Hyperbolic systems on networks often can be written as systems of first order equations on an interval, coupled by transmission conditions at the endpoints, also called port-Hamiltonians. However, general results for the latter have been difficult to interpret in the network language. The aim of this paper is to derive conditions under which a port-Hamiltonian with general linear Kirchhoff's boundary conditions can be written as a system of $ 2\times 2 $ hyperbolic equations on a metric graph $ \Gamma $. This is achieved by interpreting the matrix of the boundary conditions as a potential map of vertex connections of $ \Gamma $ and then showing that, under the derived assumptions, that matrix can be used to determine the adjacency matrix of $ \Gamma $.
Citation: Jacek Banasiak, Adam Błoch. Telegraph systems on networks and port-Hamiltonians. Ⅱ. Network realizability[J]. Networks and Heterogeneous Media, 2022, 17(1): 73-99. doi: 10.3934/nhm.2021024
Hyperbolic systems on networks often can be written as systems of first order equations on an interval, coupled by transmission conditions at the endpoints, also called port-Hamiltonians. However, general results for the latter have been difficult to interpret in the network language. The aim of this paper is to derive conditions under which a port-Hamiltonian with general linear Kirchhoff's boundary conditions can be written as a system of $ 2\times 2 $ hyperbolic equations on a metric graph $ \Gamma $. This is achieved by interpreting the matrix of the boundary conditions as a potential map of vertex connections of $ \Gamma $ and then showing that, under the derived assumptions, that matrix can be used to determine the adjacency matrix of $ \Gamma $.
Starlike network of channels
The reconstructed multi digraph
The reconstructed multi digraph
A network
Multi digraphs
The line digraph for both