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Abstract. Hyperbolic systems on networks often can be written as systems
of first order equations on an interval, coupled by transmission conditions at

the endpoints, also called port-Hamiltonians. However, general results for the

latter have been difficult to interpret in the network language. The aim of
this paper is to derive conditions under which a port-Hamiltonian with general

linear Kirchhoff’s boundary conditions can be written as a system of 2 × 2
hyperbolic equations on a metric graph Γ. This is achieved by interpreting the

matrix of the boundary conditions as a potential map of vertex connections of

Γ and then showing that, under the derived assumptions, that matrix can be
used to determine the adjacency matrix of Γ.

1. Introduction. In this paper we study systems of linear hyperbolic equations on
a bounded interval, say, (0, 1), sometimes referred to as port-Hamiltonians, see for
example [14], and the role is played by the boundary conditions coupling the incom-
ing and outgoing Riemann invariants determined by the system at the endpoints
x = 0 and x = 1. In particular, we consider the set of equations
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, 0 < x < 1, t > 0, (1a)

Ξ(υ(0, t),$(1, t),υ(1, t),$(0, t))T = 0, t > 0, (1b)

υ(x, 0) = υ̊(x), $(x, 0) = $̊(x) 0 < x < 1, (1c)

where υ and $ are the Riemann invariants flowing from 0 to 1 and from 1 to
0, respectively, C+ and C− are m+ × m+ and m− × m− diagonal matrices with
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positive entries and, with 2m = m+ +m−, Ξ is a 2m×4m matrix relating outgoing
υ(0),$(1) and incoming υ(1),$(0) boundary values so that (1b) can be written
as

Ξout(υ(0, t),$(1, t))T + Ξin(υ(1, t),$(0, t))T = 0, t > 0. (2)

An important class of such problems arises from dynamical systems on metric
graphs. Let Γ be a graph with r vertices {vj}1≤j≤r =: Υ and m edges {ej}1≤j≤m
(identified with (0, 1) through a suitable parametrization). The dynamics on each
edge ej is described by

∂tp
j + Mj∂xp

j = 0, 0 < x < 1, t > 0, 1 ≤ j ≤ m, (3)

where pj = (pj1, p
j
2)T and Mj = (M j

lk)1≤k,l≤2 are defined on [0, 1] and Mj(x) is a
strictly hyperbolic real matrix for each x ∈ [0, 1] and 1 ≤ j ≤ m. System (3) is
complemented with initial conditions and suitable transmission conditions coupling
the values of pj at the vertices which the edges ej are incident to. Then, (1) can
be obtained from (3) by diagonalization so that (suitably re-indexed) υ and $ are
the Riemann invariants (see [7, Section 1.1]) of p = (pj)1≤j≤m.

Such problems have been a subject of intensive research, both from the dynamics
on graphs, [1, 10, 5, 4, 11, 17, 19], and the 1-D hyperbolic systems, [7, 21, 15, 14],
points of view. However, there is hardly any overlap, as there seems to be little
interest in the network interpretation of the results in the latter, while in the former
the conditions on the Riemann invariants seem to be “difficult to adapt to the case
of a network”, [11, Section 3].

The main aim of this paper, as well as of the preceding one [2] is to bring
together these two approaches. In [2] we have provided explicit formulae allowing
for a systematic conversion of Kirchhoff’s type network transmission conditions to
(1b) in such a way that the resulting system (1) is well-posed. We also gave a
proof of the well-posedness on any Lp, 1 ≤ p < ∞, which, in contrast to [21], is
purely based on an operator semigroup approach. For notational clarity, we focused
on 2 × 2 hyperbolic systems on each edge but the method works equally well for
systems of arbitrary (finite) dimension. In this paper we are concerned with the
reverse question, that is, to determine under what assumptions on Ξ, (1) describes
a network dynamics given by 2 × 2 hyperbolic systems on each edge, coupled by
Kirchhoff’s transmission conditions at incident vertices.

To briefly describe the content of the paper, we observe that if the matrix Ξ =
{ξij}1≤i≤2m,1≤j≤4m in (1b) describes transmission conditions at the vertices of a
graph, say Γ, on whose edges we have 2 × 2 systems of hyperbolic equations, then
we should be able to group the indices j into pairs {j′, j′′} corresponding to the
edges of Γ on which we have 2× 2 systems for the components j′ and j′′ of (υ,$).
Thus, in a sense, the columns of Ξ determine the edges of Γ. It follows that it is
easier to split the reconstruction of Γ into two steps and first build a digraph Γ,
where each column index j of Ξ is associated with an arc, say εj , on which we have
a first order system for either υj or $j . Thus, the main problem is to construct
vertices of Γ (and Γ) which should be somehow determined by a partition of the
row indices of Ξ. To do this, we observe that the coefficients of Ξ represent a map of
connections of the edges in the sense that, roughly speaking, if ξij 6= 0 and ξik 6= 0,
then arcs εj and εk are incident to the same vertex and, if they are incoming to it,
then they cannot be incoming to any other vertex. A difficulty here is that while
for the flow to occur from, say, εj to εk, these arcs must be incident to the same
vertex but the converse may not hold, that is, for εj incoming to and εk outgoing
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from the same v, the flow from εj may not enter εk but go to other outgoing arcs.
To avoid such a case, in this paper we formulate conditions ensuring that the flow
connectivity at each vertex is the same as the graph connectivity. This assumption
yields a relatively simple criterion for the reconstruction of Γ, which is that

̂(
Ξ̂out

)T
Ξ̂in

is the adjacency matrix of a line graph (where for a matrix A, Â is obtained by
replacing non-zero entries of A by 1.) This, together with some technical assump-
tions, allows us to apply the theory of [13], see also [6, Theorem 4.5.1], to construct
first Γ and then Γ in such a way that (2) can be localized at each vertex of Γ in a
way which is consistent with (1a).

The main idea of this paper is similar to that of [3]. However, [3] dealt with
first order problems with (2) solved with respect to the outgoing data. Here, we
do not make this assumption and, while (1) technically is one-dimensional, having
reconstructed Γ, we still have to glue together its pairs of arcs to obtain the edges
of Γ in such a way that the corresponding pairs of solutions of (1a) are Riemann
invariants of 2×2 systems on Γ. Another difficulty in the current setting is potential
presence of sources and sinks in Γ. Their structure is not reflected in the line graph,
[3], and reconstructing them in a way consistent with a system of 2 × 2 equations
on Γ is technically involved.

The paper is organized as follows. In Section 2 we briefly recall the notation
and relevant results from [2]. Section 3 contains the main result of the paper. In
Appendix we recall basic results on line graphs in the interpretation suitable for the
considerations of the paper.

2. Notation, definitions and earlier results. We consider a network repre-
sented by a finite, connected and simple (without loops and multiple edges) metric
graph Γ with r vertices {vj}1≤j≤r =: Υ and m edges {ej}1≤j≤m. We denote by
Ev the set of edges incident to v, let Jv = {j; ej ∈ Ev} and |Ev| = |Jv| be the
valency of v. We identify the edges with unit intervals through sufficiently smooth
invertible functions lj : ej 7→ [0, 1]. In particular, we call v with lj(v) = 0 the tail
of ej and the head if lj(v) = 1. On each edge ej we consider the system (3). Let

λj− < λj+ be the eigenvalues of Mj , 1 ≤ j ≤ m (the strict inequality is justified by

the strict hyperbolicity of Mj). The eigenvalues can be of the same sign as well as

of different signs. In the latter case, we have λj− < 0 < λj+. By f j± = (f j±,1, f
j
±,2)T

we denote the eigenvectors corresponding to λj±, respectively, and by

Fj =

(
f j+,1 f j−,1
f j+,2 f j−,2

)
,

the diagonalizing matrix on each edge. The Riemann invariants uj = (uj1, u
j
2)T , 1 ≤

j ≤ m, are defined by

uj = (Fj)−1pj and pj =

(
f j+,1u

j
1 + f j−,1u

j
2

f j+,2u
j
1 + f j−,2u

j
2

)
. (4)

Then, we diagonalize (3) and, discarding lower order terms, we consider

∂tu
j = Lj∂xu

j =

(
−λj+ 0

0 −λj−

)
∂xu

j , (5)
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for each 1 ≤ j ≤ m.

Remark 1. We refer an interested reader to [7, Section 1.1] for a detailed con-
struction of the Riemann invariants for a general 1−D hyperbolic system and the
explanation of the name.

2.1. The boundary conditions. The most general linear local boundary condi-
tions at v ∈ Υ are given by

Φvp(v) = 0, (6)

where p = ((pj1, p
j
2)1≤j≤m)T and the real matrix Φv is given by

Φv :=


φj1v,1 ϕj1

v,1 . . . φ
j|Jv|
v,1 ϕ

j|Jv|
v,1

...
...

...
...

...

φj1v,kv
ϕj1
v,kv

. . . φ
j|Jv|
v,kv

ϕ
j|Jv|
v,kv

 , (7)

where Jv = {j1, . . . , j|Jv|} and kv is a parameter determined by the problem. The
difficulty with such a formulation is that it is not immediately clear what properties
Φv should have to ensure well-posedness of the hyperbolic problem for which (6),
v ∈ Υ, serve as boundary conditions. There are various ways tackling this difficulty.
For example, in [20, 11] conditions are imposed directly on Φv to ensure specific
properties, such as dissipativity, of the resulting initial boundary value problem.
However, we follow the paradigm introduced in [7, Section 1.1.5.1] and require that
at each vertex all outgoing data must be determined by the incoming data. Since
for a general system (3) it is not always obvious which data are outgoing and which
are incoming at a vertex, we write (6) in the equivalent form using the Riemann
invariants u = F−1p, as

Ψvu(v) := ΦvF(v)u(v) = 0. (8)

For Riemann invariants, we can define their outgoing values at v as follows.

Definition 2.1. Let v ∈ Υ. The following values ujk(v), j ∈ Jv, k = 1, 2, are
outgoing at v.

If λj+ > λj− > 0 λj+ > 0 > λj− 0 > λj+ > λj−
lj(v) = 0 uj1(v), uj2(v) uj1(v) none

lj(v) = 1 none uj2(v) uj1(v), uj2(v)

.

Denote by αj the number of positive eigenvalues on ej . Then, we see that for a
given vertex v with valence |Jv| the number of outgoing values is given by

kv :=
∑
j∈Jv

(2(1− αj)lj(v) + αj). (9)

Definition 2.2. We say that v is

• a sink if either αj = 2 and lj(v) = 1 or αj = 0 and lj(v) = 0 for all j ∈ Jv;
• a source if either αj = 0 and lj(v) = 1 or αj = 2 and lj(v) = 0 for all j ∈ Jv;
• a transient (or internal) vertex if it is neither a source nor a sink.

We denote the sets of sources, sinks and transient vertices by Υs,Υz and Υt, re-
spectively.

We observe that if v ∈ Υz, then kv = 0 (so that no boundary conditions are
imposed at a sink), while if v ∈ Υs, then kv = 2|Jv|.
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A typical example of (8) is Kirchhoff’s law that requires that the total inflow
rate into a vertex must equal the total outflow rate from it. Its precise formulation
depends on the context, we refer to [8, Chapter 18] for a detailed description in
the context of flows in networks. Since it provides only one equation, in general it
is not sufficient to ensure the well-posedness of the problem. So, we introduce the
following definition.

Definition 2.3. We say that p satisfies a generalized Kirchhoff conditions at v ∈
Υ \ Υz if, for u = F−1p, (8) is satisfied for some matrix Φv = ΨvF

−1 with kv
given by (9).

To realize the requirement that the outgoing values should be determined by
the incoming ones, we have to analyze the structure of Ψv. Let us introduce the
partition

{1, . . . ,m} =: J1 ∪ J2 ∪ J0, (10)

where j ∈ J1 if αj = 1, j ∈ J2 if αj = 2 and j ∈ J0 if αj = 0. This partition induces
the corresponding partition of each Jv as

Jv := Jv,1 ∪ Jv,2 ∪ Jv,0.

We also consider another partition Jv = J0
v ∪ J1

v, where j ∈ J0
v if lj(v) = 0 and

j ∈ J1
v if lj(v) = 1. Then, we can give an alternative expression for kv as

kv =
∑
j∈J0

v

αj +
∑
j∈J1

v

(2− αj) = |Jv,1|+ 2(|J0
v ∩ Jv,2|+ |J1

v ∩ Jv,0|). (11)

Then, by [2, Lemma 3.6],

(i) uj1(0) is outgoing if and only if j ∈ (Jv,1 ∪ Jv,2) ∩ J0
v,

(ii) uj2(0) is outgoing if and only if j ∈ Jv,2 ∩ J0
v,

(iii) uj1(1) is outgoing if and only if j ∈ Jv,0 ∩ J1
v,

(iv) uj2(1) is outgoing if and only if j ∈ (Jv,1 ∪ Jv,0) ∩ J1
v.

We introduce the block diagonal matrix

F̃out(v) = diag{F̃j
out(v)}j∈Jv , (12)

where

F̃
j
out(v) =



(
0 0
0 0

)
if j ∈ (Jv,0 ∩ J0

v) ∪ (Jv,2 ∩ J1
v),(

f j+,1(lj(v)) f j−,1(lj(v))

f j+,2(lj(v)) f j−,2(lj(v))

)
if j ∈ (Jv,0 ∩ J1

v) ∪ (Jv,2 ∩ J0
v),(

f j+,1(0) 0

f j+,2(0) 0

)
if j ∈ Jv,1 ∩ J0

v,(
0 f j−,1(1)

0 f j−,2(1)

)
if j ∈ Jv,1 ∩ J1

v.

Further, by Fout(v) we denote the contraction of F̃out(v); that is, the 2|Jv| × kv
matrix obtained from F̃out(v) by deleting 2|Jv| − kv zero columns, and then define

Fin(v) as the analogous contraction of F(v)− F̃out(v).
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In a similar way, we extract from u(v) the outgoing boundary values ũout(v) =

(ũj
out(v))j∈Jv by

ũj
out(v) =


(0, 0)T if j ∈ (Jv,0 ∩ J0

v) ∪ (Jv,2 ∩ J1
v),

(uj1(lj(v)), uj2(lj(v)))T if j ∈ (Jv,0 ∩ J1
v) ∪ (Jv,2 ∩ J0

v),

(uj1(0), 0)T if j ∈ Jv,1 ∩ J0
v,

(0, uj2(1))T if j ∈ Jv,1 ∩ J1
v,

and ũin(v) = u(v)− ũout(v). As above, we define uout(v) to be the vector in Rkv

obtained by discarding the zero entries in ũout(v), as described above and, similarly,
uin(v) is the vector in R2|Jv|−kv obtained from ũin(v).

Proposition 1. [2, Proposition 3.8] The boundary system (8) at v ∈ Υ \ Υz is
equivalent to

ΦvFout(v)uout(v) + ΦvFin(v)uin(v) = 0 (13)

and hence it uniquely determines the outgoing values of u(v) at v as defined by
Definition 2.1 if and only if

ΦvFout(v) is nonsingular. (14)

In this case,
uout(v) = −(ΦvFout(v))−1ΦvFin(v)uin(v). (15)

To pass from (3) with Kirchhoff’s boundary conditions at each vertex v ∈ Υ\Υz

to (1) we have to write the former in a global form. Assuming the vertices in
Υ \ Υz are ordered as {v1, . . . ,vr′}, we define Ψ′ = diag{Ψv}v∈Υ\Υz

and γu =

((u(v))v∈Υ\Υz
)T and write (8) as

Ψ′γu = 0. (16)

We note that the function values that are incoming at v ∈ Υz do not influence any
outgoing data. However, to keep the track of all vertex values, we extend Ψ′ with
zero columns corresponding to edges coming to sinks and denote such an extended
matrix by Ψ. Since, by the hand shake lemma, we have 2

∑
v∈Υ |Jv| = 4m and by

[2, Section 3.2] also
∑

v∈Υ\Υz
kv = 2m, Ψ is a 2m× 4m matrix. In the same way,

we can provide a global form of (13), splitting (16) as

Ψoutγuout + Ψinγuin = 0, (17)

where Ψout = diag{ΦvFout(v)}v∈Υ\Υz
and Ψin = diag{ΦvFin(v)}v∈Υ\Υz

, ex-
tended by zero columns corresponding to the incoming functions at the sinks,
γuout := ((uout(v))v∈Υ\Υz

)T , and γuin is ((uin(v))v∈Υ\Υz
)T extended by incoming

values at the sinks.
Using the adopted parametrization and the formalism of Definition 2.1, we only

need to distinguish between functions describing the flow from 0 to 1 and from 1
to 0. Accordingly, we group the Riemann invariants u into parts corresponding to
positive and negative eigenvalues and rename them as:

υ :=
(

(uj1)j∈J1∪J2 , (u
j
2)j∈J2

)
= (υj)j∈J+ ,

$ :=
(

(uj1)j∈J0 , (u
j
2)j∈J1∪J0

)
= ($j)j∈J− ,

(18)

where J+ and J− are the sets of indices j with at least 1 positive eigenvalue, and at
least 1 negative eigenvalue of Mj , respectively. In J+ (respectively J−) the indices
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from J2 (respectively J0) appear twice so that we rearrange them in some consistent
way to avoid confusion. For instance, we can take J+ = {1, . . . ,mu,mu+1, . . . ,m+}
and J− = {m++1, . . . ,mu,mu+1, . . . , 2m} and there are bijections between J1∪J2

and {1, . . . ,mu}, J2 and {mu+1, . . . ,m+}, J0 and {m++1, . . . ,mu}, and J1∪J0 and
{mu + 1, . . . , 2m}, respectively. We emphasize that such a renumbering is largely
arbitrary and different ways of doing it result in just re-labelling of the components
of (1) without changing its structure.

In this way, we converted Γ into a multi digraph Γ with the same vertices Υ, in
such a way that each edge of Γ was split into two arcs parametrized by x ∈ [0, 1],
where x = 0 on each arc corresponds to the same vertex in Γ and the same is valid
for x = 1. Conversely, if we have a multi digraph Γ, where all edges appear in pairs
and each two edges joining the same vertex are parametrized concurrently, then we
can collapse Γ to a graph Γ. We note that this approach originates from [16].

