Well-posedness theory for nonlinear scalar conservation laws on networks

  • Received: 01 August 2021 Revised: 01 October 2021
  • Primary: 65M12, 35L65; Secondary: 65M08

  • We consider nonlinear scalar conservation laws posed on a network. We define an entropy condition for scalar conservation laws on networks and establish L1 stability, and thus uniqueness, for weak solutions satisfying the entropy condition. We apply standard finite volume methods and show stability and convergence to the unique entropy solution, thus establishing existence of a solution in the process. Both our existence and stability/uniqueness theory is centred around families of stationary states for the equation. In one important case – for monotone fluxes with an upwind difference scheme – we show that the set of (discrete) stationary solutions is indeed sufficiently large to suit our general theory. We demonstrate the method's properties through several numerical experiments.

    Citation: Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro. Well-posedness theory for nonlinear scalar conservation laws on networks[J]. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025

    Related Papers:

    [1] Maria Conceição A. Leite, Yunjiao Wang . Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences and Engineering, 2010, 7(1): 83-97. doi: 10.3934/mbe.2010.7.83
    [2] Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188
    [3] Dongxiang Gao, Yujun Zhang, Libing Wu, Sihan Liu . Fixed-time command filtered output feedback control for twin-roll inclined casting system with prescribed performance. Mathematical Biosciences and Engineering, 2024, 21(2): 2282-2301. doi: 10.3934/mbe.2024100
    [4] Yue Liu, Wing-Cheong Lo . Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Mathematical Biosciences and Engineering, 2019, 16(3): 1392-1413. doi: 10.3934/mbe.2019068
    [5] T. J. Newman . Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences and Engineering, 2005, 2(3): 613-624. doi: 10.3934/mbe.2005.2.613
    [6] Akinori Awazu . Input-dependent wave propagations in asymmetric cellular automata: Possible behaviors of feed-forward loop in biological reaction network. Mathematical Biosciences and Engineering, 2008, 5(3): 419-427. doi: 10.3934/mbe.2008.5.419
    [7] Na Zhang, Jianwei Xia, Tianjiao Liu, Chengyuan Yan, Xiao Wang . Dynamic event-triggered adaptive finite-time consensus control for multi-agent systems with time-varying actuator faults. Mathematical Biosciences and Engineering, 2023, 20(5): 7761-7783. doi: 10.3934/mbe.2023335
    [8] Qiushi Wang, Hongwei Ren, Zhiping Peng, Junlin Huang . Dynamic event-triggered consensus control for nonlinear multi-agent systems under DoS attacks. Mathematical Biosciences and Engineering, 2024, 21(2): 3304-3318. doi: 10.3934/mbe.2024146
    [9] Cristina De Ambrosi, Annalisa Barla, Lorenzo Tortolina, Nicoletta Castagnino, Raffaele Pesenti, Alessandro Verri, Alberto Ballestrero, Franco Patrone, Silvio Parodi . Parameter space exploration within dynamic simulations of signaling networks. Mathematical Biosciences and Engineering, 2013, 10(1): 103-120. doi: 10.3934/mbe.2013.10.103
    [10] Hany Bauomy . Safety action over oscillations of a beam excited by moving load via a new active vibration controller. Mathematical Biosciences and Engineering, 2023, 20(3): 5135-5158. doi: 10.3934/mbe.2023238
  • We consider nonlinear scalar conservation laws posed on a network. We define an entropy condition for scalar conservation laws on networks and establish L1 stability, and thus uniqueness, for weak solutions satisfying the entropy condition. We apply standard finite volume methods and show stability and convergence to the unique entropy solution, thus establishing existence of a solution in the process. Both our existence and stability/uniqueness theory is centred around families of stationary states for the equation. In one important case – for monotone fluxes with an upwind difference scheme – we show that the set of (discrete) stationary solutions is indeed sufficiently large to suit our general theory. We demonstrate the method's properties through several numerical experiments.





    [1] Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete Contin. Dyn. Syst. (2017) 37: 5913-5942.
    [2]

    B. P. Andreianov, G. M. Coclite and C. Donadello, Well-posedness for a monotone solver for traffic junctions, preprint, arXiv: 1605.01554.

