this paper is to investigate the input-output well-posedness

and regularity of 1-d wave equations on networks (1). Let the state space X, the con-
trol space U and the observation space Y be Hilbert spaces, and L2

loc([0,+∞),U) be
the space of those functions on [0,+∞) whose restriction to [0, τ ] is in L2([0, τ ],U),
for every τ > 0. An infinite-dimensional linear system is input-output L2-well-
posed, if, for every t ≥ 0, there exists Mt > 0, only depending on t, such that

‖X(t)‖2 +

∫ t

0

‖Y (s)‖2ds ≤Mt

[
‖X0‖2 +

∫ t

0

‖U(s)‖2ds
]
,

where X(t) is the state of system, X0 is its initial state, U(·) ∈ L2
loc([0,+∞),U) is

the input of system and Y (·) ∈ L2
loc([0,+∞),Y) is the output of system. Denote

by H(s) the input-output transfer function of the well-posed system. Thus, a well-
posed system is called regular if lim

s→+∞
H(s)u = Du,∀u ∈ U, where D is a bounded

operator from U to Y. Refer to [7, 20, 21, 23, 26] and references therein for more
details on the theory of input-output well-posedness and regularity. Since 1980s, it
has been demonstrated that this class of systems is quite general, including many
control systems described by partial differential equations with inputs and outputs
on internal sub-domains, or on the (partial) boundary of the spatial region (see
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[4, 5, 6, 10, 11, 14, 18, 30] and references therein). But the well-posedness and
regularity of 1-d networks has received little attention in the literature. In [1], the
well-posedness of a tree-shaped network of strings with feedback acting on the root
of the tree was shown, based on the d’Alembert formula. One of main contributions
of this paper is to prove the L2-well-posedness and regularity of the general network
system of strings (1) with outputs (2), by constructing suitable multipliers with
graph theory and the asymptotical theory of fundamental solution. Here we state
this result as Theorem 1.1 and its proof is deferred to Section 3.

Theorem 1.1. Assume that D is not empty, 0 < ρL ≤ ρk(x) ≤ ρU , 0 < TL ≤
Tk(x) ≤ TU , and ρk(·), Tk(·) ∈ C1[0, 1], ∀k ∈ IE(G), and that the input u(p, ·) ∈
L2
loc([0,+∞),R) for every vertex p ∈ V (G) \ (D ∪ F), and the outputs are defined

by (2). Then the system (1) is input-output L2-well-posed and regular.

It is well-known that only tree-shaped networks with one fixed vertex can be
exponential decay under appropriate velocity feedbacks; and when there exist more
than two fixed vertices or closed cycles in networks of strings, under velocity feed-
backs, the networks is at most polynomial decay or is not stable [13]. Based on
the observability estimate, the polynomial decay of a planar tree-shaped network
of strings under only one vertex being damped (one-node stabilization) were dis-
cussed in [1, 2, 8, 24]. Riesz basis approach is used in [15, 28, 29] to prove that
the spectrum-determined-growth (SDG) condition holds for the networks, so the
stability of closed-loop systems can be determined by their spectral bound. The de-
cay rate of the chain-shaped and star-shaped networks was estimated by choosing
a suitable weighted energy functional in [27]. By means of the frequency domain
method, the exponential stability of a tree-shaped network was confirmed in [16].
However, Lyapunov stability is more common and intuitive in engineering. So, in
this paper, we use the Lyapunov method to study the stability on networks, e.g.,
the tree-shaped networks shown as Figure 1b and Figure 2. Thus, the second con-
tribution of this paper is to provide a construction method of Lyapunov functional
for general tree-shaped networks of strings with one fixed vertex.

For a connected tree G = (V (G), E(G)), a vertex is selected as its root, then, G
is said to be a rooted tree. A boundary vertex of the rooted tree is called a leaf
vertex, or a leaf for short, if it is not the root. That is, ∂GN is consisted of all
leaves of the rooted tree G. An edge incident with a leaf is called a leaf edge. For
convenience, we give a hypothesis as follows (see [15, 16]).

Hypotheses 1.2.
(1) The rooted tree-shaped networks G with the fixed root pr has no input signal

at the internal vertex pk (k 6= r), i.e., D = {pr} and u(pk, t) = 0, for pk ∈ Int(G)\D.
(2) deg(pr) = deg+(pr) = 1, I+

E (pr) = {r}.
(3) deg−(pk) = 1 for all k ∈ IV (G) with k 6= r.

Under Hypothesis 1.2, the motion of the tree-shaped network G is described by

ρj(x)wj,tt(x, t) = (Tj(x)wj,x)x(x, t), x ∈ (0, 1), j ∈ IE(G),

wr(0, t) = w(pr, t) = 0,

∀p ∈ Int(G) \ {pr}, I−E (p) = {k},
wk(1, t) = w(p, t) = wi(0, t) for i ∈ I+

E (p), and

Tk(1)wk,x(1, t) =
∑
i∈I+E (p) Ti(0)wi,x(0, t),

∀p ∈ ∂GN , I−E (p) = {k}, Tk(1)wk,x(1, t) = u(p, t).

(3)
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Thus, we have the following result.

Theorem 1.3. Assume that Hypothesis 1.2 holds and that 0 < ρL ≤ ρk(x) ≤ ρU ,
0 < TL ≤ Tk(x) ≤ TU on [0, 1] and ρk(·), Tk(·) ∈ C1[0, 1], for every k ∈ IE(G),
then the tree-shaped network (3) is exponentially stable under the output feedback

u(pk , t) = −βkyk(t) = −βkwt(pk , t), pk ∈ ∂GN , (4)

where βk > 0.

Theorem 1.3 will be proven by constructing a suitable Lyapunov functional in
Section 4.

Remark 1. Under Hypothesis 1.2 (3), a tree G with the root pr is also called a
branching with the root pr [3]. In fact, the root may be an internal vertex (i.e.,(2)
in Hypothesis 1.2 dose not hold). Hypothesis 1.2 only is for the sake of the proof
of Theorem 1.3 and the construction of Lyapunov functional. If Hypothesis 1.2 (3)
is not true, we can take a change of variable x := 1 − x, such that it is satisfied.
Thus, we can also construct a Lyapunov functional such that the result of Theorem
1.3 also holds for all trees with one fixed root and all leaves controlled by velocity
feedbacks, like (4). See the example in Subsection 4.2.2 below.

All in all, main contributions of this paper are:

(1): to prove the input-output L2-well-posedness and regularity of the general
network system of strings, by constructing suitable multipliers and the asymp-
totical theory of fundamental solution, respectively;

(2): to provide a construction method of Lyapunov functional for general tree-
shaped networks of strings with one fixed root.

The choice of multipliers for the L2-well-posedness and the Lyapunov functional,
based on graph notions and theories, is the novelty of this paper, which is also the
main difficulty of this paper. The paper is organized as follows. The matrix-vector
form of network (1) is provided in light of graph theory in Section 2. Theorem 1.1
and Theorem 1.3 are proven in Section 3 and Section 4, respectively. Finally, the
conclusions follow in Section 5.

2. The matrix-vector form of system (1) in Rn. To study the 1-d wave prop-
agation on general networks, we need some fundamental notations, concepts of the
graph theory and a proposition. See [3] and [9] for more details about the graph
theory.

Definition 2.1. The matrices Υ+ = (υ+
i,j)m×n and Υ− = (υ−i,j)m×n, given by

υ+
i,j =

{
1, if πj(0) = pi,
0, otherwise

and υ−i,j =

{
1, if πj(1) = pi,
0, otherwise,

are called the outgoing incidence matrix and the incoming incidence matrix, respec-
tively. The incidence matrix is defined by Υ = Υ+ −Υ−.

From the above definition, it follows that

Υ+ =
(
ε+1

, . . . , ε+k
, . . . , ε+n

)
m×n

and Υ− =
(
ε−1

, . . . , ε−k
, . . . , ε−n

)
m×n

(5)

where +k , 
−
k ∈ IV (G), k ∈ IE(G), ε+k

and ε−k
are the +k -th and the −k -th column

vector of Im, the identity matrix of order m, respectively. ε+k
shows that the +k -th

vertex p+k
is the starting point (tail) of the edge ek, and ε−k

shows that the −k -th
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vertex p−k
is the final point (head) of the edge ek. We denote an m0 ×m matrix

by

PD = (ε1 , ε2 , . . . , εm0
)>, pk ∈ V (G) \D, (6)

where the vector εk is the k-th column of the identity matrix Im. Then PD is an
orthogonal projection from Rm to Rm0 . Thus, PDW retains the 1-th row, the 2-th
row, . . ., the m0

-th row of an m-row matrix W , and removes the other rows of W .
Moreover,

PDP
>
D = Im0

∈ Rm0×m0 and P>D PD = ID ∈ Rm×m, (7)

where Im0
is the identity matrix of order m0, ID is a diagonal matrix whose entries

from the 1-th to the m0 -th are one, others are zero.
Let

w(x, t) =

w1(x, t)
...

wn(x, t)

 and w(p, t) =

w(p1, t)
...

w(pm, t)

 ,

and call them the vectorization of w(z, t), where p = (p1, p2, . . . , pm)>. Thus, the
system (1) can be rewritten asM(x)wtt(x, t) = (T (x)wx)x(x, t), x ∈ (0, 1), t > 0,

w(0, t) = (Υ+)>w(p, t), w(1, t) = (Υ−)>w(p, t),
PD [Υ−T (1)wx(1, t)−Υ+T (0)wx(0, t)] = u(t),

(8)

where M(x) = diag (ρ1(x), . . . , ρn(x)), T (x) = diag (T1(x), . . . , Tn(x)),

u(t) =

 u(p1 , t)
...

u(pm0
, t)

 with u(pk , t) = 0 as pk ∈ F and u(·) ∈ L2
loc([0,+∞);Rm0).

The output of system (2) can be read as

Y (t) =

 y1(t)
...

ym0
(t)

 = PDwt(p, t) =

 wt(p1 , t)...
wt(pm0

, t)

 , (9)

where yk(t) or wt(pk , t) is 0 when pk ∈ F, which means that the system (1) has
no output signal at free vertex pk .

Remark 2. Similar to the matrix PD, we introduce matrices

Pu = (εk1 , εk2 , . . . , εkmu )>, for pki ∈ V (G) \ (D ∪ F) (10)

and

P⊥u = (εk̂1
, εk̂2

, . . . , εk̂m0−mu
)>, for pk̂i

∈ F,

where the vector εki and εk̂i
are the ki-th and k̂i-th column of the identity matrix

Im, respectively. Thus, the last boundary condition in (8) can be rewritten as(
P⊥u
Pu

)[
Υ−T (1)wx(1, t)−Υ+T (0)wx(0, t)

]
=

(
0

PuP
>
D u(t)

)
,
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where PuP
>
D u(t) is the true (nonzero) input signal. According to (2), (7) and (9),

the true (nonzero) output signal can be written as

Yu(t) = PuP
>
D Y (t) =

 yk1(t)
...

ykmu (t)

 = Puwt(p, t) =

 wt(pk1 , t)
...

wt(pkmu , t)

 .

The energy function of system (1) is defined as follows:

E (t) =
1

2

∫ 1

0

[〈M(x)wt(x, t), wt(x, t)〉+ 〈T (x)wx(x, t), wx(x, t)〉] dx, (11)

where 〈·, ·〉 represents the Euclidean inner product in Rn. Thus it can be derived
from integration by parts and (8) that

dE (t)

dt
= 〈(Υ−)T (1)wx(1, t)− (Υ+)T (0)wx(0, t), wt(p, t) 〉

= 〈u(t), PDwt(p, t) 〉Rm0 = 〈u(t), Y (t)〉Rm0 , (12)

which means that the output of system (1), i.e., Y (t) = PDwt(p, t), is collocated.
In the end of this section, we introduce the following definition of edge adjacency

matrix and its proposition which discloses relationship between this definition and
Definition 2.1.

Definition 2.2. An edge in G is said to be a loop, if its tail and head are the same.
Let G = (V (G), E(G)) be a loopless digraph. The n × n matrix B+

G = (b+i,j)n×n,
defined by

b+i,j =

{
1, if two different edges ei and ej join at a common tail,
0, otherwise,

is called the outgoing edge adjacency matrix of G. The n×n matrix B−G = (b−i,j)n×n,
defined by

b−i,j =

{
1, if two different edges ei and ej join at a common head,
0, otherwise,

is called the incoming edge adjacency matrix of G. The n × n matrix Bt,hG =

(bt,hi,j )n×n, defined by

bt,hi,j =

{
1, if p is the tail of ei and the head of ej , for some vertex p ∈ V (G),
0, otherwise,

is called the outgoing-incoming edge adjacency matrix G. The n×n matrix Bh,tG =

(bh,ti,j )n×n, where

bh,ti,j =

{
1, if p is the head of ei, and the tail of ej , for some vertex p ∈ V (G),
0, otherwise,

is called the incoming-outgoing edge adjacency matrix of G. Thus, the matrix

BG = B+
G +B−G +Bt,hG +Bh,tG , is called the edge adjacency matrix of G.

Note that, in Definition 2.2, the diagonal entries of these matrices, BG, B+
G , B−G ,

Bt,hG and Bh,tG , are all zeros, B+
G and B−G are symmetrical and Bt,hG = (Bh,tG )>. In

addition, the following proposition can be derived from Definition 2.1 and 2.2.
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Proposition 1. Assume that G is a loopless digraph, Υ+ and Υ− are its outgoing
incidence matrix and incoming incidence matrix, respectively. Let

Λ = diag(λ1, . . . , λm), Λ	 = diag
(
λ−1

, λ−2
, . . . , λ−n

)
and Λ⊕ = diag

(
λ+1

, λ+2
, . . . , λ+n

)
, where +k and −k defined by (5). Then

(1): (Υ−)Λ(Υ−)> = diag

( ∑
k∈I−E (p1)

λk, . . . ,
∑

k∈I−E (pi)

λk, . . . ,
∑

k∈I−E (pm)

λk

)
;

(2): (Υ+)Λ(Υ+)> = diag

( ∑
k∈I+E (p1)

λk, . . . ,
∑

k∈I+E (pi)

λk, . . . ,
∑

k∈I+E (pm)

λk

)
;

(3): (Υ−)>ΛΥ+ = [Λ	]Bh,tG and (Υ+)>ΛΥ− = [Λ⊕]Bt,hG = Bt,hG [Λ	];

(4): (Υ−)>ΛΥ− = [Λ	](I +B−G) and (Υ+)>ΛΥ+ = [Λ⊕](I +B+
G);

where we agree that
∑
s∈∅

λk = 0. Especially,

(Υ−)>Υ+ = Bh,t
G , (Υ+)>Υ− = Bt,h

G , (Υ−)>Υ− = I + B−G and (Υ+)>Υ+ = I + B+
G .

Remark 3. Assume that m = n + 1, and Λ̃ = diag(λ̃0, λ̃1, . . . , λ̃n). Denote by

λk = λ̃k−1, for k = 1, . . . , n+ 1, then Λ̃ = diag(λ1, λ2, . . . , λn+1),

Λ̃	 = diag
(
λ−1

, λ−2
, . . . , λ−n

)
= diag

(
λ̃−1 −1, λ̃−2 −1, . . . , λ̃−n−1

)
and

Λ̃⊕ = diag
(
λ+1

, λ+2
, . . . , λ+n

)
= diag

(
λ̃+1 −1, λ̃+2 −1, . . . , λ̃+n−1

)
.

3. Proof of Theorem 1.1 and examples. The proof is divided into two parts:
the input-output L2-well-posedness and the regularity. We first prove the input-
output L2-well-posedness.

3.1. Proof of input-output well-posedness.

Proof. We choose bounded continuous and differentiable functions on [0, 1]: ξk(x),
k ∈ IE(G), such that

ξk(1)/Tk(1) > 2n,−ξk(0)/Tk(0) > 2n, k ∈ IE(G), (13a)

and  maxx∈[0,1]

{
‖M1/2(x)Ξ(x)T 1/2(x)‖2

}
≤ cE ,

maxx∈[0,1]

{
‖[Ξ(x)T−1(x)]′T (x)‖2

}
≤ cE ,

maxx∈[0,1]

{
‖[Ξ(x)M(x)]′M−1(x)‖2

}
≤ cE ,

(13b)

where Ξ(x) = diag (ξ1(x), . . . , ξn(x)) and cE > 0.
The first equation in (8) multiplied by Ξ(x)wx(x, t) on both sides, then integrated

on [0, 1] with respect to x and on [0, t] with respect to t leads to∫ t

0

∫ 1

0

〈Ξ(x)wx(x, t),M(x)wtt(x, t)〉dxdt

=

∫ t

0

∫ 1

0

〈Ξ(x)wx(x, t), (T (x)wx)x(x, t)〉dxdt. (14)
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Applying integration by parts, (9), the following equality∫ t

0

∫ 1

0

〈Ξ(x)wxt(x, t),M(x)wt(x, t)〉dxdt =
1

2

∫ t

0

〈wt(1, t),Ξ(1)M(1)wt(1, t)〉dt

− 1

2

∫ t

0

〈wt(0, t),Ξ(0)M(0)wt(0, t)〉dt−
1

2

∫ t

0

∫ 1

0

〈wt(x, t), (Ξ(x)M(x))′wt(x, t)〉dxdt,

and boundary conditions in (8): w(0, t) = (Υ+)>w(p, t), w(1, t) = (Υ−)>w(p, t),
to the left-hand side of (14) yields

LHS =

∫ 1

0

[〈Ξ(x)wx(x, t),M(x)wt(x, t)〉 − 〈Ξ(x)wx(x, 0),M(x)wt(x, 0)〉]dx

−
∫ t

0

∫ 1

0

〈Ξ(x)wxt(x, t),M(x)wt(x, t)〉dxdt

=

∫ 1

0

〈Ξ(x)wx(x, t),M(x)wt(x, t)〉dx−
∫ 1

0

〈Ξ(x)wx(x, 0),M(x)wt(x, 0)〉dx

−1

2

∫ t

0

〈Y (t), PD[Υ−Ξ(1)M(1)(Υ−)> −Υ+Ξ(0)M(0)(Υ+)>]P>D Y (t)〉dt

+
1

2

∫ t

0

∫ 1

0

〈wt(x, t), (Ξ(x)M(x))′wt(x, t)〉dxdt.

Similarly, applying integration by parts to the right-hand side of (14) yields

RHS =
1

2

∫ t

0

〈Ξ(1)wx(1, t), T (1)wx(1, t)〉dt− 1

2

∫ t

0

〈Ξ(0)wx(0, t), T (0)wx(0, t)〉dt

−1

2

∫ t

0

∫ 1

0

〈[Ξ(x)T−1(x)]′T (x)wx(x, t), T (x)wx(x, t)〉dxdt.

Thus, it can be derived from (14) that∫ 1

0

〈Ξ(x)wx(x, t),M(x)wt(x, t)〉dx−
∫ 1

0

〈Ξ(x)wx(x, 0),M(x)wt(x, 0)〉dx

+
1

2

∫ t

0

∫ 1

0

〈wt(x, t), [Ξ(x)M(x)]′wt(x, t)〉dxdt

+
1

2

∫ t

0

∫ 1

0

〈[Ξ(x)T−1(x)]′T (x)wx(x, t), T (x)wx(x, t)〉dxdt

=
1

2

∫ t

0

〈Ξ(1)wx(1, t), T (1)wx(1, t)〉dt− 1

2

∫ t

0

〈Ξ(0)wx(0, t), T (0)wx(0, t)〉dt

+
1

2

∫ t

0

〈Y (t), PD[Υ−Ξ(1)M(1)(Υ−)> −Υ+Ξ(0)M(0)(Υ+)>]P>D Y (t)〉dt. (15)

From the boundary condition PD [Υ−T (1)wx(1, t)−Υ+T (0)wx(0, t)] = u(t) in (8),
it is obtained that

‖u(t)‖2 = 〈u(t),u(t)〉Rm0 ≤ 2〈(PDΥ−)>PDΥ−T (1)wx(1, t), T (1)wx(1, t)〉

+2〈
[
PDΥ+

]>
PDΥ+T (0)wx(0, t), T (0)wx(0, t)〉.
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It can be deduced from Definition 2.2 that

0 ≤ min
1≤i≤n


n∑
j=1

b−i,j

 ≤ max
1≤i≤n


n∑
j=1

b−i,j

 ≤ n− 1

and

0 ≤ min
1≤i≤n


n∑
j=1

b+i,j

 ≤ max
1≤i≤n


n∑
j=1

b+i,j

 ≤ n− 1,

thus, it follows from (7), the equalities (4) in Proposition 1 and (13a) that

Ξ(1)T (1)−1 − 2(Υ−)>P>D PDΥ− = Ξ(1)T (1)−1 − 2[I	D](I +B−G) > 0

and

−Ξ(0)T (0)−1 − 2(Υ+)>P>D PDΥ+ = −Ξ(0)T (0)−1 − 2[I⊕D](I +B+
G) > 0,

i.e., Ξ(1)T (1)−1 − 2(PDΥ−)>PDΥ− and −Ξ(0)T (0)−1 − 2(PDΥ+)>PDΥ+ are sym-
metric positive definite matrices. Therefore,

〈Ξ(1)wx(1, t), T (1)wx(1, t)〉 − 〈Ξ(0)wx(0, t), T (0)wx(0, t)〉 − ‖u(t)‖2

≥ 〈Ξ(1)wx(1, t), T (1)wx(1, t)〉 − 〈Ξ(0)wx(0, t), T (0)wx(0, t)〉
−2〈(PDΥ−)>PDΥ−T (1)wx(1, t), T (1)wx(1, t)〉

−2〈
[
PDΥ+

]>
PDΥ+T (0)wx(0, t), T (0)wx(0, t)〉 ≥ 0. (16)

Obviously, the equalities (1) and (2) in Proposition 1 and (13a) imply that

PD[(Υ−)Ξ(1)M(1)(Υ−)> − (Υ+)Ξ(0)M(0)(Υ+)>]P>D = diag
(
cp1 , . . . , cpm0

)
with

cpk =

 ∑
i∈I−E (pk )

ξi(1)ρi(1)−
∑

i∈I+E (pk )

ξi(0)ρi(0)

 > 0.

So, it yields that

〈Y (t), PD[Υ−Ξ(1)M(1)(Υ−)> −Υ+Ξ(0)M(0)(Υ+)>]P>D Y (t)〉 ≥ cp‖Y (t)‖2, (17)

where cp = min
k=1,...,m0

{cpk }. From the inequalities in (13b), it can be derived that∣∣∣∣∫ 1

0

〈Ξ(x)wx(x, t),M(x)wt(x, t)〉dx
∣∣∣∣ ≤ cEE (t) (18)

and

1

2

∫ 1

0

〈wt(x, t), (Ξ(x)M(x))′wt(x, t)〉dx

+
1

2

∫ 1

0

〈[Ξ(x)T−1(x)]′T (x)wx(x, t), T (x)wx(x, t)〉dx ≤ cEE (t). (19)

Thus, it follows from (15), (16), (17), (18) and (19) that

c0

[
E (t) + E (0) +

∫ t

0

E (t)dt

]
≥

∫ t

0

‖u(t)‖2dt+

∫ t

0

‖Y (t)‖2dt (20)
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with c−1
0 = 1

2cE
min {1, cp}. From (12) and (20), it can be deduced that

E (t) ≤ E (0) + c0γ

[
E (t) + E (0) +

∫ t

0

E (t)dt

]
+

(
1

4γ
− γ
)∫ t

0

‖u(t)‖2dt

with 0 < γ < min{1/2, 1/c0}. So, for t ≤ τ ,

E (t) ≤ 1 + c0γ

1− c0γ
E (0) +

1− 4γ2

4γ(1− c0γ)

∫ τ

0

‖u(s)‖2ds+
c0γ

1− c0γ

∫ t

0

E (s)ds. (21)

Applying the Gronwall inequality to (21) leads to

E (t) ≤
[

1 + c0γ

1− c0γ
E (0) +

1− 4γ2

4γ(1− c0γ)

∫ τ

0

‖u(s)‖2ds
]
e

c0γ
1−c0γ

t

and∫ t

0

E (s)ds ≤
[

1 + c0γ

1− c0γ
E (0) +

1− 4γ2

4γ(1− c0γ)

∫ τ

0

‖u(s)‖2ds
]

1− c0γ
c0γ

(
e

c0γ
1−c0γ

t − 1
)
.

From (20) and the above two inequalities, it follows that∫ t

0

|Y (t)|2dt ≤ c0
[
E (t) + E (0) +

∫ t

0

E (s)ds

]
≤

[
c0

1 + c0γ

1− c0γ
e

c0γ
1−c0γ

t + c0 +
1 + c0γ

γ

(
e

c0γ
1−c0γ

t − 1
)]

E (0)

+

[
c0(1− 4γ2)

4γ(1− c0γ)
e

c0γ
1−c0γ

t +
1− 4γ2

4γ2

(
e

c0γ
1−c0γ

t − 1
)]∫ τ

0

‖u(s)‖2ds.

Hence

E (t) +

∫ t

0

|Y (s)|2ds ≤
[

(1 + γ)(1 + c0γ)

γ(1− c0γ)
e

c0γ
1−c0γ

t − 1

γ

]
E (0)

+

[
(1 + γ)(1− 4γ2)

4γ2(1− c0γ)
e

c0γ
1−c0γ

t − 1− 4γ2

4γ2

] ∫ τ

0

‖u(s)‖2ds,

which shows that ∀τ ≥ 0, there exists Mτ > 0 such that

E (τ) +

∫ τ

0

|Yu(s)|2ds = E (τ) +

∫ τ

0

|Y (s)|2ds

≤Mτ

[
E (0) +

∫ τ

0

‖u(s)‖2ds
]

= Mτ

[
E (0) +

∫ τ

0

‖PuP>D u(s)‖2ds
]
.

Therefore, the system (1) is input-output L2-well-posedness.

3.2. Proof of regularity.

Proof. Applying Laplace transform to the first equation in (1) leads to

s2ρj(x)ŵj,ss(x, s) = (Tj(x)ŵj,x)x(x, s), x ∈ (0, 1), j ∈ IE(G). (22)

We introduce a new independent variable for (22)

θ(x) = ã−1
j

∫ x

0

√
ρj(x)T−1

j (x)dx for x ∈ [0, 1], with ãj =

∫ 1

0

√
ρj(x)T−1

j (x)dx.
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Obviously, θ(x) is strictly monotone function on [0, 1]. Denote by x(θ) the inverse
function of θ(x), θ ∈ [0, 1], then

dθ(x)

dx
= ã−1

j

√
ρj(x)

Tj(x)
> 0 and

dx(θ)

dθ
= ãj

√
Tj(x(θ))

ρj(x(θ))
> 0.

So, the following equalities can be easily calculated

ŵj,x(x(θ), s) = ŵj,θ(x(θ), s)
dθ(x)

dx
= ã−1

j ŵj,θ(x(θ), s)

√
ρj(x(θ))

Tj(x(θ))

and

∂

∂x
[Tj(x(θ))ŵj,x(x(θ), s)] =

ŵj,θ(x(θ), s)

[(
ρj(x(θ))
Tj(x(θ))

)3/2
dTj(x)
dx +

√
Tj(x(θ))√
ρj(x(θ))

dρj(x)
dx

]
2ã3
j

+ã−2
j ρj(x(θ))ŵj,θ2(x(θ), s).

Let w̃j(θ, s) = ŵj(x(θ), s) and

αj(θ) =

[
ρj(x(θ))T ′j(x(θ))

2ã2
j [Tj(x(θ))]

2 +
ρ′j(x(θ))

2ã2
jρj(x(θ))

]
, j ∈ IE(G),

where the prime denotes the derivative with respect to θ, then (22) can be refor-
mulated by

ã2
js

2w̃j(θ, s) = w̃j,θθ(θ, s) + αj(θ)w̃j,θ(θ, s), θ ∈ (0, 1).

So, Laplace transform of the system (1) can be written as follows:
Ã2s2w̃(θ, s) = w̃θθ(θ, s)) + α(θ)w̃θ(θ, s), θ ∈ (0, 1),
w̃(0, s) = ŵ(0, s) = (Υ+)>ŵ(p, s), w̃(1, s) = ŵ(1, s) = (Υ−)>ŵ(p, s),

PD

[
Υ−T̃ (1)w̃θ(1, s)−Υ+T̃ (0)w̃θ(0, s)

]
= û(s),

(23)

where T̃ (0) = Ã−1[M(0)T (0)]1/2, T̃ (1) = Ã−1[M(1)T (1)]1/2,

Ã = diag (ã1, . . . , ãn) and α(θ) = diag (α1(θ), . . . , αn(θ)) .

Let η̃(θ) = (w̃(θ, s), s−1w̃′(θ, s))>, then (23) shows that η̃(θ) satisfies

dη̃

dθ
= s

(
0 I

Ã2 0

)
η̃ +

(
0 0

s−1α 0

)
η̃. (24)

According to the asymptotical theory of fundamental solution ([17, 19]), the funda-
mental solution matrix of (24) has the form:

W̃ (θ, s) = (I + s−1Q(θ, s))W̃0(θ, s),

where Q(θ, s) =
(
Q11(θ,s) Q12(θ,s)
Q21(θ,s) Q22(θ,s)

)
, ‖Q(θ, s)‖ is uniformly bounded and

W̃0(θ, s) =

(
cosh(sθÃ) Ã−1 sinh(sθÃ)

Ã sinh(sθÃ) cosh(sθÃ)

)
.
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Thus,

η̃(θ) = W̃ (θ, s)η̃(0) = (I + s−1Q(θ, s))W̃0(θ, s)η̃(0)

=

(
cosh(sθÃ) + s−1WQ

11(sθÃ) Ã−1 sinh(sθÃ) + s−1WQ
12(sθÃ)

Ã sinh(sθÃ) + s−1WQ
21(sθÃ) cosh(sθÃ) + s−1WQ

22(sθÃ)

)
η̃(0), (25)

where η̃(0) = (η̃0,1, η̃0,2)> and

WQ(θ, s) = Q(θ, s)W̃0(θ, s) =

(
WQ

11(sθÃ) WQ
12(sθÃ)

WQ
21(sθÃ) WQ

22(sθÃ)

)

=

(
Q11 cosh(sθÃ) +Q12Ã sinh(sθÃ) Q11Ã

−1 sinh(sθÃ) +Q12 cosh(sθÃ)

Q21 cosh(sθÃ) +Q22Ã sinh(sθÃ) Q21Ã
−1 sinh(sθÃ) +Q22 cosh(sθÃ)

)
.

Let d(s) = PDŵ(p, s), then ŵ(p, s) = P>D d(s), η̃(0) =
(

(PDΥ+)> 0
0 I

)(
d(s)
η̃0,2

)
and

η̃(1) =

(
w̃(1, s)

s−1w̃′(1, s)

)
=

(
(Υ−)>ŵ(p, s)
s−1w̃′(1, s)

)
=

(
(Υ−)>P>D d(s)
s−1w̃′(1, s)

)
.

Thus, it follows from (25) and the last boundary condition in (23) that d(s) and
η̃0,2 satisfy the linear system of equations:

D̃(s)

(
d(s)
η̃0,2

)
=

(
s−1û(s)

0

)
, (26)

where

D̃(s) =

(
PD(Υ−)T̃ (1)Ã sinh(sÃ)(PDΥ+)> PD(Υ−)T̃ (1) cosh(sÃ) − PD(Υ+)T̃ (0)

cosh(sÃ)(PDΥ+)> − (PDΥ−)> Ã−1 sinh(sÃ)

)
+s−1

(
PD(Υ−)T̃ (1)WQ

21(sÃ)(PDΥ+)> PD(Υ−)T̃ (1)WQ
22(sÃ)

WQ
11(sÃ)(PDΥ+)> WQ

12(sÃ)

)
.

Moreover, it can be deduced that

D̃(s)

(
I 0

−Ã(PDΥ+)> I

)
= D̃−e(s) + D̃C

(
I 0

0 1
2 exp(sÃ)

)
with

D̃C =

[(
PDΥ+T̃ (0)Ã(PDΥ+)> PDΥ−T̃ (1)

−(PDΥ−)> Ã−1

)
+ s−1

(
0 Q21Ã

−1 +Q22

0 Q11Ã
−1 +Q12

)]
and

D̃−e(s) =

(
−PDΥ−T̃ (1)Ã exp(−sÃ)(PDΥ+)> PDΥ−T̃ (1) exp(−sÃ)

2
− PDΥ+T̃ (0)

exp(−sÃ)(PDΥ+)> −Ã−1 exp(−sÃ)
2

)

+s−1

(
PDΥ−T̃ (1)(Q11 −Q12Ã) exp(−sÃ)(PDΥ+)> 1

2

(
−Q21Ã

−1 + Q22

)
exp(−sÃ)

(Q11 −Q12Ã) exp(−sÃ)(PDΥ+)> 1
2

(
−Q11Ã

−1 + Q12

)
exp(−sÃ)

)
.

Thus, the linear system of equations (26) can be reformulated by[
D̃C + D̃−e(s)

(
I 0

0 1
2 exp(−sÃ)

)](
d(s)
η̃d(s)

)
=

(
s−1û(s)

0

)
, (27)
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where η̃d(s) = 1
2 exp(sÃ)[η̃0,2 + (PDΥ+)>d(s)]. Since(

I −PDΥ−T (1)Ã
0 I

)
D̃C =(

D̃Λ 0

−(PDΥ−)> Ã−1

)
+ s−1

(
0 Q21Ã

−1 + Q22 − PDΥ−T (1)Ã
(
Q11Ã

−1 + Q12

)
0 Q11Ã

−1 + Q12

)
with

D̃Λ = PDΥ+T̃ (0)Ã(Υ+)>P>D + PDΥ−T̃ (1)Ã(Υ−)>P>D

= diag

 ∑
i∈I+E (p1 )

√
ρi(0)Ti(0), . . . ,

∑
i∈I+E (pm0

)

√
ρi(0)Ti(0)


+ diag

 ∑
i∈I−E (p1 )

√
ρi(1)Ti(1), . . . ,

∑
i∈I−E (pm0

)

√
ρi(1)Ti(1)

 , (28)

D̃C is invertible for <(s) > 0 large enough, and

D̃−1
C =

( D̃Λ 0

−(PDΥ−)> Ã−1

)−1

+ o(D)

(I −PDΥ−T (1)Ã
0 I

)

=

(
D̃−1

Λ −D̃−1
Λ (PDΥ−)T (1)Ã

Ã(PDΥ−)>D̃−1
Λ Ã

[
I − (PDΥ−)>D̃−1

Λ (PDΥ−)T (1)Ã
])+ o(D), (29)

where o(D) stands for a matrix which tends to zero matrix with appropriate rows
and columns as s→ +∞. Thus, it follows from

D̃−e(s)

(
I 0

0 1
2 exp(−sÃ)

)
→ 0 as s→ +∞,

(27) and (29) that(
d(s)
η̃d

)
= [D̃−1

C + o(D)]

(
s−1û(s)

0

)
and d(s) = s−1[D̃−1

Λ + o(D)]û(s),

which implies that Ŷ (s) = sPDŵ(p, s) = sd(s) = [D̃−1
Λ + o(D)]û(s). So, it can be

deduced from Remark 2, Proposition 1 and (28) that

lim
s→+∞

H(s) = PuP
>
D D̃

−1
Λ PDP

>
u

= diag

 ∑
i∈I+E (pk1

)

√
ρi(0)Ti(0) +

∑
i∈I−E (pk1

)

√
ρi(1)Ti(1), . . . ,

∑
i∈I+E (pkmu

)

√
ρi(0)Ti(0) +

∑
i∈I−E (pkmu

)

√
ρi(1)Ti(1)


−1

, (30)

i.e., the system (1) is regular.
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3.3. Examples. Here, we give two networks: one is a network with cycles, another
is a tree-shaped network with the fixed root p1, shown in Figure 1.

(a) A network with cycles (b) A tree-shaped network
with the root p1

Figure 1. Networks consisting of strings with one fixed vertex

3.3.1. A network with cycles. See Figure 1a, the motion of strings on the network
G is governed by



ρj(x)wj,tt(x, t) = (Tj(x)wj,x)x(x, t), x ∈ (0, 1), j = 1, 2, 3, 4, 5, 6, 7,

w1(0, t) = w4(1, t) = w5(1, t), w3(1, t) = w2(0, t) = w1(1, t),

w3(0, t) = w4(0, t) = w6(1, t), w5(0, t) = w6(0, t) = w7(1, t), w7(0, t) = 0,

T1(1)w1,x(1, t) + T3(1)w3,x(1, t)− T2(0)w2,x(0, t) = 0,

T6(1)w6,x(1, t)− [T4(0)w4,x(0, t) + T3(0)w3,x(0, t)] = 0,

T7(1)w7,x(1, t)− [T5(0)w5,x(0, t) + T6(0)w6,x(0, t)] = 0,

T4(1)w4,x(1, t) + T5(1)w5,x(1, t)− T1(0)w1,x(0, t) = u(p1, t),

T2(1)w2,x(1, t) = u(p3, t),

(31)

where D = {p6}. The expressions PD and Pu ((6) and (10)) lead to

P>D =
1 2 3 4 5

( )ε1 ε2 ε3 ε4 ε5 and P>u =
k1 k2

( )ε1 ε3 ,

where the vector εk is the k-th column of the identity matrix I6. So, it follows from
k1 = 1, k2 = 3, the definitions of I +

E (pj) and I −E (pj), and (30) that

lim
s→+∞

H(s) = diag


√ρ1(0)T1(0) +

∑
k∈{4,5}

√
ρk(1)Tk(1)

−1

, [
√
ρ2(1)T2(1)]−1

 ,

i.e., the system (31) is regular.
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3.3.2. A tree-shaped network with one fixed root. See Figure 1b, the motion of
strings on the tree-shaped network G is governed by

ρj(x)wj,tt(x, t) = (Tj(x)wj,x)x(x, t), x ∈ (0, 1), j = 1, . . . , 9,

w1(0, t) = 0, w1(1, t) = w2(0, t) = w3(0, t), w6(1, t) = w7(0, t),

w2(1, t) = w4(0, t) = w5(0, t) = w6(0, t), w5(1, t) = w8(0, t) = w9(0, t),
T1(1)w1,x(1, t) = T2(0)w2,x(0, t) + T3(0)w3,x(0, t),

T2(1)w2,x(1, t) = T4(0)w4,x(0, t) + T5(0)w5,x(0, t) + T6(0)w6,x(0, t),

T5(1)w5,x(1, t) = T8(0)w8,x(0, t) + T9(0)w9,x(0, t),

T6(1)w6,x(1, t) = T7(0)w7,x(0, t), T3(1)w3,x(1, t) = u(p6, t),

T9(1)w9,x(1, t) = u(p7, t), T8(1)w8,x(1, t) = u(p8, t),

T7(1)w7,x(1, t) = u(p9, t), T4(1)w4,x(1, t) = u(p10, t).

(32)

where D = {p1}. The expressions PD and Pu ((6) and (10)) lead to

P>D =
1 2 3 4 5 6 7 8 9

( )ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 and P>u =
k1 k2 k3 k4 k5

( )ε6 ε7 ε8 ε9 ε10 ,

where the vector εk is the k-th column of the identity matrix I10. Thus, from (28)
and (30), it can be derived that

lim
s→+∞

H(s)

= diag
(√

ρ3(1)T3(1),
√
ρ9(1)T9(1),

√
ρ8(1)T8(1),

√
ρ7(1)T7(1),

√
ρ4(1)T4(1)

)−1

,

i.e., the system (32) is regular.

4. Proof of Theorem 1.3 and examples. For the tree-shaped network G =
(V (G), E(G)), the number of vertices m is equal to the number of edges plus one,
i.e., m = n + 1. Without loss of generality, let D = {p1}, then, the number of
vertices in the set V (G) \D is m0 = n. It follows from Hypothesis 1.2 and (5) that
PD = (0, In)n,n+1 and the index set {−1 , 

−
2 , . . . , 

−
n } = {2, 3, . . . , n+ 1}. Thus, it is

derived from the system (8) and Proposition 1 that (Υ−)w(1, t) = D−Gw(p, t),

w(p, t) =


0

w(p2, t)
...

w(pn+1, t)

 = D−GΥ−w(1, t) and w(0, t) = (Υ+)>w(p, t) = Bt,h
G w(1, t),

where

D−G = Υ−(Υ−)> = diag
(
deg−(p1),deg−(p2), . . . ,deg−(pn+1)

)
= diag (0, 1, . . . , 1)

and (D−G)	 = In. Since PDΥ−
[
(Υ−)>D−GP

>
D

]
= In =

[
(Υ−)>D−GP

>
D

]
PDΥ−, it

follows from the last boundary condition in the system (8) and Proposition 1 that

(Υ−)>D−GP
>
D u(t) = T (1)wx(1, t)− (Υ−)>D−GΥ+T (0)wx(0, t)

= T (1)wx(1, t)−Bh,tG T (0)wx(0, t).

In the feedback control law (4), βk > 0 for pk ∈ ∂GN . Now, we supplement
βk = 0 for pk ∈ F, and let β = diag(β1, . . . , βn), then (4) can be formulated by

u(t) = −βPDwt(p, t) with βk =

{
0, if pk ∈ F,
> 0, if pk ∈ ∂GN .

(33)
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In addition, it can be obtained from B−G = 0 and Proposition 1 that

(Υ−)>D−GP
>
D u(t) = −(Υ−)>D−GP

>
D βPDD

−
GΥ−wt(1, t).

Denote by β − = (Υ−)>D−GP
>
D βPDD

−
GΥ− = (Υ−)>

(
0 0
0 β

)
Υ−, then it is derived

from (33), Proposition 1 and Remark 3 that

β − = diag
(
β−1 , . . . , β

−
n

)
, with β −k = β−k −1 =

{
0, if deg(p−k

) > 1,

> 0, if deg(p−k
) = 1,

(34)

where −k − 1 ∈ {1, 2, . . . , n}, k ∈ IE(G). Therefore, the closed-loop system (3)-(4)
can be reformulated by (see also [15, 28])

M(x)wtt(x, t) = (T (x)wx)x(x, t), x ∈ (0, 1), t > 0,

w(0, t) = Bt,hG w(1, t),

T (1)wx(1, t)−Bh,tG T (0)wx(0, t) = −β −wt(1, t).
(35)

Remark 4. Since p−k
is the final point (head) of the edge ek for k ∈ IE(G), accord-

ing to Definition 2.2, all entries in k-th row of Bh,tG are zeros for boundary vertex
p−k
∈ ∂GN , i.e.,deg(p−k

) = 1. Moreover, for internal vertex p−k
, i.e.,deg(p−k

) > 1,

β−k = 0. Hence, it can be followed from (34) that 〈Bh,tG z, β−v 〉Rn ≡ 0, for all
z, v ∈ Rn.

Let Vb(t) =
∫ 1

0
〈 b(x)wx(x, t), M(x)wt(x, t) 〉Rndx with the diagonal matrix b(x) =

diag (b1(x), . . . , bn(x)) satisfying the following condition.

Condition 4.1.
(1) For every k ∈ IE(G), bk(·) ∈ C1[0, 1] and there exist positive constants cρL,

cρU , cTL and cTU such that cρL ≤ [bk(x)ρk(x)]′ ≤ cρU and cTL ≤ [bk(x)T−1
k (x)]′ ≤

cTU , for all x ∈ [0, 1].
(2) For every edge ek, corresponding to the component bk(x),

min

{
2

[
bk(1)(β−k )

2

Tk(1) + bk(1)ρk(1)

]−1

β−k ,
1

cb

}
> cV > 0 as p−k

∈ ∂GN ,

bk(1)ρk(1) ≤
∑
i∈I+E (p


−
k

) bi(0)ρi(0), as p−k
∈ Int(G),

where cb = maxx∈[0,1]{‖M(x)‖2, ‖b2(x)T−1(x)‖2} > 0 (see (36) below), the final

point (head) of the edge ek is p−k
and I−E (p−k

) = {k}.
(3) For every edge ek, corresponding to the component bk(x),

deg+(p+k
)

∑
i∈I−E (p


+
k

)

bi(1)
Ti(1) <

bk(0)
Tk(0) , as p+k

∈ Int(G),

bk(0)
Tk(0) ≥ 0, as p+k

= p1 (k ∈ I+
E (p1)),

where the starting point (tail) of the edge ek is the vertex p+k
.

According to (1) and (2) in Condition 4.1, obviously, the following inequality

|Vb(t)| ≤
1

2

∫ 1

0

〈 b(x)wx(x, t), b(x)wx(x, t) 〉Rndx

+
1

2

∫ 1

0

〈M(x)wt(x, t), M(x)wt(x, t) 〉Rndx ≤ cbE (t) (36)
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holds, and there exist cL > 0 and cU > 0 such that

cLE (t) ≤ O(E ) =
1

2

∫ 1

0

〈wt(x, t), (b(x)M(x))′wt(x, t) 〉Rndx

+
1

2

∫ 1

0

〈 [b(x)T−1(x)]′T (x)wx(x, t), T (x)wx(x, t) 〉Rndx ≤ cUE (t). (37)

Now, we construct a Lyapunov functional

V (t) = E (t) + cV Vb(t),∀t > 0,

where 0 < cbcV < 1, then

(1− cbcV )E (t) ≤ V (t) ≤ (1 + cbcV )E (t),∀t > 0. (38)

In what follows, using this Lyapunov functional, we prove Theorem 1.3.

4.1. Proof of Theorem 1.3.

Proof. Using (35) and the following two equalities∫ 1

0

〈b(x)wxt(x, t),M(x)wt(x, t)〉dx = −1

2

∫ 1

0

〈wt(x, t), (b(x)M(x))′wt(x, t)〉dx

+
1

2
〈[b(1)M(1)−Bh,tG b(0)M(0)Bt,hG ]wt(1, t), wt(1, t)〉

and∫ 1

0

〈b(x)wx(x, t),M(x)wtt(x, t)〉dx =
1

2
〈b(1)wx(1, t), T (1)wx(1, t)〉

−1

2
〈b(0)wx(0, t), T (0)wx(0, t)〉−1

2

∫ 1

0

〈[b(x)T−1(x)]′T (x)wx(x, t)), T (x)wx(x, t)〉dx,

we can get that

dVb(t)

dt
=

1

2
〈[b(1)T (1)−1(β−)2 + b(1)M(1)−Bh,tG b(0)M(0)Bt,hG ]wt(1, t), wt(1, t)〉

+
1

2
〈[T (0)Bt,hG b(1)T (1)−1Bh,tG T (0)− T (0)b(0)]wx(0, t), wx(0, t)〉

−〈b(1)T (1)−1Bh,tG T (0)wx(0, t), β−wt(1, t)〉 −O(E ). (39)

Moveover, it follows from (11) and (35) that

dE (t)

dt
= 〈T (1)wx(1, t)−Bh,tG T (0)wx(0, t), wt(1, t)〉 = −〈β−wt(1, t), wt(1, t)〉. (40)

Thus, it can be obtained from Remark 4, (37), (39) and (40) that

dV (t)

dt
=
dE (t)

dt
+ cV

dVb(t)

dt

≤ −cV cLE (t)− 〈Cβwt(1, t), wt(1, t)〉 −
cV
2
〈CbT (0)wx(0, t), T (0)wx(0, t)〉, (41)

where

Cβ = β− − cV
2

[
b(1)T (1)−1(β−)2 + b(1)M(1)−Bh,tG b(0)M(0)Bt,hG

]
and

Cb = b(0)T (0)−1 −Bt,hG b(1)T (1)−1Bh,tG .
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Next, we prove that the symmetric matrices Cβ and Cb are positive semi-definite.
Denote by Λ = diag(λ1, λ2, · · · , λn+1), where

λj =
∑

i∈I+E (pj)

bi(0)ρi(0) =


b1(0)ρ1(0), as j = 1,
0, as pj ∈ ∂GN ,∑
i∈I+E (pj)

bi(0)ρi(0), as pj ∈ Int(G) \D.

From Proposition 1, B−G = 0 and (34), it can be obtained that

Cβ = β− − 1

2
cV
[
b(1)T (1)−1(β−)2 + b(1)M(1)− (Υ−)>Υ+b(0)M(0)(Υ+)>Υ−

]
= β− − cV

2

[
b(1)T (1)−1(β−)2 + b(1)M(1)

]
+
cV
2

diag
(
λ−1

, · · · , λ−n
)

= diag (cβ,1, . . . , cβ,n) ,

where

cβ,k = β−k −
cV
2

[
bk(1)(β−k )2

Tk(1)
+ bk(1)ρk(1)− λ−k

]
, k = 1, . . . , n.

Thus, (2) in Condition 4.1 and (34) lead to cβ,k = β−k −
cV
2

[
bk(1)(β−k )2

Tk(1) + bk(1)ρk(1)
]
≥ 0, as p−k

∈ ∂GN ,
cβ,k =

∑
i∈I+E (p


−
k

) bi(0)ρi(0)− bk(1)ρk(1) ≥ 0, as p−k
∈ Int(G),

i.e., Cβ is a positive semi-definite matrix. It follows from Proposition 1 that

Cb = b(0)T−1(0)− (Υ+)>Υ−b(1)T (1)−1(Υ−)>Υ+

= b(0)T−1(0)− (Υ+)>diag

 ∑
i∈I−E (p1)

bi(1)

Ti(1)
, · · · ,

∑
i∈I−E (pn+1)

bi(1)

Ti(1)

Υ+

= b(0)T−1(0)− diag

 ∑
i∈I−E (p


+
1

)

bi(1)

Ti(1)
, · · · ,

∑
i∈I−E (p


+
n

)

bi(1)

Ti(1)

 (I +B+
G).

The k-th row of Cb matches the edge ek, whose tail and head are the vertices p+k
and p−k

, respectively. In light of Definition 2.2, the number of 1 in the k-th row

of I + B+
G is deg+(p+k

). Thus, when bk(0)
Tk(0) > deg+(p+k

)
∑
i∈I−E (p


+
k

)
bi(1)
Ti(1) for the

internal vertex p+k
, the k-th row of Cb is strictly (row) diagonally dominant. When

bk(0)
Tk(0) > 0 for the root p+k

= p1, the k-th row of Cb has only one non-zero diagonal

element bk(0)
Tk(0) , since deg+(p1) = 1 and deg−(p1) = 0, according to Hypothesis 1.2;

when bk(0)
Tk(0) = 0 for the root p+k

= p1, the entries in k-th row of Cb are zeros. Hence,

the matrix Cb is positive semi-definite under (3) in Condition 4.1.
Thus, it follows from (38) and (41) that

dV (t)

dt
≤ − cV cL

1 + cbcV
V (t),

which, together with (38), implies that the system (35), i.e., the closed-loop system
(3)-(4), is exponential stable.
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Remark 5. The construction of matrix multiplier b(x) is crucial in the proof, here,
we discuss its choice. A path in G is a non-empty subgraph P = (VP , EP ) of the
form VP = {pι0 , pι1 , . . . , pιk} and EP = {ei1 , ei2 , . . . , eik}, where pι1 , . . . , pιk and
ei1 , . . . , eik are all distinct vertices and edges, respectively, the edge eij is joined
pιj−1

and pιj , j = 1, . . . , k. The number of edges, k, is called the length of path, a
path of length k is called a k-path. The vertices pι0 and pιk , linked by P , are called
its ends, so the path is also denoted by P (pι0 , pιk). If pι0 and pιk are the same
vertex, then P (pι0 , pιk) is called a cycle. For a connected tree G = (V (G), E(G))
with the root pr, for every vertex p ∈ V (G)\{pr}, there is a unique path connecting
p and pr, denoted by P (pr, p). The length of P (pr, p) is denoted by mp and let
dP = maxp∈V (G)\{pr}{mp}. We define sets: V0(G) = {pr} and for k ≥ 1, Vk(G) =
{p ∈ V (G)|P (pr, p) is a k-path} and

Ek(G) = {e ∈ E(G) |∃p ∈ Vk−1(G), q ∈ Vk(G) such that they are joined by e},

then V (G) =
⋃dP
k=0 Vk(G) and E(G) =

⋃dP
k=1Ek(G), where Vk(G)s and Ek(G)s are

mutual disjoint, respectively. Next, b(x) on [0, 1] can be chosen via the following
three steps.

Step 1: For every p ∈ ∂GN , denote the path P (pr, p) by

VP = {pι0 , pι1 , . . . , pιmp−1 , pιmp} and EP = {ei1 , ei2 , . . . , eimp},

where pι0 = pr is the root and pιmp = p ∈ ∂GN . Let bimp (0) = mpTimp (0)

and choose a value of bimp (1) such that

bimp (1) > mpe
cρ

TLρL max

{
Timp (0)ρimp (0)

ρimp (1)
, Timp (1)

}
.

Step 2: Beginning with the maximum mp (the longest path P (pr, p)), for j =
mp − 1, . . . , 2, 1, corresponding to eik ∈ Ej(G) ∩ EP , we calculate

bik(1) = min


Tik(1) min

j∈I+E (pιk )

{
bj(0)
Tj(0)

}
1 + deg+(pιk)

,

∑
j∈I+E (pιk )

bj(0)ρj(0)

1 + ρik(1)

 ,

and bik(0) = 1
2 min

{
ρik (1)

ρik (0) , e
−cρ
TLρL

Tik (0)

Tik (1)

}
bik(1). Repeat the above procedure,

till the least mp (the shortest path P (pr, p)).
Step 3: For every edge ek ∈ E(G), by virtue of bk(0) and bk(1) given by above

two steps, we choose bk(x) as follows:

bk(x) =

[
e

cρx

TLρL

(
bk(0)

Tk(0)
+ c

(k)
b

)
− c(k)

b

]
Tk(x) with cρ > |[Tk(x)ρk(x)]′|

and c
(k)
b =

(
e

cρ
TLρL − 1

)−1 [
bk(1)
Tk(1) − e

cρ
TLρL

bk(0)
Tk(0)

]
> 0.

At last, after b(x) is determined by above steps, it is easy to verify that

cρ
TLρL

min
k∈IE

{
bk(1)

Tk(1)

}
≤ cρ
TLρL

bk(1)

Tk(1)
≤
[
bk(x)

Tk(x)

]′
≤ cρe

cρ
TLρL

TLρL

(
e

cρ
TLρL − 1

) bk(1)

Tk(1)
≤ cρe

cρ
TLρL

TLρL

(
e

cρ
TLρL − 1

) max
k∈IE

{
bk(1)

Tk(1)

}
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and

cρ

(
1− 1

2e
cρ

TLρL

)
min
k∈IE

{
bk(1)

Tk(1)

}
≤ cρ

(
1− 1

2e
cρ

TLρL

)
bk(1)

Tk(1)
≤ [bk(x)ρk(x)]

′

≤

(
e

cρ
TLρL

e
cρ

TLρL − 1

TUρU
TLρL

+ 1

)
bk(1)

Tk(1)
cρ ≤

(
e

cρ
TLρL

e
cρ

TLρL − 1

TUρU
TLρL

+ 1

)
cρ max

k∈IE

{
bk(1)

Tk(1)

}
.

Thus, Condition 4.1 is always fulfilled. Note that the construction of b(x) is not
unique, the choice based on Step 1,2 and 3 is just one way of constructing b(x).

4.2. Examples. To explain further how to choose the diagonal matrix-valued func-
tion b(x) and construct the Lyapunov functional via steps in Remark 5, we provide
two tree-shaped networks. The first one is shown in Figure 1b, the underlying tree
is a branching with a fixed root p1, i.e., D = {p1} ⊂ ∂G and Hypothesis 1.2 holds.
The second one is shown in Figure 2 and D = {p4} ⊂ Int(G). Its underlying rooted
tree is not a branching, i.e., (2) and (3) in Hypothesis 1.2 are not satisfied. A
concrete Lyapunov functional will be constructed for the second example.

4.2.1. A nine-string-tree with collocated velocity feedbacks. We reconsider the tree-
shaped network governed by (32), shown in Figure 1b. The outgoing incidence
matrix and the incoming incidence matrix of the underlying tree-shaped graph of
system (32) are

Υ+ =

e1 e2 e3 e4 e5 e6 e7 e8 e9



1 0 0 0 0 0 0 0 0 p1

0 1 1 0 0 0 0 0 0 p2

0 0 0 1 1 1 0 0 0 p3

0 0 0 0 0 0 1 0 0 p4

0 0 0 0 0 0 0 1 1 p5

0 0 0 0 0 0 0 0 0 p6

0 0 0 0 0 0 0 0 0 p7

0 0 0 0 0 0 0 0 0 p8

0 0 0 0 0 0 0 0 0 p9

0 0 0 0 0 0 0 0 0 p10

+1 +2 +3 +4 +5 +6 +7 +8 +9

(42)

and

Υ− =

e1 e2 e3 e4 e5 e6 e7 e8 e9



0 0 0 0 0 0 0 0 0 p1

1 0 0 0 0 0 0 0 0 p2

0 1 0 0 0 0 0 0 0 p3

0 0 0 0 0 1 0 0 0 p4

0 0 0 0 1 0 0 0 0 p5

0 0 1 0 0 0 0 0 0 p6

0 0 0 0 0 0 0 0 1 p7

0 0 0 0 0 0 0 1 0 p8

0 0 0 0 0 0 1 0 0 p9

0 0 0 1 0 0 0 0 0 p10

−1 −2 −3 −4 −5 −6 −7 −8 −9

, (43)

respectively.
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To choose b(x) satisfying Condition 4.1, we first write down all paths from the
root p1 to leaves (∂GN = {p6, p7, p8, p9, p10}) in the network (see Table 1).

Table 1. Paths from the root p1 to leaves

E1(G) V1(G) E2(G) V2(G) E3(G) V3(G) E4(G) V4(G) mp

indices i1 ι1 i2 ι2 i3 ι3 i4 ι4
P (p1, p6) e1 p2 e3 p6 ∗ ∗ ∗ ∗ 2

P (p1, p7) e1 p2 e2 p3 e5 p5 e9 p7 4

P (p1, p8) e1 p2 e2 p3 e5 p5 e8 p8 4

P (p1, p9) e1 p2 e2 p3 e6 p4 e7 p9 4

P (p1, p10) e1 p2 e2 p3 e4 p10 ∗ ∗ 3

Second, according to Remark 5, we choose the function bk(x) as follows.

Step 1: For the leaf p6, the corresponding leaf edge is e3, then b3(0) = 2T3(0)

and b3(1)>2e
cρ

TLρL max
{
T3(0)ρ3(0)
ρ3(1) , T3(1)

}
. For the leaf p7, the corresponding

leaf edge is e9, then b9(0) = 4T9(0) and b9(1)>4e
cρ

TLρL max
{
T9(0)ρ9(0)
ρ9(1) , T9(1)

}
.

For the leaf p8, the corresponding leaf edge is e8, then b8(0) = 4T8(0) and

b8(1)>4e
cρ

TLρL max
{
T8(0)ρ8(0)
ρ8(1) , T8(1)

}
. For the leaf p9, the corresponding leaf

edge is e7, then b7(0) = 4T7(0) and b7(1) > 4e
cρ

TLρL max
{
T7(0)ρ7(0)
ρ7(1) , T7(1)

}
.

For the leaf p10, the corresponding leaf edge is e4, then b4(0) = 3T4(0) and

b4(1)>3e
cρ

TLρL max
{
T4(0)ρ4(0)
ρ4(1) , T4(1)

}
.

Step 2: The maximum mp = 4. For e5 = ei3 ∈ E3(G) ∩ EP (p1,p7) = E3(G) ∩

EP (p1,p8) and pι3 = p5, we choose b5(0) = 1
2 min

{
ρ5(1)
ρ5(0) , e

−cρ
TLρL

T5(0)
T5(1)

}
b5(1) and

b5(1) = min

{
T5(1)

3
min

{
b8(0)

T8(0)
,
b9(0)

T9(0)

}
,
b8(0)ρ8(0) + b9(0)ρ9(0)

1 + ρ5(1)

}
.

For e6 = ei3 ∈ E3(G) ∩ EP (p1,p9) and pι3 = p4, we choose

b6(1) = min

{
T6(1)b7(0)

2T7(0)
,
b7(0)ρ7(0)

1 + ρ5(1)

}
and

b6(0) =
1

2
min

{
ρ6(1)

ρ6(0)
, e
−cρ
TLρL

T6(0)

T6(1)

}
b6(1).

For e2 = ei2 ∈ E2(G) ∩ EP (p1,pk), k = 7, 8, 9, 10, and pi2 = p3, we choose

b2(1) = min

1

4
T2(1) min

j∈{4,5,6}

{
bj(0)

Tj(0)

}
,

1

1 + ρ2(1)

∑
j∈{4,5,6}

bj(0)ρj(0)


and b2(0) = 1

2 min

{
ρ2(1)
ρ2(0) , e

−cρ
TLρL

T2(0)
T2(1)

}
b2(1). For e1 =ei1 ∈ E1(G)∩EP (p1,pk),

k = 6, . . . , 10, and pι1 = p2, we choose b1(0) = 1
2 min

{
ρ1(1)
ρ1(0) , e

−cρ
TLρL

T1(0)
T1(1)

}
b1(1)

and

b1(1) = min

{
1

3
T1(1) min

j∈{2,3}

{
bj(0)

Tj(0)

}
,
b2(0)ρ2(0) + b3(0)ρ3(0)

1 + ρ1(1)

}
.
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Thus, b(x) is constructed by Step 3 in Remark 5, and all assumptions in Theorem
1.3 are fulfilled. Finally, by use of (4), (34), (42), (43) and k = k+1 for k = 1, . . . , 9,
it is shown that the network (32), under velocity feedbacks

u(p6, t) = −β5wt(p5 , t) = −β5w−3 ,t
(1, t) = −β−3 w3,t(1, t),

u(p7, t) = −β6wt(p6 , t) = −β6w−9 ,t
(1, t) = −β−9 w9,t(1, t),

u(p8, t) = −β7wt(p7 , t) = −β7w−8 ,t
(1, t) = −β−8 w8,t(1, t),

u(p9, t) = −β8wt(p8 , t) = −β8w−7 ,t
(1, t) = −β−7 w7,t(1, t),

u(p10, t) = −β9wt(p9 , t) = −β9w−4 ,t
(1, t) = −β−4 w4,t(1, t),

is exponentially stable.

4.2.2. A six-string-tree with collocated velocity feedbacks. The tree-shaped network
consisting of six strings with one fixed root is shown in Figure 2. The motion of the

Figure 2. The tree-shaped network consisting of six strings with
the fixed root p4

network can be formulated by

ρj(x)wj,tt(x, t) = (Tj(x)wj,x)x(x, t), x ∈ (0, 1), j = 1, . . . , 6,

w3(0, t) = w4(0, t) = 0,
w1(0, t) = w2(0, t) = w3(1, t), w6(0, t) = w5(1, t) = w4(1, t),

T3(1)w3,x(1, t)− [T1(0)w1,x(0, t) + T2(0)w2,x(0, t)] = 0,

T4(1)w4,x(1, t) + T5(1)w5,x(1, t)− T6(0)w6,x(0, t)] = 0,

T1(1)w1,x(1, t) = u(p1, t), T2(1)w2,x(1, t) = u(p2, t),

−T5(0)w5,x(0, t) = u(p7, t), T6(1)w6,x(1, t) = u(p5, t),

(44)

where ρ1(x) = ρ2(x) = ρ3(x) = 1, ρ4(x) = 1.25 − 0.25x2, ρ5(x) = 2 − x, ρ6(x) =
1.25 − (2π)−1 sin(2πx), T1(x) = 1, T2(x) = 1.5, T3(x) = 2, T4(x) = 1.25 +
(2π)−1 sin(2πx), T5(x) = 1 + x and T6(x) = 1 + 0.25x2. The outgoing incidence
matrix and the incoming incidence matrix are

Υ+ =

e1 e2 e3 e4 e5 e6



0 0 0 0 0 0 p1

0 0 0 0 0 0 p2

1 1 0 0 0 0 p3

0 0 1 1 0 0 p4

0 0 0 0 0 0 p5

0 0 0 0 0 1 p6

0 0 0 0 1 0 p7

+1 +2 +3 +4 +5 +6

and Υ− =

e1 e2 e3 e4 e5 e6



1 0 0 0 0 0 p1

0 1 0 0 0 0 p2

0 0 1 0 0 0 p3

0 0 0 0 0 0 p4

0 0 0 0 0 1 p5

0 0 0 1 1 0 p6

0 0 0 0 0 0 p7

−1 −2 −3 −4 −5 −6

, (45)
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respectively. The Dirichlet set D = {p4} ⊂ Int(G), and deg−(p6) = 2, which means
that the rooted tree is not a branching and the system (44) is not the standard
form of (3). V (G) \D = {p1 , p2 , p3 , p4 , p5 , p6}, where pk = pk for k = 1, 2, 3,
pk = pk+1 for k = 4, 5, 6, and m0 = 6. F = {p3 , p5} = {p3, p6}. The set of leaves
∂GN = ∂G = {p1, p2, p5, p7}. The system (44) is L2-well-posedness and regular,
according to Theorem 1.1.

Similar to (4), the collocated output feedback is read as

u(pk , t) = −βkwt(pk , t), for k = 1, 2, 4, 6, (46)

where βk > 0 and pk ∈ ∂GN , k = 1, 2, 4, 6. Hence, the closed-loop system (44)
with (46) can be rewritten as

ρj(x)wj,tt(x, t) = (Tj(x)wj,x)x(x, t), x ∈ (0, 1), j = 1, . . . , 6,

w3(0, t) = w4(0, t) = 0, w1(0, t) = w2(0, t) = w3(1, t),

w5(0, t) = w6(0, t) = w4(1, t),

T1(1)w1,x(1, t) = −β1w1,t(1, t), T2(1)w2,x(1, t) = −β2w2,t(1, t),
T3(1)w3,x(1, t)− [T1(0)w1,x(0, t) + T2(0)w2,x(0, t)] = 0,

T4(1)w4,x(1, t) + T5(1)w5,x(1, t)− T6(0)w6,x(0, t) = 0,

T5(0)w5,x(0, t) = β6w5,t(0, t), T6(1)w6,x(1, t) = −β4w6,t(1, t).

(47)

Notice that the closed-loop system (47) can not be written in the form of (35).
Thus, the matrix-vector form of (47) can only be formulated by (8) with Υ− and
Υ+ being determined by (45), and

u(t) = (−β1w1,t(1, t),−β2w2,t(1, t), 0,−β4w6,t(1, t), 0,−β6w5,t(0, t))
>. (48)

To construct a Lyapunov functional for (47), we do a change of variable x := 1−x,

for the edge e5, and let w̃5(x, t) = w5(1 − x, t), ρ̃5(x) = 1 + x and T̃5(x) = 2 − x,

and for j 6= 5, let w̃j(x, t) = wj(x, t), ρ̃j(x) = ρj(x) and T̃j(x) = Tj(x). Thus, (47)
is reformulated by

ρ̃j(x)w̃j,tt(x, t) = (T̃j(x)w̃j,x)x(x, t), x ∈ (0, 1), j = 1, . . . , 6,

w̃3(0, t) = w̃4(0, t) = 0,
w̃1(0, t) = w̃2(0, t) = w̃3(1, t), w̃5(0, t) = w̃6(0, t) = w̃4(1, t),

T̃3(1)w̃3,x(1, t)− [T̃1(0)w̃1,x(0, t) + T̃2(0)w̃2,x(0, t)] = 0,

T̃4(1)w̃4,x(1, t)− [T̃5(0)w̃5,x(0, t) + T̃6(0)w̃6,x(0, t)] = 0,

T̃1(1)w̃1,x(1, t) = −β1w̃1,t(1, t), T̃2(1)w̃2,x(1, t) = −β2w̃2,t(1, t),

T̃5(1)w̃5,x(1, t) = −β6w̃5,t(1, t), T̃6(1)w̃6,x(1, t) = −β4w̃6,t(1, t).

(49)

Thus, (1) and (3) in Hypothesis 1.2 are satisfied and the underlying tree of system
(49) is a branching with the root p4, which is joined with two edges.

In the following, we determine the multiplier b̃(x) for (49) due to Remark 5. A

simple calculation shows that 0 < 1 = ρL ≤ ρ̃k(x) ≤ ρU , 0 < 1 = TL ≤ T̃k(x) ≤ TU
and

|[T̃k(x)ρ̃k(x)]′| ≤ 15

8
+

1

4π
= cρ < 2 = ĉρ, on [0, 1].

All paths from the root p4 to leaves (∂GN = {p1, p2, p5, p7}) in the tree-shaped

network are filled in Table 2. Thus, using Step 1 in Remark 5, we choose b̃1(0) = 2

and b̃1(1) = 2eĉρ for the leaf edge e1; b̃2(0) = 3 and b̃2(1) = 3eĉρ for the leaf edge

e2; b̃6(0) = 2 and b̃6(1) = 5
2e
ĉρ for the leaf edge e6; b̃5(0) = 4 and b̃5(1) = 2eĉρ for
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Table 2. Paths from the root p4 to leaves

E1(G) V1(G) E2(G) V2(G) mp

indices i1 ι1 i2 ι2
P (p4, p1) e3 p3 e1 p1 2

P (p4, p2) e3 p3 e2 p2 2

P (p4, p5) e4 p6 e6 p5 2

P (p4, p7) e4 p6 e5 p7 2

the leaf edge e5. Using Step 2 in Remark 5, we choose b̃3(1) = 4
3 and b̃3(0) = 2

3e
−cρ

for the edge e3; b̃4(1) = 2
3 and b̃4(0) = 1

3e
−cρ for the edge e4. According to Step 3

in Remark 5, we have b̃1(x) = 2
[
ecρx +

(
eĉρ − ecρ

)
ecρx−1
ecρ−1

]
, b̃3(x) = 2

3

[
ecρ(x−1) + ecρx−1

ecρ−1

]
,

b̃2(x) = 3
2 b̃1(x), b̃4(x) = T̃4(x)

2 b̃3(x), b̃5(x) = T̃5(x)̃b1(x), b̃6(x) = T̃6(x)̃b1(x).

Hence, we obtain the matrix multiplier b(x) for (47): bk(x) = b̃k(x) for k 6= 5

and b5(x) = −b̃5(1− x), that is,
b1(x) = 2

[
ecρx + eĉρ−ecρ

ecρ−1 (ecρx − 1)
]
, b2(x) = 3b1(x)

2 ,

b3(x) = 2
3

[
ecρ(x−1) + ecρx−1

ecρ−1

]
, b4(x) = T4(x)b3(x)

2 ,

b5(x) = −T5(x)b1(1− x), b6(x) = T6(x)b1(x).

(50)

Thus, the Lyapunov functional for the system (47) is

V (t) = E (t) + cV Vb(t) = E (t) + cV

∫ 1

0

〈 b(x)wx(x, t), M(x)wt(x, t) 〉dx.

From (6), (8), (12), (45) and (48), it can be deduced that

dE (t)

dt
= −β1w

2
1,t(1, t)− β2w

2
2,t(1, t)− β4w

2
6,t(1, t)− β6w

2
5,t(0, t). (51)

Similar to (39), it follows from integration by parts, (6), (8), (44) and (45) that

dVb(t)

dt
=

1

2
〈CwPDwt(p, t), PDwt(p, t) 〉Cm0 +

1

2
〈 b(1)wx(1, t), T (1)wx(1, t) 〉Cn

−1

2
〈 b(0)wx(0, t), T (0)wx(0, t) 〉Cn −O(E ), (52)

where O(E ) satisfies (37),

Cw = PD
[
(Υ−)M(1)b(1)(Υ−)> − (Υ+)M(0)b(0)(Υ+)>

]
P>D

= diag

(
2eĉρ , 3eĉρ ,−11

3
,

25

8
eĉρ ,−35

6
, 4eĉρ

)
(53)
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and

1

2
〈 b(1)wx(1, t), T (1)wx(1, t) 〉 − 1

2
〈 b(0)wx(0, t), T (0)wx(0, t) 〉 =

2

3
[T1(0)w1,x(0, t) + T2(0)w2,x(0, t)]2 − 2T 2

1 (0)w2
1,x(0, t)− 2T 2

2 (0)w2
2,x(0, t)

+
2

3
T 2

4 (1)w2
4,x(1, t)− 2T 2

5 (1)w2
5,x(1, t)− 2[T4(1)w4,x(1, t) + T5(1)w5,x(1, t)]2

+ 2eĉρ
[
β2

1w
2
1,t(1, t) + β2

2w
2
2,t(1, t) + β2

4w
2
6,t(1, t) + β2

6w
2
5,t(0, t)

]
− 1

3ecρ
T 2

3 (0)w2
3,x(0, t)− 1

6ecρ
T 2

4 (0)w2
4,x(0, t)

≤ 2eĉρ
[
β2

1w
2
1,t(1, t) + β2

2w
2
2,t(1, t) + β2

4w
2
6,t(1, t) + β2

6w
2
5,t(0, t)

]
. (54)

Thus, it follows from (51), (52), (53) and (54) that

dV (t)

dt
=
dE (t)

dt
+ cV

dVb(t)

dt

≤ −
[
β1 − cV eĉρ − cV eĉρβ2

1

]
w2

1,t(1, t)−
[
β2 −

3

2
cV e

ĉρ − cV eĉρβ2
2

]
w2

2,t(1, t)

−
[
β4 −

25

16
cV e

ĉρ − cV eĉρβ2
4

]
w2

6,t(1, t)−
[
β6 − 2cV e

ĉρ − cV eĉρβ2
6

]
w2

5,t(0, t)−cVO(E ).

Let cV < min
{
β1e
−ĉρ

1+β2
1
, β2e

−ĉρ

1.5+β2
2
, β4e

−ĉρ
25
16 +β2

4
, β6e

−ĉρ

2+β2
6
, c−1
b

}
, it can be derived that

dV (t)

dt
≤ −cVO(E ) ≤ −cLcV E (t) ≤ − cLcV

1 + cV cb
V (t).

Hence, the system (47) is exponentially stable.

5. Conclusions. The multiplier method is applied to discuss the well-posedness
and regularity of the open-loop system of strings network and the exponential sta-
bility of the closed-loop system in this paper. Especially, a Lyaponuv functional for
tree-shaped networks of elastic strings is presented by constructing an appropriate
multiplier. This construction method (see Remark 5) may be generalized to other
types of networks, e.g., networks of beams etc, even for nonlinear networks, which
will be discussed in other papers. In engineering, it is more meaningful work. Ad-
ditionally, the issues of time-delay and anti-disturbance for networks governed by
partial differential equations may also be investigated based on the same methods.
These problems are worth exploring in future.
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[8] R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1–d Flexible Mul-

tistructures, Springer Verlag, Berlin Heidelberg, 2006.

[9] R. Diestel, Graph Theory, 3nd edition, Springer-Verlag, Heidelberg, New York, 2005.

[10] B. Guo and Z. Shao, Regularity of an Euler-Bernoulli equation with Neumann control and

collocated observation, Journal of Dynamical and Control Systems, 12 (2006), 405–418.

[11] B. Guo and Z. Zhang, Well-posedness of systems of linear elasticity with dirichlet boundary

control and observation, SIAM Journal on Control and Optimization, 48 (2009), 2139–2167.
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