Using this construction, the second order hyperbolic problem (3), (17) was trans-
formed into first order system (1) with (17) written in the form (2). However, it
is clear that (1) can be formulated with an arbitrary matrix Ξ. Thus, we arrive at
the main problem considered in this paper:

how to characterize matrices Ξ that arise from Ψ so that (1) describes a network
dynamics?

3. Graph realizability of port-Hamiltonians.

3.1. Connectivity at a vertex. For a graph Γ, let us consider the multi digraph
Γ constructed above. The sets of vertices Υ are the same for Γ and Γ. For v ∈ Υ of
Γ, we can talk about incoming and outgoing arcs which are determined by j ∈ Jv,
lj(v) and the signs of λj+ and λj−, as in Definition 2.1. We denote by J+

v and J−v the

(ordered) sets of indices of arcs εj incoming and outgoing from v in Γ, respectively.
We note that |J−v | = kv, the number of the outgoing conditions. With this notation,
the matrix Ψv can be split into two matrices

Ψout
v = (ψj

v,i)1≤i≤kv,j∈J−v , Ψin
v = (ψj

v,i)1≤i≤kv,j∈J+
v
.

Since no outgoing value should be missing, we adopt the following

Assumption 1. No column or row of Ψout
v is identically zero.

These matrices provide some insight into how the arcs are connected by the
flow which is an additional feature, superimposed on the geometric structure of the
incoming and outgoing arcs at the vertex. In principle, these two structures do
not have to be the same, that is, it may happen that the substance flowing from
εj , j ∈ J+

v , is only directed to some of the outgoing arcs. An extreme case of
such a situation is when both Ψout

v and Ψin
v are completely decomposable, see [9],

with blocks in both matrices having the same row indices. Then, from the flow
point of view, v can be regarded as several nodes of the flow network, which are
not linked with each other. Such cases, where the geometric structure at a vertex
is inconsistent with the flow structure, may generate problems in determining the
graph underlying transport problems. Thus in this paper we adopt assumptions
ensuring that the map of the flow connections given by the matrices Ψout

v and Ψin
v

coincides with the geometry at v. We begin with the necessary definitions.

Definition 3.1. Let v ∈ Υt. We say that an arc εj , j ∈ J+
v , flow connects to

εl, l ∈ J−v , if ψj
v,i 6= 0 and ψl

v,i 6= 0 for some 1 ≤ i ≤ kv.
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Using this idea, we define a connectivity matrix Cv = (cv,lj)l∈J−v ,j∈J+
v

by

cv,lj =

{
1 if εj flow connects to εl,
0 otherwise.

Remark 2. We observe that

• the above definition implies that for εj and εl to be flow connected, εj and
εl must be incident to the same vertex;

• Cv can be interpreted as the adjacency matrix of the bipartite line digraph
constructed from the incoming and outgoing arcs at v, where the connections
between arcs are defined by flow connections, see [9, Section 3].

For an arbitrary matrix A = (aij)1≤i≤p,1≤j≤q, by Â = (âij)1≤i≤p,1≤j≤q we denote
the matrix with every nonzero entry of A replaced by 1.

Lemma 3.2. If v is a transient vertex, then

Cv =
̂(

Ψ̂out
v

)T
Ψ̂in

v . (19)

Proof. Denote B =
̂(

Ψ̂out
v

)T
Ψ̂in

v . Then, bij = 1, i ∈ J−v , j ∈ J
+
v if and only if

kv∑
r=1

ψ̂i
v,rψ̂

j
v,r 6= 0.

This occurs if and only if there is r = 1, . . . , kv such that both ψ̂i
v,r 6= 0 and ψ̂j

v,r 6= 0,

which is equivalent to εj flow connecting with εi, that is, cv,ij = 1.

Let v be a source (as we do not impose boundary conditions on sinks). As above,
we need to ensure that the flow from a source cannot be split into several isolated
subflows. Though here we do not have inflows and outflows, we use a similar idea
to that for transient vertices.

Definition 3.3. Let v ∈ Υs. We say that εi and εj , i, j ∈ J−v , are flow connected

if there is l ∈ {1, . . . , kv} such that ψi
v,l 6= 0 and ψj

v,l 6= 0.

As before, we construct a connectivity matrix Cv = (cv,ij)i,j∈J−v , where

cv,ij =

{
1 if εj and εi are flow connected,
0 otherwise.

(20)

Note that, contrary to an internal vertex, here the connectivity matrix is symmetric.
We also do not stipulate that i 6= j so that εj is always flow connected to itself and
hence, by Assumption 1, each entry of the diagonal of Cv is 1. From this, we get a
result similar to Lemma 3.2.

Lemma 3.4. If v is a source,

Cv =
̂(

Ψ̂out
v

)T
Ψ̂out

v . (21)
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Proof. As before, let B =
̂(

Ψ̂out
v

)T
Ψ̂out

v . Then, bij = 1, i, j ∈ J−v , if and only if

kv∑
r=1

ψ̂i
v,rψ̂

j
v,r 6= 0.

Certainly, by Assumption 1, bii = 1, i ∈ J−v . For i 6= j, this occurs if and only if

there is r ∈ {1, . . . , kv} such that both ψ̂i
v,r 6= 0 and ψ̂j

v,r 6= 0 which is equivalent

to εj and εi being flow connected, that is, cv,ij = 1.

We adopt an assumption that the structure of flow connectivity is the same as of
the geometry at the vertex. Thus, if v is an internal vertex and j ∈ J+

v and i ∈ J−v ,
then εj flow connects to εi. In particular, we have

Assumption 2. For all v ∈ Υt,

Cv = 1v =

 1 1 . . . 1
...

...
...

...
1 1 . . . 1

 .

We observe that the dimension of Cv is |J−v | × |J
+
v |.

If v ∈ Υs, then we assume that the outflow from v cannot be separated into
independent subflows, that is, that the arcs outgoing from v cannot be divided
into groups such that no arc in any group is flow connected to an arc in any
other. Equivalently, for each two arcs εi and εj , i, j ∈ J−v , there is a sequence
j = j0, j1, . . . , jk = i such that εjr and εjr+1 , r = 0, . . . , k − 1 are flow connected.
Indeed, if such a division was possible, then it would be impossible to find such a
sequence between indices j and i in different groups as some pair would have to
connect arcs from these different groups. Conversely, if for some arcs εi and εj

there is no such a sequence, then we can build two groups of indices containing
i and j, respectively, by considering all indices for which such sequences can be
found. Clearly, no arc in the first group is flow connected to any arc in the sec-
ond as otherwise there would be a sequence connecting εj and εi. By Lemma 3.4,
Cv can be considered as the adjacency matrix of the graph with vertices given by
{εj}j∈J−v and the edges determined by the flow connectivity (20). Moreover, Cv

is symmetric, which shows that the assumption described at the beginning of this
paragraph is equivalent to

Assumption 3. For all v ∈ Υs,Cv is irreducible.

Remark 3. Assumption 3 is weaker than requiring each two arcs from {εj}j∈J−v
to be flow connected. Then we would have Cv = 1|J−v |×|J−v |.

Proposition 2. Let v ∈ Υt. If the system (8), that is,

Ψvu(v) = 0, (22)

contains a Kirchhoff’s condition∑
j∈Jv

(ψj
v,ru

j
1(v) + ψj

v,ru
j
2(v)) = 0, (23)

with ψj
v,r 6= 0 for all j ∈ Jv and some r ∈ {1, . . . , kv}, then Assumption 2 is

satisfied.



82 JACEK BANASIAK AND ADAM B LOCH

Proof. Condition (23) ensures that each entry of the r-th row of both Ψ̂out
v and

Ψ̂in
v is 1 and thus the product of each column of Ψ̂out

v with each column of Ψ̂in
v is

non-zero, which yields Assumption 2.

Example 1. Consider the model of [20], analysed in the framework of our approach
in [2, Example 5.12], i.e.,

∂tp
j
1 +Kj∂xp

j
2 = 0, ∂tp

j
2 + Lj∂xp

j
1 = 0, (24)

for t > 0, 0 < x < 1, 0 ≤ j ≤ m, where Kj > 0, Lj > 0 for all j. For a given
vertex v, we define (p1(v),p2(v)) = ((pj1(v), pj2(v))j∈Jv , ν

j(v) = −1 if lj(v) = 0

and νj(v) = 1 if lj(v) = 1, and Tvp2(v) = (νj(v)pj2(v))j∈Jv . In this case αj = 1
for any j and thus for any vertex v we need |Jv| boundary conditions. We focus on
v with |Ev| > 1. Then, we split R|Jv| into Xv of dimension nv and its orthogonal
complement X⊥v of dimension lv = |Jv| − nv and require that

p1(v) ∈ Xv, Tvp2(v) ∈ X⊥v ,

that is, denoting I1 = {1, . . . , nv} and I2 = {nv + 1, . . . , |Jv|},∑
j∈Jv

φjrp
j
1(v) = 0, r ∈ I2,

∑
j∈Jv

ϕj
rν

j(v)pj2(v) = 0, r ∈ I1, (25)

where ((ϕj
r)j∈Jv)r∈I1 is a basis in Xv and ((φjr)j∈Jv)r∈I2 is a basis in X⊥v . It is clear

that, in general, boundary conditions (25) do not satisfy Assumption 2. Consider v

such that each ej incident to v is parameterised so as lj(v) = 0 so that each uj1(0)

is outgoing and each uj2(0) is incoming. If we take φjr = ϕj
r = δrj and Lj = Kj = 1

for j ∈ Jv, we obtain

pr1(0) = ur1(0) + ur2(0) = 0, r = nv + 1, . . . , |Jv|,
pr2(0) = ur1(0)− ur2(0) = 0, r = 1, . . . , nv.

Thus Ψ̂out
v and Ψ̂in

v are both the identity matrices and Assumption 2 is not satisfied.
On the other hand, the Kirchhoff condition,∑

j∈Jv

νj(v)pj2(v) = 0, (26)

see [20, Eqn (4)], satisfies the assumption of Proposition 2, as we have

0 =
∑
j∈Jv

νj(v)pj2(v) =
∑
j∈Jv

νj(v)(f j+,2(v)uj1(v) + f j−,2(v)uj2(v))

=
∑
j∈Jv

νj(v)
√
KjLj(uj1(v)− uj2(v))

= −
∑
j∈J0

v

√
KjLjuj1(0)−

∑
j∈J1

v

√
KjLjuj2(1)

+
∑
j∈J1

v

√
KjLjuj1(1) +

∑
j∈J0

v

√
KjLjuj2(0),

where we used [2, Eqn 5.2]. Hence, by Proposition 2, Assumption 2 is satisfied.

Example 2. Let us consider the linearized Saint-Venant system,

∂tp
j
1 = −V j∂xp

j
1 −Hj∂xp

j
2, ∂tp

j
2 = −g∂xpj1 − V j∂xp

j
2, (27)
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Figure 1. Starlike network of channels

see [2, Example 1.2], assuming that on each edge we have λj± = V j ±
√
gHj > 0.

Then, we have(
pj1
pj2

)
=

(
f j+,1u

j
1 + f j−,1u

j
2

f j+,2u
j
1 + f j−,2u

j
2

)
=

(
Hjuj1 +Hjuj2√
gHjuj1 −

√
gHjuj2

)
. (28)

We use the flow structure of [11, Example 5.1], shown in Fig. 1, and focus on v1,
where we need 2N − 2 boundary conditions which were given as

pj1(0) = p1
1(1), pj2(0) = p1

2(1), j = 2, . . . , N.

In terms of the Riemann invariants, they can be written as
H2 H2 0 0 . . . 0 0√
gH2 −

√
gH2 0 0 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . HN HN

0 0 0 0 . . .
√
gHN −

√
gHN




u2

1(0)
u2

2(0)
...

uN1 (0)
uN2 (0)



=


H1 H1√
gH1 −

√
gH1

...
H1 H1√
gH1 −

√
gH1


(
u1

1(1)
u1

2(1)

)

and it is clear that Assumption 2 is satisfied.

3.2. Graph reconstruction. For a matrix A = (aij)1≤i≤n,1≤j≤m, let us denote
by ac

j , 1 ≤ j ≤ m, the columns of A and by ar
i , 1 ≤ i ≤ n, its rows. Then, we often

write

A = (ac
j)1≤j≤m = (ar

i )1≤i≤n, (29)

that is, we represent the matrix as a row vector of its columns or a column vector
of its rows. In particular, we write

Ξout = (ξoutij )1≤i≤2m,1≤j≤2m = (ξout,cj )1≤j≤2m = (ξout,ri )1≤i≤2m,

Ξin = (ξinij )1≤i≤2m,1≤j≤2m = (ξin,cj )1≤j≤2m = (ξin,ri )1≤i≤2m.

For any vector µ = (µ1, . . . , µk), we define supp µ = {j ∈ {1, . . . , k}; µj 6= 0}.
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Definition 3.5. We say that the problem (1) is graph realizable if there is a graph
Γ = {{vi}1≤i≤r, {ek}1≤k≤m} and a grouping of the column indices of Ξ into pairs

(j′k, j
′′

k )1≤k≤m such that (1a) describes a flow along the edges ek of Γ, which satisfies
generalized Kirchhoff’s condition at each vertex of Γ. In other words, (1) is graph
realizable if there is a graph Γ and a matrix Ψ such that (1a), (1c) can be written,
after possibly permutating rows and columns of Ξ, as (5), (17).

Before we formulate the main theorem, we need to introduce some notation. Let
us recall that we consider the boundary system (2), i.e.,

Ξout((υj(0, t))j∈J+ , ($j(1, t))j∈J−) = −Ξin((υj(1, t))j∈J+ , ($j(0, t))j∈J−).

Let us emphasize that in this notation, the column indices on the left and right
hand side correspond to the values of the same function. To shorten notation, let
us renumber them as 1 ≤ j ≤ 2m. As noted in Introduction, appropriate pairs of
the columns would determine the edges of the graph Γ that we try to reconstruct,
hence the first step is to identify the possible vertices of Γ. For this, first, we will
try to construct a multi digraph Γ on which (2) can be written in the form (17)
for (υ,$). Roughly speaking, this corresponds to Ξout and Ξin being composed
(up to permutations) of non-communicating blocks corresponding to the vertices.
Here, each j should correspond to an arc εj and the column j on the left hand side
corresponds to the outflow along εj from a unique vertex, while the column j on the
right hand side corresponds to the inflow along εj to a unique vertex. The vertices
of Γ should be then determined by a suitable partition of the rows of Ξout (and of
Ξin).

In the second step we will determine additional assumptions that allow Γ to be
collapsed into a graph Γ on which (2) can be written in the form (17).

Since we do not want (2) to be under- or over-determined, we adopt

Assumption 4. For all 1 ≤ j ≤ 2m,

ξout,cj 6= 0 and ξout,rj 6= 0.

Our strategy is to treat Ξout and Ξin as the outgoing and incoming incidence
matrices of a multi digraph with vertices ‘smeared’ over subnetworks of flow con-
nections. Thus we have

Assumption 5. The matrix

A :=
̂(

Ξ̂out

)T
Ξ̂in

is the adjacency matrix of the line graph of a multi digraph.

For A, let V out
j and V in

i be groups of row and column indices, respectively,
potentially outgoing from (respectively incoming to) a vertex, see Appendix A. We
introduce

I := {i ∈ {1, . . . , 2m}; ξin,ri = 0}

and adopt

Assumption 6. For all i ∈ I there exists j ∈ {1, . . . ,M ′} such that

supp ξout,ri ⊂ V out
j .
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In the next proposition we shall show that V out
j and V in

i determine a partition
of the row indices into sets that can be used to define vertices. The idea is that if
supports of columns of Ξout or Ξin overlap, the arcs determined by these columns
must be incident to the same vertex.

Proposition 3. If Assumptions 4, 5 and 6 are satisfied, then the sets

{{Vi}1≤i≤n,VS}, (30)

where

VS = {i ∈ {1, . . . , 2m}; supp ξout,ri ⊂ V out
M ′ }, (31)

Vi =
⋃

s∈V out
i

supp ξout,cs , 1 ≤ i ≤ n, (32)

form a partition of the row indices of both Ξout and Ξin such that if for any j,
supp ξout,cj ∩ Vi 6= ∅ for some i = 1, . . . , n, S, then supp ξout,cj ⊂ Vi, and if for any

k, supp ξin,ck ∩ Vl 6= ∅ for some l = 1, . . . , n, S, then supp ξin,ck ⊂ Vl.

Since the proof is quite long, we first present its outline.
Step 1. Reconstruct a multi digraph Γ from the adjacency matrix of its line graph.
Step 2. Identify the rows of Ξout which are zero in Ξin and which correspond to
sources and associate them with vertices.
Step 3. Associate other rows of Ξout which are zero in Ξout with appropriate
vertices.
Step 4. Associate remaining rows with vertices and construct a possible partition
of the row indices.
Step 5. Check that the constructed partition has the required properties.

Proof. Step 1. By Assumption 5, A is the adjacency matrix of L(Γ) for some multi
digraph Γ. As explained in Appendix A, we can reconstruct Γ with the transient
vertices defined in a unique way and admissible sources and sinks. Let us fix such
a construction. Then, we have the sets {V in

j }1≤j≤n and {V out
i }1≤i≤n of incoming

and outgoing arcs determining any transient vertex. Further, we have (possibly)
the sets V in

N ′ and V out
M ′ that group the arcs incoming to sink(s) and outgoing from

source(s), respectively. Since A represents all arcs, the same decomposition is valid
for Ξout and Ξin, that is, we have subdivisions {V out

i }1≤i≤M ′ and {V in
j }1≤j≤N ′

of the columns of Ξout and Ξin, respectively, and hence the correspondence of the
columns with the vertices. Thus, we have to show that (30) is a partition of the
rows of Ξout and Ξin satisfying the conditions of the proposition.

Let us recall that the entry (i, j) of A is defined by

aij =
̂̂

ξout,ci · ξ̂in,cj

and if a row k of A is zero, that is, it represents a source, then there is a zero row
in Ξin. Indeed, since, by Assumption 4, supp ξout,ck 6= ∅, there is a nonzero entry,
say, ξoutlk and thus we must have ξinlj = 0 for any j. So, to every zero row in A, there
corresponds a zero row in Ξin. However, there may be other zero rows in Ξin.

Step 2. To determine the rows in Ξout, corresponding to sources, we consider As-
sumption 6. First, we note that any j of that assumption, if it exists, is determined
in a unique way as the sets V out

j are not overlapping. Next, we observe that if

supp ξout,ri ⊂ V out
j and supp ξout,ri ∩ supp ξout,rk 6= ∅, then supp ξout,rk ⊂ V out

j .
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Indeed, if supp ξout,rk ⊂ V out
p and l ∈ supp ξout,ri ∩ supp ξout,rk , then l ∈ V out

j ∩V out
p

which implies V out
j = V out

p . Thus we can define the set

VS = {i ∈ {1, . . . , 2m}; supp ξout,ri ⊂ V out
M ′ }.

For any i ∈ VS and q ∈ supp ξout,ri , we have supp ξout,cq ⊂ I, as otherwise there

would be a nonzero product ξout,cq · ξin,cs for some s as ξin,rt 6= 0 for each t /∈ I.

Then, let there be k such that supp ξout,cp ∩ supp ξout,cj 3 k for some j ∈ V out
M ′ . This

means, by Assumption 6, that supp ξout,rk ⊂ V out
M ′ and hence p ∈ V out

M ′ . Consider

any nonzero element of ξout,cp , say, ξoutlp 6= 0. By the above argument, l ∈ I. If

supp ξout,rl ⊂ V out
M ′ , then l ∈ VS . If not, supp ξout,rl ∩ V out

j 6= ∅ for some j 6= M ′

which contradicts Assumption 6. Thus, VS satisfies the first part of the statement.
The second part is void as there is no ξin,cj with supp ξin,cj ∩ VS 6= ∅. Therefore, all

indices i ∈ VS , that is, such that supp ξout,ri ⊂ V out
M ′ , determine a source as there is

no connection to any inflow.

Step 3. Now, consider the indices i ∈ I \ VS . Then, again by Assumption 6, for

any i ∈ I \ VS there is a unique j 6= M ′ such that supp ξout,ri ⊂ V out
j , that is, such

an i belongs to the vertex determined by V out
j . This determines a partition of I

corresponding to the vertices (recall that there are no zero rows in Ξout and so each
row must belong to a vertex).

Step 4. Next, we associate the remaining rows in Ξout and Ξin with the vertices.
Consider V out

i and V in
j for some 1 ≤ i ≤ n and j defined by (A.2). The non-

zero entries apq of A, where p ∈ V out
i and q ∈ V in

j , occur whenever supp ξout,cp ∩
supp ξin,cq 6= ∅. Hence, the rows with indices k ∈ supp ξout,cp ∩supp ξin,cq must belong
to a vertex through which the incoming arc εq communicates with the outgoing arc
εp. Since all nonzero entries in supp ξout,cp and supp ξin,cq , respectively, reflect non-

zero outflow along εp, and inflow along εq, respectively, supp ξout,cp and supp ξin,cq

must belong to the same vertex. Since the same is true for any indices from V out
i

and V in
j , plausible partitions of row indices of Ξout and Ξin defining vertices are

Vout
i =

⋃
s∈V out

i

supp ξout,cs , Vin
j =

⋃
q∈V in

j

supp ξin,cq .

We first observe that if V out
i and V in

j determine the same transient vertex, then

Vout
i \ {s ∈ Vout

i ; ξin,rs = 0} = Vin
j . (33)

Indeed, let p ∈ Vout
i \ {s ∈ Vout

i ; ξin,rs = 0}. Then, there is s ∈ V out
i such that

p ∈ supp ξout,cs . Since p /∈ {s ∈ Vout
i ; ξin,rs = 0}, there is q such that ξinpq 6= 0 and

thus ξ̂out,cs · ξ̂in,cq 6= 0. Hence, q ∈ V in
j and consequently p ∈ Vin

j . The converse

can be proved in the same way by using Assumption 4 since if p ∈ Vin
j then,

by construction, p must belong to a support of some ξin,cq and thus cannot be in

{s ∈ Vout
i ; ξin,rs = 0}. As we see, if Vout

i contains rows ξout,rk with k ∈ I \ VS , then

these rows satisfy supp ξout,rk ⊂ V out
i . If we add the indices of such rows to Vin

j

with V in
j determining the same vertex as V out

i , then such an extended Vin
j will be



NETWORK REALIZABILITY OF PORT-HAMILTONIANS 87

equal to Vout
i and thus we use can use (30) to denote the partition of {1, . . . , 2m}

into Vout
1 , . . . ,Vout

n ,VS .

Step 5. We easily check that this partition satisfies the conditions of the propo-
sition. We have already checked this for VS . So, let supp ξout,cq ∩ Vout

i 6= ∅ for

some 1 ≤ i ≤ n, then there is s ∈ V out
i such that k ∈ supp ξout,cq ∩ supp ξout,cs .

Clearly, k /∈ VS by the construction of Vout
i . If k ∈ I \ VS , then q ∈ V out

i by

Assumption 6 and hence supp ξout,cq ⊂ Vout
i . If k /∈ I, then ξ̂out,cs · ξ̂in,cp 6= 0 for

some p but then also ξ̂in,cp · ξ̂out,cq 6= 0 and hence p ∈ V in
j , yielding q ∈ V out

i and

consequently supp ξout,cq ⊂ Vout
i . Similarly, if supp ξin,cp ∩ Vout

i 6= ∅, then there is

k ∈ supp ξin,cp ∩ supp ξout,cq for some q ∈ V out
i . But then, immediately from the

definition, supp ξin,cp ⊂ Vin
j ⊂ Vout

i by (33).

We note that (30) does not contain rows corresponding to sinks and they must
be added following the rules described in Appendix A. With such an extension, we
consider the multi digraph Γ, determined by

{{Vi}1≤i≤n,VS ,VZ}, {{V out
i }1≤i≤n, V out

M ′ , ∅}, {{V in
ji }1≤i≤n, ∅, V

in
N ′}, (34)

where the association i 7→ ji is defined in (A.2). By construction, if we take the
triple Vi, V

out
i , V in

ji
, 1 ≤ i ≤ n, it determines a transient vertex, the outgoing arcs

given by the indices of columns in Ξout and the incoming arcs given by the indices of
columns in Ξin. Similarly, the pair VS , V

out
M ′ determines the sources and all outgoing

arcs, while the set of incoming arcs is empty. Thus, if we denote by Ξi
out and Ξi

in the
submatrices of Ξout and Ξin consisting of the rows with indices in Vi and columns in
V out
i and V in

ji
, respectively, with an obvious modification for VS , then (2) decouples

into n (or n+ 1) independent systems

Ξi
out((υj(0, t))j∈J+∩V out

i
, ($j(1, t))j∈J−∩V out

i
)

= −Ξi
in((υj(1, t))j∈J+∩V in

ji
, ($j(0, t))j∈J−∩V in

ji
), 1 ≤ i ≤ n,

ΞS
out((υj(0, t))j∈J+∩V out

M′
, ($j(1, t))j∈J−∩V out

M′
) = 0.

(35)

This system can be seen as a Kirchhoff system on the multi digraph Γ but we need
to collapse Γ to a graph Γ on which (35) can be written as (17). We observe that
the question naturally splits into two problems – one is about collapsing the graph,
while the other is about grouping the components of (υ,$) into pairs compatible
with the parametrization of Γ.

Let A be the adjacency matrix of L(Γ), with Assumptions 4 and 6 satisfied. As
in Appendix A, we can construct outgoing and incoming incidence matrices A+

and A− but these are uniquely determined only if there are no sources and sinks.
However, we have an additional piece of information about sources.

If we grouped all sources into one node, as before Proposition 5, then, by Lemma
3.4, the flow connectivity in this source would be given by

Cv :=
̂(

Ξ̂S
out

)T
Ξ̂S

out.

However, such a matrix would not necessarily satisfy Assumption 3. Thus, we sep-
arate the arcs into non-communicating groups, each determining a source satisfying
Assumption 3. For this, by simultaneous permutations of rows and columns, Cv
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can be written as
ΞS = diag{ΞS

i }1≤i≤k, (36)

where k may equal 1. Since the simultaneous permutation of rows and columns is
given as PCvP

T , where P is a suitable permutation matrix, [18, p. 140], we see

that ΞS is a symmetric matrix, along with Cv. By [12, Sections III § 1 and III §
4], ΞS is irreducible if and only if it cannot be transformed by simultaneous row

and column permutations to the form (36) with k > 1 (since ΞS is symmetric, all

off-diagonal blocks must be zero). Then, ΞS can be reduced to the canonical form,

[12, Section III, Eq. (68)], in which each ΞS
i is irreducible. If (36) is in the canonical

form, then we say that ΞS allows for k sources, each satisfying Assumption 3. The
indices of the columns contributing to the blocks define the k non-communicating
sources VS1

, . . . ,VSk
in Γ, which we denote V out

S1
, . . . , V out

Sk
, V out

M ′ = V out
S1
∪ . . .∪V out

Sk
.

Finally, define ξout,r = (ξout,rSij
)1≤i≤k,1≤j≤2m by

ξout,rSij
=

{
1 if j ∈ V out

Si
,

0 otherwise.

For the sinks, it is simpler as there is no constraining information from (2). We
have columns with indices in V in

N ′ corresponding to sinks. These are zero columns in
Ξin but the columns with these indices in Ξout have nonempty supports and thus
we can determine from which vertices they are outgoing. Let us denote

V in
Vi

= {j ∈ V in
N ′ ; supp ξout,cj ∩ Vi 6= ∅}, i = 1, . . . , n, S1, . . . , Sk. (37)

For each i we consider a partition

V in
Vi

= V in
i,1 ∪ . . . ∪ V in

i,li , i = 1, . . . , n, S1, . . . , Sk, (38)

where li ≤ |V in
Vi
|, into non-overlapping sets V in

i,l , 1 ≤ l ≤ li. Then, we define sinks

Vi,l as the heads of the arcs with indices from V in
i,l ; we have nz = l1 + · · ·+ lSk

sinks.

Then, as above, define ξin,r = (ξin,r{i,l},q)i∈{1,...,Sk},l∈{1,...,li},q∈{1,...,2m} by

ξin,r{i,l},q =

{
1 if q ∈ V in

i,l ,

0 otherwise.

Remark 4. We expect |V in
Vi
|, i = 1, . . . , n, S1, . . . , Sk, to be even numbers and (38)

to represent a partition of V in
Vi

into pairs so that li = |V in
Vi
|/2.

Then, as in Remark 5, the incoming and outgoing incidence matrices are

A+ =

 A+

0

ξin,r

 , A− =

 A−

ξout,r

0


which, by a suitable permutation of columns moving the sources and the sinks to
the last positions, can be written as A+

T A+
S 0 0

0 0 0 0
0 0 ZS Z

 and

 A−T 0 0 A−Z
0 S SZ 0
0 0 0 0

 , (39)

respectively. Both matrices have 2m columns and n := n+ k + nz rows. Hence, as
shown in Remark 5, the adjacency matrix of the full multi digraph Γ is given by

A(Γ) = (aij)1≤i,j≤n = A+(A−)T =

 A+
T (A−T )T A+

S S
T 0

0 0 0

Z(A−Z )T ZS(SZ)T 0

 , (40)
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where the dimensions of the blocks in the first row are, respectively, n × n, n × k
and n× nz, in the second row, k× n, k× k and k× nz and in the last one, nz × n,
nz × k and nz × nz. Thus, if aij is in the block (p, q), 1 ≤ p, q ≤ 3, then aji will be
in the block (q, p).

Consider a nonzero pair (aij , aji) of entries of A(Γ). If, say, aij = h, then it means
that the i-th row of A+ and j-th row of A− have entry 1 in the same h columns,
that is, there are exactly h arcs coming from vj to vi. Similarly, if aji = e, then
there are exactly e arcs coming from vi to vj . Conversely, if there are h arcs from
vj to vi and e arcs from vi to vj , then (aij , aji) = (h, e). In particular, h + e = 2
if and only if there are two arcs between vj and vi running either concurrently or
countercurrently. Since the columns of A+ and A− are indexed in the same way as
that of Ξout and Ξin, the pair (aij , aji) determines the rows a+,r

i and a+,r
j of A+

and thus the indices

(aij 7→ {kij1 , . . . , k
ij
h }, aji 7→ {k

ji
1 , . . . , k

ji
e })

= (aij 7→ supp a+,r
i ∩ supp a−,rj , aji 7→ supp a+,r

j ∩ supp a−,ri )
(41)

of columns of Ξout (and of Ξin). Finally, we are ready to formulate the main result
of this paper.

Theorem 3.6. System (2) is graph realizable with generalized Kirchhoff’s condi-
tions satisfying Assumptions 1 and 2 for v ∈ Υt and Assumption 3 for v ∈ Υs if
and only if, in addition to Assumptions 4, 5 and 6, there is a partition (38) such
that A(Γ) defined by (40) satisfies

1. for any 1 ≤ i, j ≤ n, aii = 0 and (aij , aji) is in one of the following form:

(2, 0), (1, 1), (0, 2) or (0, 0); (42)

2. if (aij , aji) determines the indices k and l according to (41), then

if (aij , aji) = (2, 0) or (0, 2), then k, l ∈ J+ or k, l ∈ J−
and ck 6= cl,

if (aij , aji) = (1, 1), then k ∈ J+ and l ∈ J−
or k ∈ J− and l ∈ J+.

(43)

Proof. Necessity. Let us consider the Kirchhoff system (17). By construction, both

matrices Ψout and Ψin are in block diagonal form with equal row dimensions of the
blocks. We consider the problem already transformed to Γ. We note that each arc’s
index must appear twice in Ψ – once in Ψout and once in Ψin (if there are sinks, the
indices of incoming arcs will correspond to the zero columns). Further, whenever

column indices k and l appear in the blocks of Ψout and Ψin, respectively, then
εl is incoming to, while εk is outgoing from the same vertex (and not any other).
Thus, by Assumption 2, the matrix

Ã = (ãij)1≤i,j≤2m =
̂

(Ψ̂out)T Ψ̂in

is block diagonal with blocks of the form Cv = 1v, except for zero rows correspond-
ing to the sources and zero columns corresponding to the sinks. However, in general,
the column indices in Ψout and Ψin do not correspond to the indices of the arcs
they represent. Precisely, ãij = 1 if and only if there is a vertex for which the arc

εj
′

is incoming and εi
′

is outgoing, where j′ and i′ are the indices of the arcs that
correspond to the columns j and i of Ψin and Ψout, respectively. To address this,
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we construct Ξout and Ξin as

Ξout = ΨoutP, Ξin = ΨinQ,

where P and Q are permutation matrices, so that in both matrices the column
indices 1, . . . , 2m correspond to ε1, . . . , ε2m. Hence

A = (aij)1≤i,j≤2m :=
̂

(Ξ̂out)T Ξ̂in =
̂

(Ψ̂outP )T Ψ̂inQ = PT ÃQ

is a matrix where the indices 1, . . . , 2m of both the columns and the rows correspond
to ε1, . . . , ε2m. Since Γ did not have loops, it is clear that aii = 0 for all i =
1, . . . , 2m. It is also clear that any two columns (or rows) of Ã are either equal
or orthogonal and this property is preserved by permutations of columns and of
rows. Hence, by Proposition 4, A is the adjacency matrix of a line digraph and
hence Assumption 5 is satisfied. Since the arcs’ connections given by A and Ã
are the same, we see that A is equal to the adjacency matrix of the line graph of
Γ. Therefore, the transient vertices determined by A are the same as in Γ (and
hence in Γ). On the other hand, as we know, A does not determine the structure
of sources and sinks in Γ. The fact that Assumption 4 is satisfied is a consequence
of Assumption 1. For Assumption 6, we recall, see Appendix A, that the sets V out

j

group together the indices representing arcs εk outgoing from a single vertex, thus
they correspond to the blocks Ψout

v in the matrix Ψout and therefore Assumption 6 is
satisfied, even for any i. Next, since Γ has been constructed from Γ, the structure
of the blocks in Ψout corresponding to sources ensures that, after permutations,
their entries will coincide with ΞS

out and thus (36) will hold with the blocks in (36)
exactly corresponding to the sources in Γ, on account of Assumption 3. Similarly,
in Γ the sinks are determined and thus we have groupings of pairs of the arcs (a
partition of the set of indices corresponding to arcs incoming to sinks) coming from
transient vertices or sources to sinks and thus the constructions (39) and (40) are
completely determined. Then, we observe that whenever we have a source v, then
the arcs outgoing from v must be coming in pairs with a single pair coming from
v to any other possible vertex, meaning that the respective entry in A(Γ) must be
either (2, 0) or (0, 2). Similar argument holds for the sinks. Since the problem comes
from a graph, by construction, the orientation of the flows is consistent with the
parametrization.

Sufficiency. Given (2), we have flows ((υj)j∈J+ , ($j)j∈J−) defined on (0, 1).
Assumptions 4, 5 and 6 ensure, by Proposition 3, the existence of a multi digraph Γ
on which (2) can be localized to decoupled systems at vertices and written as (35).
Precisely speaking, Assumption 5 associates the indices of incoming components
of the solution at a vertex with incoming arcs and similarly for the indices of the
outgoing components. Therefore, if an arc εp runs from vj to vi, then the flow
occurs from vj to vi, that is, if p ∈ J+, then the flow on εp is given by υp with
υp(0) at vj and υp(1) at vi and analogous statement holds for p ∈ J−. In other
words, the index p of the arc εp running from vj to vi determines the orientation
of the parametrization: 0 7→ vj and 1 7→ vi if p ∈ J+ and 0 7→ vi and 1 7→ vj if
p ∈ J−.

Now, (42) ensures that there are no loops at vertices and that between any two
vertices there are either two arcs or none. If aij is an entry in A+

S S
T , Z(A−Z )T or

ZS(SZ)T , then aij = 0 or aij = 2 and, by the dimensions of the blocks, aji ∈ {0, 2}
and aji = 0, respectively. On the other hand, if aij is an entry in A+

T (A−T )T , then
it can take any value 0, 1 or 2 and the aji equals 2 or 0, 1, 0, respectively. Thus,
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double arcs indexed, say, by (k, l) between vertices could be combined into edges of
an undirected graph (with no loops and multiple edges). However, in this way we
construct a combinatorial graph which does not take into account that if εk and εl

are combined into one edge e of Γ, their orientations must be the same. Thus, if
(aij , aji) = (2, 0) determines the pair of indices k, l according to (43), then both arcs
εk and εl of Γ run from vj to vi and the components k and l of the solution flow
concurrently along e. By assumption, k, l ∈ J+ or k, l ∈ J−. In the first case, we
associate vj with 0 and vi with 1 and we have (υk, υl) on e, in agreement with the
orientation. Otherwise, we associate vj with 1 and vi with 0 and we have ($k, $l)
on e. On the other hand, if (aij , aji) = (1, 1) then, by assumption, either k ∈ J+

and l ∈ J− or k ∈ J− and l ∈ J+ and the components k and l flow countercurrently.
Again, in the first case, k ∈ J+ and εk running from vj to vi requires vj to be
associated with 0 and vi with 1, while l ∈ J− and εl running from vi to vj also
requires vj to be associated with 0 and vi with 1. Thus, we have (υk, $l) on e.
Otherwise, we associate vj with 1 and vi with 0 and we have ($k, υl) on e.

Finally, the assumption ck 6= cl in the first case of assumption (43) ensures that
the resulting system is hyperbolic on each edge.

Example 3. Let us consider the system

∂tυj + cj∂xυj = 0, 1 ≤ j ≤ 4,

∂t$j − cj∂x$j = 0, 5 ≤ j ≤ 6,
(44)

where cj > 0, with boundary conditions
0 1 1 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




υ1(0)
υ2(0)
υ3(0)
υ4(0)
$5(1)
$6(1)

 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 1
0 0 1 1 1 0




υ1(1)
υ2(1)
υ3(1)
υ4(1)
$5(0)
$6(0)

 . (45)

Thus,

A =
̂

(Ξ̂out)T Ξ̂in =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 1
0 0 1 1 1 0

 .

Thus, there is a multi digraph Γ for which A is the adjacency matrix of L(Γ). There
is no sink and to determine the structure of the sources, we observe that

ΞS
out =


0 1 1 0
1 0 0 0
1 1 0 0
0 0 1 1

 and so ΞS =
̂(

Ξ̂S
out

)T
Ξ̂S

out =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 .

This matrix is irreducible and thus we have one source. Therefore

A+ =

 1 1 0 0 0 1
0 0 1 1 1 0
0 0 0 0 0 0

 , A− =

 0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 1 0 0
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• •

•

v2 v1

v3

υ1υ2υ3 υ4

$5

$6

Figure 2. The reconstructed multi digraph Γ. It is seen that it
cannot describe a flow on Γ as $5 and $6 must flow in the same
direction.

• •

•

v2 v1

v3

υ1υ2υ3 υ4

υ5

$6

Figure 3. The reconstructed multi digraph Γ for (46), (47)

and consequently

A =

 0 1 2
1 0 2
0 0 0

 .

Further,

supp a+,r
1 = {1, 2, 6}, supp a+,r

2 = {3, 4, 5},

supp a−,r1 = {5}, supp a−,r2 = {6}, supp a−,r3 = {1, 2, 3, 4},

hence, by (41),

(a12 7→ {6}, a21 7→ {5}), (a13 7→ {1, 2}, a31 7→ ∅), (a23 7→ {3, 4}, a32 7→ ∅).

To reconstruct Γ, we see that ε5 and ε6 should be combined into a single edge e.
However, since J+ = {1, 2, 3, 4}, J− = {5, 6}, the flow along ε5 runs from 1 to 0
and hence v1 should correspond to 1 in the parametrization, while v2 to 0. On
the other hand, ε6 runs also from 1 to 0 but from v2 to v1 and hence v2 should
correspond to 1, while v1 to 0. This contradiction is in agreement with the violation
of assumption (43) as (a12, a21) = (1, 1) but in the corresponding (k, l) = (6, 5), both
k and l belong to J−.
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• •

•

v2 v1

v3

1

0 0

1
01

e1

e2

e3

u1
1u1

2u3
1 u3

2

u2
1

u2
2

Figure 4. A network Γ realizing the flow (48), (49)

Consider a small modification of (44), (45),

∂tυj + cj∂xυj = 0, 1 ≤ j ≤ 5,

∂t$6 − c6∂x$6 = 0,
(46)

cj > 0, with the last two boundary conditions of (45) accordingly changed to

υ5(0)− υ1(1)− υ2(1)−$6(0) = 0,

$6(1)− υ3(1)− υ4(1)− υ5(1) = 0.
(47)

The matrices Ξout,Ξin,Ξ
S , A+, A− and A are the same as above and thus the multi

digraph Γ is the same as before. However, this time on ε5 we have the flow υ5,
occurring from 0 to 1 and thus ε5 and ε6 can be combined with a parametrization
running from 0 at v1 to 1 at v2. Assuming c1 > c2, c3 > c4, we identify u1

1 =
υ1, u

1
2 = υ2, u

3
1 = υ3, u

3
2 = υ4, u

2
1 = υ5, u

2
2 = $6 and write (46) as a system of 2× 2

hyperbolic systems on a graph Γ = ({v1,v2,v3}, {e1, e2, e3}) of the form

∂tu
1
1 + c1∂xu

1
1 = 0,

∂tu
1
2 + c2∂xu

1
2 = 0,

∂tu
2
1 + c5∂xu

2
1 = 0,

∂tu
2
2 − c6∂xu2

2 = 0,
∂tu

3
1 + c3∂xu

3
1 = 0,

∂tu
3
2 + c4∂xu

3
2 = 0,

(48)

with boundary conditions at

v1 : u2
1(0)− u1

1(1)− u1
2(1)− u2

2(0) = 0,
v2 : u2

2(1)− u3
1(1)− u3

2(1)− u2
1(1) = 0,

v3 :

u1
2(0) + u3

1(0) = 0,
u1

1(0) = 0,
u1

1(0) + u1
2(0) = 0,

u3
1(0) + u3

2(0) = 0.

(49)

Appendix A. Line digraphs. Consider a digraph G (possibly with multiple arcs
but with no loops) and its line graph L(G). For both G and L(G) we consider their
adjacency matrices A(G) and A(L(G)). The matrix A(L(G)) is always binary, with
zeroes on the diagonal. Not any binary matrix is the adjacency matrix of a line
graph, see [3, 6]. In fact, we have

Proposition 4. [6, Thm. 2.4.1] A binary matrix A is the adjacency matrix of a
line digraph of a multi digraph if and only if all diagonal entries are 0 and any two
columns (equivalently rows) of A are either equal or orthogonal (as vectors).
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For our analysis, it is important to understand the reconstruction of G from a
matrix A = (aij)1≤i,j≤m satisfying the above conditions. As in (29), we write

A = (aij)1≤i,j≤m = (ac
j)1≤j≤m = (ar

i )1≤i≤m.

If for some i1 we have ai1j1 = . . . = ai1jk = 1, then it means that ej1 , . . . , ejk
join ei1 and thus they must be incident to the same vertex v and all eil for which
ailj1 = 1 (and thus all ailjp = 1 for p = 1, . . . , k) are outgoing from v. We further
observe that all zero rows can be identified with source(s). Similarly, zero columns
correspond to sinks. If ac

j = ar
j = 0 for some j, then ej connects a source to a sink.

Using the adjacency matrix of a line digraph, we cannot determine how many
sources or sinks the original graph could have without additional information. We
can lump all potential sources and sinks into one source and one sink, we can have as
many sinks and sources as there are zero columns and rows, respectively, or we can
subdivide the arcs into some intermediate arrangement. We describe a construction
with one source and one sink and indicate its possible variants.

We introduce V in
1 = {r ∈ {1, . . . ,m}; ac

r = ac
1} and, inductively, V in

k = {r ∈
{1, . . . ,m}; ac

r = ac
jk
, jk = min{j; j /∈

⋃
1≤p≤k−1 V

in
p }} and the process termi-

nates at N ′ such that
⋃

1≤p≤N ′ V
in
p = {1, . . . ,m}. In the same way, V out

1 = {l ∈
{1, . . . ,m}; ar

l = ar
1} and V out

k = {l ∈ {1, . . . ,m}; ar
l = ar

jk
, jk = min{j; j /∈⋃

1≤p≤k−1 V
out
p }} and the process terminates at M ′ such that

⋃
1≤p≤M ′ V

out
p =

{1, . . . ,m}. In other words, {V in
j }1≤j≤N ′ and {V out

i }1≤i≤M ′ represent the vertices
of G through incoming and outgoing arcs, respectively. If there are any zero rows
in G, then we swap the corresponding set V out

j0
with the last set V out

M ′ . In this way,

V out
M ′ represents all arcs outgoing from sources (if they exist). For this construction,

we represent them as coming from a single source but other possibilities are allowed,
see Remark 5. Similarly, if there are any zero columns, we swap the corresponding
set V in

i0
with V in

N ′ , that is, V in
N ′ represents the arcs incoming to sink(s). Then, we

denote

M :=

{
M ′ if V out

M ′ = {j; ar
j 6= 0},

M ′ − 1 if V out
M ′ = {j; ar

j = 0},

N :=

{
N ′ if V in

N ′ = {j; ac
j 6= 0},

N ′ − 1 if V in
N ′ = {j; ac

j = 0}.

(A.1)

Thus, we see that the number of internal (or transient) vertices, that is, which are
neither sources nor sinks is n := M = N . For such vertices it is important to note
that, in general, V out

j and V in
j , 1 ≤ j ≤ n, do not represent the same vertex. To

combine V out
i and V in

j into the same vertex, we have, for 1 ≤ i, j ≤ n,

vj = {V in
j , V out

i }, aipjr = 1 for some/any ip ∈ V out
i , jr ∈ V in

j . (A.2)

With this notation, we present a more algorithmic way of reconstructing G from
A. First, we collapse equal rows of A into a single row of A+ and equal columns
of A into a single column and then take the transpose to get A−. Mathematically,
let I+ be a set of indices such that I+ ∩ V out

i consists of exactly one point for each
1 ≤ i ≤M ′ and ordered by the order of {V out

i }. Similarly, let I− be a set of indices
such that I− ∩ V in

i consists of exactly one point for each 1 ≤ i ≤ N ′. We order I−
consistently with I+, namely, if ik ∈ I+ and jk ∈ I− are the k-th indices in I+ and
I−, respectively, then ik ∈ V out

k and jk ∈ V in
j with j related to k by (A.2), that

is, {V out
k , V in

j } determines the same vertex vk. As mentioned above, possible zero
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rows correspond to the highest indices. With this, we define

A+ = (ar
i )i∈I+ , A− =

(
(ac

j)j∈I−
)T
. (A.3)

We see now that each row of A+ corresponds to a vertex and each column of A+

corresponds to an incoming arc. If there are zero rows in A, there is a zero row
at the bottom of A+ showing the presence of a (single) source. The presence of
a sink is indicated by zero columns in A+. Similarly, each row of A− corresponds
to a vertex with arcs outgoing from it represented by nonzero entries in this row,
in columns with indices corresponding to the indices of the arcs. If there are zero
columns in A, they appear as a zero row in A−, which represents a (single) sink.
Possible sources are visible in A− as zero columns. However, what is important
is that even though we lumped all sources and sinks into one single source and a
single sink, the zero columns in A+ and A− keep track of the arcs going into the
sink or out of the source, respectively. Unless there are no sources and sinks, A+

and A− are not the incoming and outgoing incidence matrices of a graph (for the
definition of these, see e.g. [3]). Indeed, A+ does not contain sinks that, clearly, are
part of the incoming incidence matrix. Similarly, A− does not include sources. If
we keep our requirement that there is only one sink and one source, then we add
one row to A+ and one to A− to represent the sink and the source, respectively. We
use convention that, if both the sink and the source are present, the source is the
last but one row and the sink is the last one. To determine the entries we use the
required property of the incidence matrices, that there is exactly one non-zero entry
in each column (expressing the fact that each arc has a unique tail and a unique
head). Thus, we put 1 in the added rows in any column that was zero in A+ (resp.
A−). We denote such extended matrices by A+ and A−. It is easy to see that the
following result is true.

Proposition 5. A+ and A− are, respectively, incoming and outgoing incidence
matrices of a multi digraph G having A as the adjacency matrix of L(G).

Proof. Since each column of A+ and A− contains 1 only in one row, we can construct
a multi digraph G from them using A(G) = A+(A−)T as its adjacency matrix. Since
we allow G to be a multi digraph, the entries of A(G) give the number of arcs joining

the vertices. A (k, l) entry in A(G) is given by a+,r
k · a−,rl and, by construction,

a+,r
k is a row in A belonging to vk and a−,rl is a column in A corresponding to vl.

Nonzero entries in a+,r
k correspond to the arcs incoming to vk and nonzero entries

in a−,rl correspond to the arcs outgoing from vl so the value of a+,r
k · a−,rl is the

number of nonzero entries occurring at the same places in both vectors and thus
the number of arcs from vl to vk.

The adjacency matrix A(L(G)) is determined as (A−)TA+. The entries of this

product are given by a−,ck · a+,c
l . Since each column has only one nonzero entry

(equal to 1), the product will be either 0 or 1. It is 1 if and only if there is i (exactly

one) such that the entry 1 appears as the i-th coordinate of both a−,ck and a+,c
l .

Now, by construction, a−ik = 1 if and only if k ∈ V out
i and a+

il = 1 if and only if
l ∈ V in

j , where the correspondence between j and i is determined by (A.2). This is
equivalent to akl = 1.

Remark 5. Assume that A has k zero rows and l zero columns. We cannot identify
the numbers of sinks and sources from A without additional information. Above,
we lumped all sources and all sinks into one source and one sink, respectively, but
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sometimes we require more flexibility. As we know, the k zero rows in A become
k zero columns in A− associated with the arcs outgoing from sources. In a similar
way, the l zero columns in A stay to be l zero columns in A+ associated with the arcs
incoming to sinks. We can group these arcs in an arbitrary way, with each group
corresponding to a source or a sink, respectively. Assume we wish to have k̄ sources
and l̄ sinks. Then, we build the corresponding matrix A+ by adding k̄−1 zero rows
for the sources to A+ and l̄ rows corresponding to sinks, which will consist of zeroes
everywhere apart from the columns that were zero columns in A+; in these columns
we put 1s in such a way that each column contains only one nonzero entry (and
zeroes elsewhere). Then, columns having 1 in a particular row will represent the
arcs incoming to a given sink. In exactly the same way we extend A−, by creating
l̄ − 1 zero rows for the sinks and k̄ rows for the sources. In this way, we construct
the following incoming and outgoing incidence matrices, respectively, A+ and A−

that, by a suitable permutation of columns, can be written as

Ā+ := A+P =

 A+
T A+

S 0 0
0 0 0 0
0 0 ZS Z

 ,

Ā− := A−P =

 A−T 0 0 A−Z
0 S SZ 0
0 0 0 0

 ,

where P is the required permutation matrix and, in both cases, the first group of
columns have indices corresponding to V in

i , 1 ≤ i ≤ n (resp. V out
j , 1 ≤ j ≤ n), the

second group corresponds to the arcs incoming from the sources to the transient
vertices, the third group combines arcs connecting sources and sinks and the last
group corresponds to the sinks fed by the transient vertices. We observe that the
number of columns in each group in A− and A+ is the same. Since

Ā+(Ā−)T = (A+P )(A−P )T = A+PPT (A−)T = A+A−,

as PT = P−1, see [18, p. 140], for such a digraph G we have

A(G) = A+(A−)T =

 A+
T (A−T )T A+

S S
T 0

0 0 0

Z(A−Z )T ZS(SZ)T 0

 . (A.4)

Example 4. Consider the networks G1 and G2 presented on Fig. 5. We observe
that grouping of sources and sinks does not affect the line graph, L(G1) = L(G2),
see Fig. 6. To illustrate the discussion above, we have

A =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0


. (A.5)

Then,

A+ =

 1 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0

 (A.6)
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and we see that there are two transient (internal) vertices v1 and v2 with arcs e1, e2

and e4 incoming to v1 and arcs e3 and e5 are incoming to v2. The last row in A+

corresponds to source(s) with outgoing arcs e1, e2, e5 and e7. We also note that
the zero columns in A+ correspond to arcs e6 and e7 that are incoming to sinks.
To build A−, we first collapse the identical columns of A and take the transpose.
We see from A that the first row of the transpose corresponds to the incoming arcs
e1, e2 and e4 and thus also to vertex v1 of A+. Hence, there is no need to re-order
the rows and so (A.3) gives

A− =

 0 0 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 0 0 0

 . (A.7)

The last row corresponds to sinks and the zero columns inform us that arcs e1, e2, e5

and e7 emanate from sources.
If we want to reconstruct the original graph with one source and one sink, then

A+ =


1 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 1

 , A− =


0 0 1 0 0 0 0
0 0 0 1 0 1 0
1 1 0 0 1 0 1
0 0 0 0 0 0 0


and

A+(A−)T =


0 1 2 0
1 0 1 0
0 0 0 0
0 1 1 0

 ,

which describes the right multi digraph in Fig. 5. On the other hand, we can

•

•

•

••

•

•

e7

e1

e2

e3

e4
e5

e6

G1 •

•••

e1e2

e5
e7

e3

e4
e6

G2

Figure 5. Multi digraphs G1 with 3 sources and two sinks and
G2 with all sources and all sinks grouped into a single source and
a single sink

consider two sinks (maximum number, as there are two zero columns in A) and,
say, three sources. Then,

A+ =



1 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


, A− =



0 0 1 0 0 0 0
0 0 0 1 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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and

A+(A−)T =



0 1 1 1 0 0 0
1 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0


which describes the left multi digraph in Fig. 5.

It is easily seen that both digraphs have the same line digraph, shown on Fig. 6,
whose adjacency matrix is A.

e1L(G1) = L(G2)

e2

e7

e3

e4e5e6

Figure 6. The line digraph for both G1 and G2
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