    [3] A Theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. (2011) 201: 27-86.
    [4] Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. Roy. Soc. Edinburgh Sect. A (2005) 135: 253-265.
    [5] Convergence rates of monotone schemes for conservation laws with discontinuous flux. SIAM J. Numer. Anal. (2020) 58: 607-629.
    [6] Flows on networks: Recent results and perspectivees. EMS Surv. Math. Sci. (2014) 1: 47-111.
    [7] An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. (2009) 47: 1684-1712.
    [8]

    G. M. Coclite and L. di Ruvo, Vanishing viscosity for traffic on networks with degenerate diffusivity, Mediterr. J. Math., 16 (2019), Paper No. 110, 21 pp.

    [9] Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Netw. Heterog. Media (2020) 15: 197-213.
    [10] Vanishing viscosity for traffic on networks. SIAM J. Math. Anal. (2010) 42: 1761-1783.
    [11] Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc. (1980) 78: 385-390.
    [12] One-sided difference approximations for nonlinear conservation laws. Math. Comp. (1981) 36: 321-351.
    [13]

    U. S. Fjordholm, M. Musch and N. H. Risebro, Well-posedness of traffic flow models on networks, Submitted to SIAM Journal on Numerical Analysis, 2021.

    [14] A review of conservation laws on networks. Netw. Heterog. Media (2010) 5: 565-581.
    [15] Entropy type conditions for Riemann solvers at nodes. Adv. Differential Equations (2011) 16: 113-144.
    [16] A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics.. Mat. Sb. (1959) 47: 271-306.
    [17]

    H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd edition, Springer-Verlag, Berlin, Heidelberg, 2015.

    [18] A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal. (1995) 26: 999-1017.
    [19]

    K. H. Karlsen, N. H. Risebro and J. D. Towers, L1-stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk., (2003), 1–49.

    [20] Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. (2002) 22: 623-664.
    [21] First order quasilinear equaitons in several independent variables. Mat. Sb. (N.S.) (1970) 81: 228-255.
    [22] Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Computational Mathematics and Mathematical Physics (1976) 16: 105-119.
    [23] On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London Ser. A (1955) 229: 317-345.
    [24] Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. (1984) 21: 217-235.
    [25] Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. (2007) 4: 729-770.
    [26] Waves on the highway. Operations Res. (1956) 4: 42-51.
    [27] A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions. BIT Numerical Mathematics (2019) 59: 775-796.
    [28] Global solution of the Cauchy problem for a class of 2×2 nonstrictly hyperbolic conservation laws. Adv. in Appl. Math. (1982) 3: 335-375.
    [29]

    J. D. Towers, An explicit finite volume algorithm for vanishing viscosity solutions on a network, Netw. Heterog. Media, 2021.

    [30] Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. (2000) 38: 681-698.
  • This article has been cited by:

    1. Fernando Antunes, Paula Matos Brito, Quantitative biology of hydrogen peroxide signaling, 2017, 13, 22132317, 1, 10.1016/j.redox.2017.04.039
    2. Tamar Friedlander, Roshan Prizak, Călin C. Guet, Nicholas H. Barton, Gašper Tkačik, Intrinsic limits to gene regulation by global crosstalk, 2016, 7, 2041-1723, 10.1038/ncomms12307
    3. Michał Komorowski, Dan S. Tawfik, The Limited Information Capacity of Cross-Reactive Sensors Drives the Evolutionary Expansion of Signaling, 2019, 8, 24054712, 76, 10.1016/j.cels.2018.12.006
    4. Alejandra C. Ventura, Alan Bush, Gustavo Vasen, Matías A. Goldín, Brianne Burkinshaw, Nirveek Bhattacharjee, Albert Folch, Roger Brent, Ariel Chernomoretz, Alejandro Colman-Lerner, Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range, 2014, 111, 0027-8424, E3860, 10.1073/pnas.1322761111
    5. Damon A. Clark, Raphael Benichou, Markus Meister, Rava Azeredo da Silveira, Lyle J. Graham, Dynamical Adaptation in Photoreceptors, 2013, 9, 1553-7358, e1003289, 10.1371/journal.pcbi.1003289
    6. Ilan Smoly, Haim Elbaz, Chaim Engelen, Tahel Wechsler, Gal Elbaz, Giora Ben-Ari, Alon Samach, Tamar Friedlander, John Lunn, A model estimating the level of floral transition in olive trees exposed to warm periods during winter, 2024, 0022-0957, 10.1093/jxb/erae459
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1482) PDF downloads(315) Cited by(8)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog