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Abstract. We consider nonlinear scalar conservation laws posed on a net-
work. We define an entropy condition for scalar conservation laws on networks

and establish L1 stability, and thus uniqueness, for weak solutions satisfying

the entropy condition. We apply standard finite volume methods and show
stability and convergence to the unique entropy solution, thus establishing ex-

istence of a solution in the process. Both our existence and stability/uniqueness
theory is centred around families of stationary states for the equation. In one

important case – for monotone fluxes with an upwind difference scheme – we

show that the set of (discrete) stationary solutions is indeed sufficiently large
to suit our general theory. We demonstrate the method’s properties through

several numerical experiments.

1. Introduction. Partial differential equations (PDEs) on networks have a large
number of applications, including fluid flow in pipelines, traffic flow on a network of
roads, blood flow in vessels, data networks, irrigation channels and supply chains. A
treatment of this wide range of applications can be found in the review articles [6, 14]
and the references therein. In this paper we will focus on scalar, one-dimensional
conservation laws

ut + f(u)x = 0 (1.1)

on a network. Here, u = u(x, t) is the unknown conserved variable and f is a scalar
flux function defined either on R or some subinterval. We aim to make sense of
the conservation law on a directed graph and obtain existence, uniqueness, stability
and approximability results.

Consider a network represented by a connected and directed graph. We tag the
edges of this graph with an index k and impose on each edge a scalar conservation
law

ukt + fk(uk)x = 0, x ∈ Dk, t > 0

uk(x, 0) = ūk(x), x ∈ Dk
(1.2)
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Figure 1. A star shaped network with two ingoing and three out-
going edges.

for some spatial domain Dk ⊂ R. (Here and in the remainder, a superscript k will
refer to an edge or a vertex.) We may think of edges as pipes or roads and the
vertices as intersections, with the convention that the direction of travel is in the
positive x-direction, as shown in Figure 1.

In this paper we will be interested in uniqueness and stability for nonlinear scalar
conservation laws on a network, as well as in constructing a numerical approxima-
tion and proving convergence of the numerical scheme. As opposed to many existing
results, where the flux function on each edge is the same [10, 18], we want to allow
for a different flux function fk on each edge Dk of the network. Assuming that each
flux fk is continuous and independent of the space variable, the problem can be
seen as a PDE with a discontinuous flux, with the points of discontinuity sitting on
the vertices of the graph. In fact, if our network would be the trivial network with
only one ingoing and one outgoing edge then this would be exactly the case of a
conservation law on the real line with a flux function with one discontinuity located
at the vertex. Because of the connection to the theory for conservation laws with
discontinuous fluxes (see e.g. [3]), we will borrow several ideas from this theory. It is
well-established that nonlinear hyperbolic conservation laws develop shocks in finite
time. Therefore, solutions are always understood in the weak sense. Unfortunately,
weak solutions to nonlinear hyperbolic conservation laws turn out to be non-unique,
and additional conditions, usually referred to as entropy conditions, are imposed
to select a unique solution. If the flux function is continuous then the theory of
entropy solutions is covered by Kruzkhov’s theory [21]. For conservation laws with
discontinuous fluxes the choice of entropy conditions is not obvious, and different
physical models might lead to different entropy conditions. Although suitable en-
tropy conditions can yield uniqueness, different entropy conditions are known to
yield different solutions; see [30, 19, 7, 3] and references therein. In [30] the au-
thor shows convergence of a finite difference scheme scheme under the assumption
of a strictly concave flux function with a single maximum. In a later paper [19]
a uniqueness result was shown for degenerate parabolic convection-diffusion equa-
tions, of which hyperbolic conservation laws are a subcase. In this work, the flux
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function had to satisfy a so-called “crossing condition”. Another convergence result
for an Engquist–Osher type scheme was given in [7]. The flux functions f, g were
assumed to have a single maximum and to satisfy f(u) = g(u) = 0 for u = 0, 1. The
study of different entropy conditions for conservation laws with discontinuous fluxes
culminated in the paper by Andreianov, Karlsen and Risebro [3]. The authors re-
late the question of admissibility of a solution to the properties of a set of constant
solutions, a so-called germ. Inspired by the entropy theory of Andreianov, Karlsen
and Risebro, we investigate so-called stationary and discrete stationary solutions
for our graph problem and thus derive an entropy theory for conservation laws on
networks. Although our theory is influenced by the theory in [3], we have strived
to make this paper as self-contained as possible.

In [18] the authors show uniqueness and existence to the Riemann problem as
well as existence of a weak solution of the Cauchy problem on a network of roads
in the case that the flux functions on each edge are identical. In [9, 8, 1, 10] the
authors show well-posedness results for vanishing viscosity solutions. In [15] the
authors investigate two entropy type conditions. However, in none of the existing
literature can one find a general entropy condition which leads to uniqueness and
stability of solutions. In the present work we aim to address this deficiency in the
existing theory of conservation laws on networks.

The second important question to address is existence of a solution. Our ap-
proach will be to construct an approximation of the exact entropy solution by con-
structing a finite volume scheme. We will prove convergence to an entropy solution,
thereby also proving existence of a solution. Convergence to the unique entropy
solution of numerical schemes has been shown for conservation laws with strictly
concave flux functions. This was done for schemes which are implicit on the nodes
in [1, Section 3.2] and [2]. Convergence of a fully explicit scheme for the strictly
concave case was shown in [29]. For a general overview over numerical methods for
conservation laws on graphs see [6, Section 6].

In this article we focus on monotone fluxes – that is, each flux fk is either
increasing or decreasing. For non-monotone fluxes only some of the techniques in
the present paper are applicable; a traffic flow model, in which fluxes are assumed
to be strictly concave, will be treated in a forthcoming work [13].

This article is structured as follows: In Section 2 we define our mathematical
framework. We show uniqueness of entropy solutions to our problem in Section 3.
In Section 4 we define a finite difference scheme appropriate for our problem, and in
Section 5 we prove that our numerical scheme converges towards the unique entropy
solution. In Section 6 we show that a class of monotone flux functions fits in our
general scheme. Numerical experiments for the monotone case are presented in
Section 7.

While the theory outlined in Sections 2 through 4 holds for conservation laws
with general flux functions, the convergence theory in Sections 5 and 7 focuses on
monotone flux functions and upwind numerical fluxes.

2. Entropy solutions on networks. Consider a network (or directed graph) of
vertices and edges; for simplicity we will assume that the network contains a single
vertex, along with Nin ∈ N edges entering and Nout ∈ N edges exiting the vertex
(see Figure 1). (The generalization to general networks will follow analogously, due
to the finite speed of propagation of the equations considered.) We think of the
Nin edges as being to the left of the vertex and the Nout edges to its right. The
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ingoing edges will be labelled k ∈ Iin := {−Nin, . . . ,−1} and the outgoing edges
k ∈ Iout := {1, . . . , Nout}. We denote N := Nin +Nout and we let I := Iin ∪Iout

denote the set of all edge indices. Placing the vertex at the origin x = 0, the
incoming edges have coordinates x ∈ R− = (−∞, 0), while the outgoing edges have
coordinates x ∈ R+ = (0,∞); we will denote the k-th edge by

Dk =

{
R− for k ∈ Iin,

R+ for k ∈ Iout.

On each edge Dk we now impose the scalar conservation law (1.1), resulting in the
N distinct equations

ukt + fk(uk)x = 0 for x ∈ Dk, k ∈ I . (2.1)

The collection of functions u = (uk)k∈I can be thought of as a function u : Ω→ R,
where

Ω :=
⋃
k∈I

Dk × {k}.

On the Borel σ-algebra B(Ω) '
{∏

k∈I Ak ×{k} : Ak ∈ B(Dk)
}

on Ω we define
the measure λ = L×#, where L is the one-dimensional Lebesgue measure and #
is the counting measure; thus, the integral of u = (uk)k∈I isˆ

Ω

u dλ =
∑
k∈I

ˆ
Dk

uk(x) dx. (2.2)

The set of L∞-bounded, real-valued functions on Ω will be denoted by L∞(Ω;λ).
We define the total variation of a function u ∈ L∞(Ω;λ) as the sum of the variations
of its components:

TV(u) :=

ˆ
Ω

∣∣∣du
dx

∣∣∣ dλ =
∑
k∈I

ˆ
Dk

∣∣∣duk
dx

(x)
∣∣∣ dx. (2.3)

2.1. Weak solutions.

Definition 2.1 (Weak Solution). We say that a function u ∈ L∞
(
R+;L∞(Ω;λ)

)
is a weak solution of (2.1) with initial data ū ∈ L∞(Ω;λ) if∑

k∈I

ˆ ∞
0

ˆ
Dk

ukϕkt + fk(uk)ϕkx dx dt+
∑
k∈I

ˆ
Dk

ūk(x)ϕk(x, 0) dx = 0 (2.4)

for all ϕk ∈ C∞c
(
Dk × [0,∞)

)
satisfying ϕk(0, t) ≡ ϕ1(0, t) for all k ∈ I .

Weak solutions automatically satisfy a Rankine–Hugoniot condition at the inter-
section:

Proposition 2.2 (Rankine–Hugoniot condition). Let (uk)k∈I be a weak solution
of (2.1) such that fk ◦ uk(·, t) has a strong trace at x = 0 for every k ∈ I and
a.e. t > 0. Then∑

k∈Iin

fk(uk)(0, t) =
∑

k∈Iout

fk(uk)(0, t) for a.e. t > 0. (2.5)

Proof. Define

θε(x) =


1
ε (ε+ x) if x ∈ [−ε, 0]
1
ε (ε− x) if x ∈ [0, ε]

0 if |x| > ε.

(2.6)
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We define Φ(x, t) := θε(x)ψ(t) where ψ ∈ C∞c ([0,∞)). The partial derivatives of Φ
are

Φx(x, t) =


1
εψ(t) if x ∈ [−ε, 0]

− 1
εψ(t) if x ∈ [0, ε]

0 if |x| > ε

and Φt(x, t) = θε(x)ψ′(t).

By a density argument, Φ qualifies as an admissible test function. Thus, we can
insert Φ into the weak formulation (2.4) to get

0 =
∑
k∈I

ˆ ∞
0

ˆ
Dk

ukΦkt + fk(uk)Φkx dx dt+
∑
k∈I

ˆ
Dk

ūk(x)Φk(x, 0) dx

=
∑
k∈I

ˆ ∞
0

ˆ
Dk

ukθε(x)ψ′(t) dt dx

+
1

ε

∑
k∈I

ˆ ∞
0

ˆ
Dk∩(−ε,ε)

sgn(k)fk(uk)ψ(t) dx dt

− 1

ε

∑
k∈I

ˆ
Dk∩(−ε,ε)

(ε− x)ūk(x, 0)ψ(0) dx

→ −
∑
k∈I

ˆ ∞
0

sgn(k)fk(uk)ψ(t) dt

as ε→ 0, which is equivalent to (2.5).

Definition 2.3 (Stationary Solution). A stationary solution of (2.1) is a weak
solution of (2.1) which is constant in time and is a strong solution on each edge
Dk. We see from (2.4) and (2.5) that the stationary solutions are precisely those
satisfying uk(x, t) ≡ ck ∈ R for x ∈ Dk, t > 0 and k ∈ I , and where ck satisfy the
Rankine–Hugoniot condition∑

k∈Iin

fk(ck) =
∑

k∈Iout

fk(ck). (2.7)

Thus, we can identify each stationary solution with a vector c = (ck)k∈I ∈ RN .

Remark 2.4. Note that if we only required stationary solutions to be weak solu-
tions on each edge Dk then they could exhibit arbitrarily many jump discontinuities.
More precisely, if f is not injective then a “stationary weak solution” could jump
arbitrarily often between values uk = ck,±, where f(ck,−) = f(ck,+).

2.2. Entropy conditions. Next, we formulate conditions that will single out a
unique weak solution.

Definition 2.5 (Kruzkov entropy pairs). The Kruzkov entropy pairs are the pairs
of functions ηc(u) = |u− c|, qkc (u) = sgn(u− c)

(
fk(u)− fk(c)

)
for c ∈ R.

The Kruzkov entropy pairs lead to a consistency condition on sets of stationary
solutions:

Definition 2.6. A subset G ⊂ RN consisting of stationary solutions of (2.1) is
mutually consistent if ∑

k∈Iin

qkck
(
c̃k
)
>

∑
k∈Iout

qkck
(
c̃k
)

(2.8)
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for every pair c, c̃ ∈ G , where qkc are the Kruzkov entropy flux functions. The set
G is maximal if for every c ∈ RN , the condition that (2.8) holds for every c̃ ∈ G
implies that also c ∈ G .

The set of stationary solutions G will determine what class of initial data we can
consider:

Definition 2.7. Let G ⊂ RN . We let L∞oco(G ) be the set of L∞-bounded data of
G ,

L∞oco(G ) =
{

u ∈ L∞(Ω;λ) : ∃ c,d ∈ G s.t. ck 6 uk(x) 6 dk ∀ (x, k) ∈ Ω.
}

(2.9)

Example 2.8. If Nin = Nout = 1 and fk(u) = f(u) = u2 then the stationary
solutions are all c ∈ R2 of the form c = (c, c) or c = (c,−c) for c ∈ R. Both
G1 = {(c, c) : c ∈ R} and G2 = {(c,−c) : c > 0} (as well as any subset of these)
are mutually consistent, as is G1 ∪ G2. Note that no point of the form (−c, c) for
c > 0 can be added to any of these sets and remain mutually consistent. Similarly,
no set containing both (−c, c) and (−d, d) for distinct c, d > 0 can be mutually
consistent. The set G1 stands out as the smallest closed set which is such that both
components span all of R, i.e. the projection onto either component equals R. It
is readily checked that L∞oco(G1) = L∞(Ω;λ), and that any strict subset of G1 will
yield a strictly smaller set of initial data. It is similarly straightforward to check
that G2 generates a very restrictive set of initial data:

L∞oco(G2) =
{
u ∈ L∞(Ω;λ) : u−1 ≡ c, u1 ≡ −c for some c > 0

}
.

Thus, G1 is the smallest mutually consistent set of stationary solutions that allows
for initial data in all of L∞(Ω;λ).

Definition 2.9 (Entropy Solution). Let G ⊂ RN be a mutually consistent set
of stationary solutions of (2.1) and let ū ∈ L∞(Ω;λ). We say that a function
u ∈ L∞(R+, L

∞(Ω;λ)) is an entropy solution of (2.1) with respect to G with initial
data ū if each uk is a Kruzkhov entropy solution on Dk for all k ∈ I (in the usual
sense), and if ∑

k∈I

ˆ ∞
0

ˆ
Dk

ηck(uk)ϕkt + qkck(uk)ϕkx dx dt

+
∑
k∈I

ˆ ∞
0

ηck(ūk(x))ϕk(x, 0) dx > 0

(2.10)

for every c ∈ G and every 0 6 ϕ ∈ C∞c
(
Ω× [0,∞)

)
satisfying ϕk(0, t) ≡ ϕ1(0, t) for

all k ∈ I .

Audusse and Perthame [4] considered an entropy condition similar to (2.10), but
in the context of spatially dependent, discontinuous flux functions.

We show first that entropy solutions are invariant in the set L∞oco from Definition
2.7.

Lemma 2.10. Let G ⊂ RN be a mutually consistent set of stationary solutions of
(2.1) and let u ∈ L∞

(
R+, L

∞(Ω;λ)
)

be an entropy solution w.r.t. G with initial
data ū ∈ L∞oco(G ). Then u(t) ∈ L∞oco(G ) for a.e. t > 0.
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Proof. Select c,d ∈ G such that c 6 ū 6 d (cf. (2.9)). Add inequality (2.10) and
equation (2.4) for both ck and uk to get∑

k∈I

ˆ ∞
0

ˆ
Dk

(
ck − uk

)
+
ϕkt +H

(
ck − uk

)(
fk(ck)− fk(uk)

)
ϕkx dx dt

+
∑
k∈I

ˆ ∞
0

(
ck − ūk(x)

)
+︸ ︷︷ ︸

= 0

ϕk(x, 0) dx > 0

(where ·+ = max(·, 0) and H = sgn+ is the Heaviside function). Replacing ϕ by a
sequence of approximations of the identity function on the set Ω× [0, T ] yields∑

k∈I

ˆ
Dk

(
ck − uk(x, T )

)
+
dx 6 0

for a.e. T > 0, whence u(T ) > c. It follows similarly that u(T ) 6 d, and hence,
u(T ) ∈ L∞oco(G ).

The above lemma enables us to show that entropy solutions have strong traces.

Lemma 2.11. Let G ⊂ RN be a mutually consistent set of stationary solutions
of (2.1) and let u ∈ L∞(R+, L

∞(Ω;λ)) be an entropy solution w.r.t. G with initial
data ū ∈ L∞oco(G ). Then the functions qk ◦ uk and fk ◦ uk admit strong traces on
{x = 0}, for any k ∈ I .

Proof. It follows from Lemma 2.10 that uk is a Kruzkhov entropy solution on Dk,
for any k ∈ I . We can therefore apply [25, Theorem 1.4] to obtain the desired
conclusion.

Proposition 2.12. Let G ⊂ RN be a set of stationary solutions of (2.1). Let u
be an entropy solution of (2.1) w.r.t. G such that qkck ◦ u

k(·, t) has a strong trace at
x = 0 for every k ∈ I and a.e. t > 0. Then∑

k∈Iin

qkck(uk)(0, t) >
∑

k∈Iout

qkck(uk)(0, t) for a.e. t > 0 (2.11)

for every c ∈ G .

Proof. We take a positive test function 0 6 ψ ∈ C∞c ((0,∞)). As in the proof of
Proposition 2.2 we define Φ(x, t) := θε(x, t)ψ(t) where θε is given by (2.6). Now we
insert Φ as test function into the entropy inequality (2.10) to get

0 6
∑
k∈I

ˆ ∞
0

ˆ
Dk

ηck(uk)θε(x)ψ′(t) dx dt

− 1

ε

∑
k∈I

( ˆ ∞
0

ˆ
Dk∩(−ε,ε)

sgn(k)qkck(uk)ψ(t) dx dt

+

ˆ
Dk

ηck(ūk(x))θε(x)ψ(t) dx

)
→ −

∑
k∈I

ˆ ∞
0

sgn(k)qkck(uk(0, t))ψ(t) dt

as ε→ 0, which shows the desired inequality.

Corollary 2.13. If G is maximal (cf. Definition 2.6), then the trace of any entropy
solution lies in G .
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3. Stability and uniqueness.

Theorem 3.1 (Entropy Solutions are L1 stable). Let G ⊂ RN be a mutually con-
sistent, maximal set of stationary solutions. Let u, v, be entropy solutions of (2.1)
w.r.t. G with initial data ū, v̄ ∈ L∞oco(G )∩L1(Ω;λ). Let fk be Lipschitz continuous
for all k ∈ I . Then∑

k∈I

∥∥uk(t)− vk(t)
∥∥
L1(Dk)

6
∑
k∈I

∥∥ūk − v̄k∥∥
L1(Dk)

for every t > 0. In particular, there exists at most one entropy solution for given
initial data.

Proof. From Lemma 2.10 it follows that u(t),v(t) ∈ L∞oco(G ) for a.e. t > 0. Let k ∈
Iin; the case k ∈ Iout will follow analogously. The first step is a standard doubling
of variables argument on each edge k ∈ Iin by selecting ϕk ∈ C∞c (Dk× [0,∞)) and
ϕl ≡ 0 for l 6= k. Note that this is the point in the argument where we need the
fluxes fk, k ∈ I to be Lipschitz continuous. The doubling of variables technique
on a single edge gives:ˆ

Dk

ˆ ∞
0

∣∣uk(x, t)− vk(x, t)
∣∣ϕt + qkv (u)ϕx dt dx

+

ˆ
Dk

∣∣ūk(x)− v̄k(x)
∣∣ϕ(x, 0) dx > 0.

(3.1)

Next, for general ϕk ∈ C∞c
(
Dk × [0,∞)

)
, we cut off the functions near x = 0 and

couple the terms (3.1) on each edge together by utilizing (2.11). For h > 0 we define

µh(x) :=


0 x ∈ (−∞,−2h)
1
h (x+ 2h) x ∈ [−2h,−h)

1 x ∈ [−h, 0]

and

Ψh(x) := 1− µh(x).

The derivative of Ψh reads

Ψ′h(x) =


0 x ∈ (−∞,−2h)

− 1
h x ∈ [−2h,−h)

0 x ∈ [−h, 0].

Define ϕk(x, t) := ξk(x, t)Ψh(x) for a function ξk ∈ C∞c
(
Dk × [0,∞)

)
. We insert ϕ

into equation (3.1) to getˆ
Dk

ˆ ∞
0

∣∣uk(x, t)− vk(x, t)
∣∣ξkt Ψh + qkvk(uk)ξkxΨh dt dx

+

ˆ
Dk

ˆ ∞
0

qkvk(uk)ξkΨ′h dt dx+

ˆ
Dk

∣∣ūk(x)− v̄k(x)
∣∣ξkΨh dx > 0.

Sending h ↓ 0 we getˆ
Dk

ˆ ∞
0

∣∣uk(x, t)− vk(x, t)
∣∣ξkt + qkvk(uk)ξkx dt dx+

ˆ
Dk

∣∣ūk(x)− v̄k(x)
∣∣ξk dx

+ lim
h↓0

ˆ −h
−2h

ˆ ∞
0

qkvk(uk)ξkΨ′h dt dx > 0.
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Since the traces of qk(uk) and qk(vk) exist, we get

− lim
h↓0

1

h

ˆ T

0

ˆ −h
−2h

qkvk(uk)ξk dx dt = −
ˆ T

0

qkvk−(uk)ξk(0, t) dt.

We therefore obtainˆ
Dk

ˆ ∞
0

∣∣uk(x, t)− vk(x, t)
∣∣ξt + qkvk(uk)ξx dt dx

+

ˆ
Dk

∣∣ūk(x)− v̄k(x)
∣∣ dx− ˆ T

0

qkvk(uk)ξ(0, t) dt > 0.

(3.2)

By an analogous argument we getˆ
Dk

ˆ ∞
0

∣∣uk(x, t)− vk(x, t)
∣∣ξt + qkvk(uk)ξx dt dx

+

ˆ
Dk

∣∣ūk(x)− v̄k(x)
∣∣ dx+

ˆ T

0

qkvk(uk)ξ(0, t) dt > 0

for k ∈ Iout. Fix s > 0, let r, κ > 0, and let αr : R− → R and βκ : R+ → R be
given by

αr(x) =


0 x ∈ (−∞,−r − 1]

x+ r + 1 x ∈ (−r − 1,−r)
1 x ∈ [−r, 0)

βκ(t) =


1 t ∈ [0, s]
1
κ (κ+ s− t) t ∈ (s, s+ κ)

0 t ∈ [s+ κ,∞).

Via a standard regularization argument one can check that ϕ(x, t) = αr(x)βκ(t) is
an admissible test function. We compute the partial derivatives of ϕ:

ϕt(x, t) =


0 t ∈ [0, s]

− 1
καr(x) t ∈ (s, s+ κ]

0 t ∈ (s+ κ,∞)

and

ϕx(x, t) =


0 x ∈ (−∞,−r − 1)

βκ(t) x ∈ (−r − 1,−r)
0 x ∈ (−r, 0).

We insert this into (3.2) to get

− 1

κ

ˆ s+κ

s

ˆ 0

−r−1

∣∣uk(x, t)− vk(x, t)
∣∣αr(x) dx dt

+

ˆ s+κ

0

ˆ −r
−r−1

qkvk(uk)βκ(t) dx dt+

ˆ 0

−r−1

∣∣ūk(x)− v̄k(x)
∣∣αr(x) dx

−
ˆ s+κ

0

qkvk(uk(0, t))βκ(t) dt > 0.

Letting κ→ 0 and r →∞, we get∥∥uk(x, t)− vk(x, t)
∥∥
L1(Dk)

6
∥∥ūk(x)− v̄k(x)

∥∥
L1(Dk)

−
ˆ s

0

qkvk(uk(0, t)) dt.
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An analogous inequality holds for k ∈ Iout. We sum over all edges to get∑
k∈I

∥∥uk(x, t)− vk(x, t)
∥∥
L1(Dk)

6
∑
k∈I

ˆ
Dk

∣∣ūk(x)− v̄k(x)
∣∣ dx+

ˆ s

0

∑
k∈I

sgn(k)qkvk(uk)︸ ︷︷ ︸
6 0 by (2.11) and Corollary 2.13

6
∑
k∈I

∥∥ūk(x)− v̄k(x)
∥∥
L1(Dk)

.

4. Numerical approximation. In this section we construct a finite volume nu-
merical approximation for (2.1) and prove stability and convergence properties of
the method. The numerical method is rather standard for hyperbolic conserva-
tion laws, but an important feature of the method is that the vertex is discretized
as a separate control volume. Although this control volume vanishes as the mesh
parameter ∆x is passed to zero, its presence will ensure that entropy is correctly
dissipated at the vertex, even in the limit ∆x → 0. As opposed to the method
presented in [1], where the problem is an implicit one on the vertex, our method is
completely explicit.

4.1. A finite volume method on networks. Let ∆t,∆x > 0 be given discretiza-
tion parameters. We define the index sets

D+
disc := N, D−disc := −N, Dk

disc := D
sgn(k)
disc , D0

disc := {0}.

For n ∈ N0 we discretize1 tn = n∆t, and for k ∈ I and i ∈ Z we let xi+1/2 =
(i+ 1/2)∆x, and partition the physical domain into cells

C k
i = Dk ∩

(
xi−1/2, xi+1/2

)
.

We define the mesh size at the vertex by ∆x0 :=
∑
k∈I |C k

0 | = N∆x/2, where |A|
denotes the Lebesgue measure of A ⊂ R. We make the finite volume approximation

uk,ni ≈ 1

∆x

ˆ
Ck

i

uk(x, tn) dx for i ∈ Dk
disc,

un0 ≈
1

∆x0

∑
k∈I

ˆ
Ck

0

uk(x, tn) dx.

Fix some i ∈ Dk
disc, let ϕk(x, t) = 1

∆t∆x1Ck
i

(x)1[tn, tn+1)(t) and ϕl ≡ 0 for l 6= k,

and (after an approximation procedure) insert these into (2.4). We then obtain the
numerical method

uk,n+1
i − uk,ni

∆t
+
F k,ni+1/2 − F

k,n
i−1/2

∆x
= 0 (4.1a)

where F k,ni+1/2 = F k
(
uk,ni , uk,ni+1

)
is an approximation of the mean flux through xi+1/2

over the time interval [tn, tn+1),

F k,ni+1/2 ≈
1

∆t

ˆ tn+1

tn
fk
(
uk(xi+1/2, t)

)
dt.

1In numerical experiments, the timestep ∆t is chosen dynamically at each step n in order to
comply with the CFL condition derived in Section 4. We use a uniform timestep for the sake of
simplicity only.



CONSERVATION LAWS ON NETWORKS 111

For the special cell i = 0 we let ϕk(x, t) = 1
∆t∆x0

1Ck
0

(x)1[tn, tn+1)(t) for k ∈ I to

obtain
un+1

0 − un0
∆t

+
1

∆x0

( ∑
k∈Iout

F k,n1/2 −
∑
k∈Iin

F k,n−1/2

)
= 0. (4.1b)

(This is opposed to the explicit method of Towers [29] where the vertex is modelled
as having zero width for any ∆x > 0.) We will use the notational convention that

uk,n0 ≡ un0 for all k ∈ I . (We postpone the definition of the initial data uk,0i until
Section 4.3.)

Given a numerically computed solution (uni )i,n, we define the piecewise constant
function

u∆t(x, k, t) = uk,ni for x ∈ C k
i , t ∈ [tn, tn+1). (4.2)

We remark that the integral of u∆t w.r.t. the measure λ (cf. (2.2)) can be writtenˆ
Ω

u∆t(·, t) dλ =
∑
k∈I

∑
i∈Dk

disc

uk,ni ∆x+ un0 ∆x0 (4.3)

for any t ∈ [tn, tn+1), and the total variation of u∆t (cf. (2.3)) can be written

TV(u∆t(·, t)) =
∑
k∈Iin

∑
i∈Dk

disc

∣∣uk,ni+1 − u
k,n
i

∣∣+
∑

k∈Iout

∑
i∈Dk

disc

∣∣uk,ni − uk,ni−1

∣∣
=
∑
k∈Iin

∑
i∈Dk

disc

∣∣uk,ni − uk,ni−1

∣∣+
∑

k∈Iout

∑
i∈Dk

disc

∣∣uk,ni+1 − u
k,n
i

∣∣
+
∑
k∈Iin

∣∣un0 − uk,n−1

∣∣+
∑

k∈Iout

∣∣un0 − uk,n1

∣∣.
(4.4)

Note also that a numerical method of the form (4.1) is conservative in the sense
that the total mass

∑
k∈I

´
Ω

u∆t dλ is independent of n:ˆ
Ω

u∆t(·, tn+1) dλ =
∑
k∈I

∑
i∈Dk

disc

uk,n+1
i ∆x+ un+1

0 ∆x0

=
∑
k∈I

∑
i∈Dk

disc

uk,ni ∆x−∆t
(
F k,ni+1/2 − F

k,n
i−1/2

)
+ un0 ∆x0

−∆t

( ∑
k∈Iout

F k1/2 −
∑
k∈Iin

F k−1/2

)
=
∑
k∈I

∑
i∈Dk

disc

uk,ni ∆x+ un0 ∆x0

=

ˆ
Ω

u∆t(·, tn) dλ.

As a shorthand for the scheme (4.1) we define the functions

Gk
(
uki−1, u

k
i , u

k
i+1

)
:= uki −

∆t

∆x

(
F k
(
uki , u

k
i+1

)
− F k

(
uki−1, u

k
i

))
(4.5a)

for k ∈ I and

G0
(
u−Nin
−1 , . . . , u−1

−1, u0, u
1
1, . . . , u

Nout
1

)
:= u0 −

∆t

∆x0

( ∑
k∈Iout

F k
(
u0, u

k
1

)
−
∑
k∈Iin

F k
(
uk−1, u0

))
,

(4.5b)
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enabling us to write (4.1) in the update form

uk,n+1
i = Gk

(
uk,ni−1, u

k,n
i , uk,ni+1

)
for i ∈ Dk

disc, k ∈ I

un+1
0 = G0

(
u−Nin,n
−1 , . . . , u−1,n

−1 , un0 , u
1,n
1 , . . . , uNout,n

1

)
.

(4.6)

As a shorthand for (4.6), we will sometimes use the notation

uk,n+1
i = Gk

(
uni−1,u

n
i ,u

n
i+1

)
for i ∈ Dk

disc, k ∈ I0, (4.6’)

where uni is the vector containing all numerical values at index i at time n.

Definition 4.1 (Monotone scheme). The difference scheme (4.6’) is monotone if

un 6 vn ⇒ un+1 6 vn+1,

where un 6 vn means that every component uk,ni of un is no greater than the
corresponding component of vn.

We state a straightforward CFL-type condition which ensures monotonicity of
the numerical scheme.

Proposition 4.2. Consider a consistent finite volume method (4.1), where F k is
nondecreasing in the first variable and nonincreasing in the second. Then the method
is monotone under the CFL condition

∆tmax
k,u,v

∣∣∣∂F k
∂u

(u, v)
∣∣∣ 6 ∆x/2, ∆tmax

k,u,v

∣∣∣∂F k
∂v

(u, v)
∣∣∣ 6 ∆x/2. (4.7)

Proof. We can calculate the derivatives to the update functions to get

∂Gk

∂uki−1

=
∆t

∆x

∂F ki−1/2

∂uki−1

,
∂Gk

∂uki+1

= −∆t

∆x

∂F ki+1/2

∂uki+1

∂Gk

∂uki
= 1− ∆t

∆x

(
∂F ki+1/2

∂uki
−
∂F ki−1/2

∂uki

)
,

for each k ∈ I , and

∂G0

∂uk−1

=
∆t

∆x0

∂F k−1/2

∂uk−1

for k ∈ Iin,

∂G0

∂uk1
= − ∆t

∆x0

∂F k1/2

∂uk1
for k ∈ Iout,

∂G0

∂u0
= 1− ∆t

∆x0

( ∑
k∈Iout

∂F k1/2

∂un0
−
∑
k∈Iin

∂F k−1/2

∂un0

)
on the vertex. We would like these derivatives to be non-negative. The monotonicity
of F k guarantees that the first, second, fourth and fifth expressions are non-negative.
Applying monotonicity of F k to the third and sixth terms, we get

∂Gk

∂uki
=

∆t

∆x

(
∆x

∆t
−
∣∣∣∂F ki+1/2

∂uki

∣∣∣− ∣∣∣∂F ki−1/2

∂uki

∣∣∣) > 0

(by (4.7)) and

∂G0

∂u0
=

∆t

∆x0

(
∆x0

∆t
−

∑
k∈Iout

∣∣∣∂F k1/2
∂un0

∣∣∣− ∑
k∈Iin

∣∣∣∂F k−1/2

∂un0

∣∣∣)
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(using ∆x0 = N∆x/2)

>
∆t

∆x0

(
N

∆x

2∆t
−Nout max

k,u,v

∣∣∣∂F k
∂u

(u, v)
∣∣∣−Nin max

k,u,v

∣∣∣∂F k
∂v

(u, v)
∣∣∣)

> 0

by (4.7).

Remark 4.3. As opposed to the explicit method that Towers proposes in [29],
where the CFL condition gets more restrictive as the number of roads grows, we
don’t face any issues with the time step with the allowable time step with a high
number of roads.

4.2. Discrete stationary solutions. In the same way that stationary solutions
are essential for the well-posedness of entropy solutions (cf. Section 3), they are
essential to the stability and convergence of numerical methods on networks. As-
serting that a numerical solution is both constant in time and on each edge yields
the following definition.

Definition 4.4 (Discrete Stationary Solution). Consider a consistent, conservative
numerical method (4.1). A discrete stationary solution for (4.1) is a vector

cdisc := (c−Nin , . . . , cNout) ∈ RN+1

satisfying the Rankine–Hugoniot condition∑
k∈Iin

fk(ck) =
∑

k∈Iout

fk(ck) (4.8)

as well as the conditions

F k(ck, c0) = fk(ck) for k ∈ Iin, (4.9a)

F k(c0, ck) = fk(ck) for k ∈ Iout. (4.9b)

In the remainder, sets of discrete stationary solutions will be denoted with a
superscript, G 0, to signal that they also include a value at the vertex i = 0.

Remark 4.5. Note that our definition of a discrete stationary solution is analogous
to [1, Definition 2.1]. As opposed to our definition, the authors of [1] only include
values on the edges. The value c0, which is called p in [1], is excluded from the
vectors of stationary solutions there.

Notation 4.6. We will sometimes index a discrete stationary solution as

ci =


(
c−Nin , . . . , c−1

)
i < 0

c0 i = 0(
c1, . . . , cNout

)
i > 0

(4.10a)

for i ∈ Z and, by extension,

cki =

{
ck i 6= 0

c0 i = 0.
(4.10b)

Using the notation (4.6’), it is readily checked that discrete stationary solutions are
precisely those that are constant on each edge and satisfy

ci = Gk(ci−1, ci, ci+1) ∀ i ∈ Dk
disc, k ∈ I0.
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Remark 4.7. The conditions (4.9) say that the numerical fluxes at the vertex
reduce to the upwind flux on the in edges and the downwind flux on the out edges.
This can be interpreted as information only flowing into the vertex, not out of it.
This is consistent with the interpretation of the vertex as a stationary shock.

Remark 4.8. Discrete stationary solutions c =
(
c−Nin , . . . , cNout

)
fulfil a discrete

version of the Rankine–Hugoniot type condition (2.7),∑
k∈Iin

F k
(
ck, c0

)
=

∑
k∈Iout

F k
(
c0, ck

)
.

Lemma 4.9. Consider a consistent, conservative numerical scheme (4.1). Let
c = (ck)k∈I be a stationary solution for (1.1) and let c0 ∈ R. Then the vector
cdisc = (c−Nin , . . . , c−1, c0, c1, . . . , cNout) ∈ RN+1 is a discrete stationary solution if
and only if

c0 ∈
⋂

k∈Iin

(Hk)−1({fk(ck)})
⋂ ⋂

k∈Iout

(Jk)−1({fk(ck)})

where

Hk(c) := F k(ck, c) for k ∈ Iin, Jk(c) := F k(c, ck) for k ∈ Iout.

Proof. We can rewrite conditions (4.9a) and (4.9b) as

(4.9b) ⇔ Hk(c0) = fk(ck) ⇔ c0 ∈ (Hk)−1({fk(ck)})
for k ∈ Iin, and

(4.9a) ⇔ Jk(c0) = fk(ck) ⇔ c0 ∈ (Jk)−1({fk(ck)})

for k ∈ Iout. Hence, if (4.9a), (4.9b) are satisfied then c0 must lie in all of the sets
on the right hand side, and hence in their intersection. Conversely, if c0 lies in the
intersection, then (4.9a), (4.9b) are satisfied.

4.3. A stability framework for general consistent, conservative, monotone
methods. We set out to prove an L∞ bound, L1 contractiveness and Lipschitz
continuity in time for solutions computed with a general consistent, conservative,
monotone finite volume method on a network. Our starting point will be a class of
discrete stationary solutions G 0

disc ⊂ RN+1 for a conservative finite volume method
(4.1). We take initial data ū ∈ L∞oco(G 0

disc) (cf. (2.9)), we let c ∈ G 0
disc be as specified

in (2.9), and consider the finite volume method (4.1) initialized by

uk,0i =
1

∆x

ˆ
Ck

i

ūk(x) dx, u0
0 = c0. (4.11)

(The value c0 is chosen for convenience, and any value in [c0, d0] will have the desired
effect.)

Lemma 4.10. Consider monotone numerical flux functions F k (k ∈ I ). Let c,d
be discrete stationary solutions satisfying ck 6 dl for all k, l ∈ I (cf. Definition 2.7).
Then c0, d0 can be modified such that c,d remain discrete stationary solutions and
such that c0 6 d0.

Proof. Define

Ik(ck) :=

{(
F k(ck, ·)

)−1({fk(ck)}
)

for k ∈ Iin(
F k(·, ck)

)−1({fk(ck)}
)

for k ∈ Iout.
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Since all F k are monotone, each Ik(ck) is a connected interval which contains ck,
and moreover, Lemma 4.9 says that c0 ∈

⋂
k∈I Ik(ck). This implies that [[c0, ck]] ⊂

Ik(ck), where [[a, b]] = [min(a, b), max(a, b)]. Since
⋂
k∈I [[c0, ck]] is nonempty, the

number

c̃0 := min

( ⋂
k∈I

[[c0, ck]]

)
exists and satisfies c̃0 6 maxk∈I ck. Appealing again to Lemma 4.9, c remains a
discrete stationary solution if c0 is replaced by c̃0. In a similar way we replace d0

by

d̃0 := max

( ⋂
k∈I

[[d0, dk]]

)
,

which satisfies d̃0 > mink∈I dk. By our hypothesis, it follows that c̃0 6 d̃0.

Proposition 4.11. Consider a consistent, conservative, monotone finite volume
method (4.1), (4.11) with a set of discrete stationary states G 0

disc. For any initial
data ū ∈ L∞oco(G 0

disc), the numerical solution is uniformly L∞ bounded.

Proof. Pick discrete stationary states c,d ∈ G 0
disc as in (2.9). It is clear that the

initial data defined in (4.11) satisfy ck 6 uk,0i 6 dk for all i ∈ Dk
disc and k ∈ I0. If

the same holds at some time step n ∈ N0 then (using the notation (4.6’), (4.10))

uk,n+1
i = Gk

(
uni−1,u

n
i ,u

n
i+1

)
> Gk

(
ci−1, ci, ci+1

)
= cki

for all i ∈ Dk
disc and k ∈ I0, and similarly, uk,n+1

i 6 dki .

Definition 4.12 (L1 contractive method). A numerical method (4.6’) is L1 con-
tractive if ∥∥u∆t(·, t)− v∆t(·, t)

∥∥
L1(Ω;λ)

6 ‖ū− v̄‖L1(Ω;λ)

for all t > 0, where u∆t and v∆t are the projection of the numerical solution
(cf. (4.2)) computed with initial data ū, v̄ ∈ L∞oco(G 0

disc) ∩ L1(Ω;λ), respectively.
(See (4.3) for the integral of u∆t, v∆t w.r.t. λ.)

We state the well known Crandall–Tartar lemma which we will use in the follow-
ing proof. Here and below, we use the notation a ∨ b = max(a, b).

Theorem 4.13 (Crandall–Tartar: [11, Proposition 1]). Let (Ω, λ) be a measure
space. Let C ⊂ L1(Ω;λ) have the property that f, g ∈ C implies f ∨ g ∈ C. Let
V : C → L1(Ω;λ) satisfy

´
Ω
V (f) dλ =

´
Ω
f dλ for f ∈ C. Then the following three

properties of V are equivalent:

(a) f, g ∈ C and f 6 g a.e. implies V (f) 6 V (g) a.e.,
(b)
´

Ω
(V (f)− V (g))+ 6

´
Ω

(f − g)+ for f, g ∈ C,

(c)
´

Ω

∣∣V (f)− V (g)
∣∣ 6 ´

Ω
|f − g| for f, g ∈ C.

We can now prove L1-contractivity of our method.

Theorem 4.14. Every conservative, consistent monotone method (4.1), (4.11) is
L1-contractive.

Proof. Let C = C∆x be the set of piecewise constant functions,

C∆x =
{

u ∈ L1 ∩ L∞(Ω;λ) : u(x) =
∑
k∈I0

∑
i∈Dk

disc

uki 1Ck
i

for uki ∈ R
}
.
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We define the operator V : C∆x → C∆x mapping a numerical solution to the next
time step,

V (u) :=
∑
k∈I

∑
i∈Dk

disc

1Ck
i

(
uki −

∆t

∆x

(
F k
(
uki , u

k
i+1

)
− F k

(
uki−1, u

k
i

)))
+
∑
k∈I

1Ck
0

(
u0

0 −
∆t

∆x0

( ∑
k∈Iout

F k(u0, u
k
1)−

∑
k∈Iin

F k(uk−1, u0)

))
.

By the definition (2.2) of the measure λ (cf. also (4.3)), we have
´

Ω
V (u) dλ =´

Ω
u dλ for all u ∈ C∆x. We apply the Crandall–Tartar lemma to conclude L1-

contractivity of the numerical solution operator V .

From L1-contractivity we get continuity in time as a corollary:

Corollary 4.15. Consider a consistent, conservative and monotone method (4.1).
Let u∆t be an approximate solution computed with this method and assume that all
numerical fluxes F k are Lipschitz continuous in both arguments. Then computed
solutions are uniformly L1 Lipschitz continuous in time, i.e.,∥∥u∆t(t

n+1)− u∆t(t
n)
∥∥
L1(Ω;λ)

6
∥∥u∆t(t

1)− u∆t(t
0)
∥∥
L1(Ω;λ)

6 ∆t
(
C TV(u0) + M̄

)
,

where the constants C and M̄ depend on the flux functions and on the initial data.

Proof. We compute∥∥u∆t(t
n+1)− u∆t(t

n)
∥∥
L1(Ω;λ)

=
∥∥V (u∆t(t

n))− V (u∆t(t
n−1))

∥∥
L1(Ω;λ)

(using Theorem 4.13(c))

6
∥∥u∆t(t

n)− u∆t(t
n−1)

∥∥
L1(Ω;λ)

6 . . . 6
∥∥u∆t(t

1)− u∆t(t
0)
∥∥
L1(Ω;λ)

= ∆x
∑
k∈I

∑
i∈Dk

disc

|uk,1i − u
0
i |+ ∆x0|uk,10 − u0

0|

= ∆t
∑
k∈I

∑
i∈Dk

disc

∣∣F k,0i+1/2 − F
k,0
i−1/2

∣∣+ ∆t

∣∣∣∣ ∑
k∈Iout

F k,01/2 −
∑
k∈Iin

F k,0−1/2

∣∣∣∣
= ∆xλ

∑
k∈I

∑
i∈Dk

disc

∣∣uk,0i − uk,0i−1

∣∣
+ ∆t

∣∣∣∣ ∑
k∈Iout

F k,01/2 − F
k,0
(
u0

0, u
0
0

)
−
∑
k∈Iin

F k,0−1/2 − F
k,0(u0

0, u
0
0)

+

=:fout(u
0
0)︷ ︸︸ ︷∑

k∈Iout

fk
(
u0

0

)
−

=:fin(u0
0)︷ ︸︸ ︷∑

k∈Iin

fk
(
u0

0

)∣∣∣∣
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6 ∆t
∑
k∈I

∑
i∈Dk

disc

Lk
(∣∣uk,0i − uk,0i−1

∣∣+
∣∣uk,0i+1 − u

k,0
i

∣∣)

+ ∆t

( ∑
k∈Iout

Lk
∣∣uk,01 − u0

0

∣∣+
∑
k∈Iin

Lk
∣∣u0

0 − u
k,0
−1

∣∣+

6M︷ ︸︸ ︷∣∣fout

(
u0

0

)
− fin

(
u0

0

)∣∣)
︸ ︷︷ ︸

=:M̄

6 ∆t(C TV(u0) + M̄),

where we collect all constants into the global constant C. We can bound
∣∣fout

(
u0

0

)
−

fin

(
u0

0

)∣∣ 6 M̄ with a constant M̄ ∈ R since fin, fout are continuous and u0
0 ∈

L∞.

5. Convergence of finite volume schemes. We are now in place to prove con-
vergence in the case where the flux functions fk are strictly monotone. We do this
by using the upwind method where the numerical flux functions are defined by

F k(u, v) =

{
fk(u) if fk is increasing,

fk(v) if fk is decreasing.

We shall show that the set of discrete approximations is compact in L∞
(
[0,∞);L1(Ω;

λ)
)
, and that any limit is an entropy solution. In particular, this convergence re-

sult establishes existence of an entropy solution. We show convergence to a weak
solution by proving a Lax–Wendroff type theorem:

Theorem 5.1 (Lax–Wendroff theorem). Fix T > 0. Assume that each flux func-
tion fk is locally Lipschitz continuous and strictly monotone. Let G 0

disc be a mu-
tually consistent class of discrete stationary solutions for the upwind method and
let u∆t be computed from the upwind method with initial data ū ∈ L∞oco(G 0

disc) ∩
L1(Ω;λ). Consider a subsequence

(
u∆t`

)
`∈N such that ∆t` → 0 and u∆t` → u in

L∞([0, T ];L1(Ω;λ)) as k →∞. Then the limit u is the unique entropy solution to
(2.1), that is, u satisfies (2.10).

Remark 5.2. The existence of a non-trivial mutually consistent germ G 0
disc for

monotone flux functions will be shown in 6.

Proof. We write ∆x and ∆t rather than ∆x` and ∆t`, and we shall show that
u satisfies the entropy condition (2.10) for every c ∈ G 0

disc. Choosing stationary
solutions c,d ∈ G 0

disc such that c 6 u∆t 6 d (cf. Proposition 4.11) in particular
shows that u is a weak solution.

Let c ∈ G 0
disc and consider the Crandall–Majda numerical entropy fluxes

Qk,ni+1/2 = F k
(
uk,ni ∨ cki , u

k,n
i+1 ∨ c

k
i

)
− F k

(
uk,ni ∧ ck, uk,ni+1 ∧ c

k
)

for i = 0, 1, . . . when k ∈ Iout, and for i = . . . ,−2,−1 when k ∈ Iin, and

Qn−1/2 =
∑
k∈Iin

Qk,n−1/2, Qn1/2 =
∑

k∈Iout

Qk,n1/2

(cf. Notation 4.6 for the definition of cki ). Recalling the definition (4.5) of the update
functions Gk, we see that

Gk
(
uk,ni−1 ∨ c

k, uk,ni ∨ ck, uk,ni+1 ∨ c
k
)
−Gk

(
uk,ni−1 ∧ c

k, uk,ni ∧ ck, uk,ni+1 ∧ c
k
)

=
∣∣uk,ni − ck

∣∣− ∆t

∆x

(
Qk,ni+1/2 −Q

k,n
i−1/2

)
,
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for k ∈ I and i ∈ Dk
disc. Hence,∣∣uk,n+1

i − ck
∣∣ = uk,n+1

i ∨ ck − uk,n+1
i ∧ ck

= Gk
(
uk,ni−1, u

k,n
i , uk,ni+1

)
∨ ck −Gk

(
uk,ni−1, u

k,n
i , uk,ni+1

)
∧ ck

6 Gk
(
uk,ni−1 ∨ c

k, uk,ni ∨ ck, uk,ni+1 ∨ c
k
)

−Gk
(
uk,ni−1 ∧ c

k, uk,ni ∧ ck, uk,ni+1 ∧ c
k
)

=
∣∣uk,ni − ck

∣∣− ∆t

∆x

(
Qk,ni+1/2 −Q

k,n
i−1/2

)
.

(5.1)

Similarly, we find that∣∣un+1
0 − c0

∣∣− ∣∣un0 − c0∣∣+
∆t

∆x0

(
Qn1/2 −Q

n
−1/2

)
6 0 (5.2)

We choose T = M∆t for a natural number M , multiply the above N+1 inequalities
with a test function ϕ and sum up to get

0 >
M∑
n=0

∑
k∈I

∑
i∈Dk

disc

ϕk,ni

((∣∣uk,n+1
i − ck

∣∣− ∣∣uk,ni − ck
∣∣)+

∆t

∆x

(
Qk,ni+1/2 −Q

k,n
i−1/2

))

+

M∑
n=0

ϕn0

(
N

2

(∣∣un+1
0 − c0

∣∣− ∣∣un0 − c0∣∣)+
∆t

∆x

( ∑
k∈Iout

Qk,n1/2 −
∑
k∈Iin

Qk,n−1/2

))
,

where ϕk,ni = ϕk(xi, t
n). After summation by parts we get

0 > −
M∑
n=1

∑
k∈I

∑
i∈Dk

disc

∣∣uk,ni − ck
∣∣(ϕk,ni − ϕk,n−1

i

)
−
∑
k∈I

∑
i∈Dk

disc

∣∣uk,0i − ck∣∣ϕk,0i
− ∆t

∆x

M∑
n=0

( ∑
k∈Iin

∑
i∈Dk

disc

Qk,ni−1/2

(
ϕk,ni − ϕk,ni−1

)
+

∑
k∈Iout

∑
i∈Dk

disc

Qk,ni+1/2

(
ϕk,ni+1 − ϕ

k,n
i

)
+
∑
k∈Iin

ϕk,n−1Q
k,n
−1/2 −

∑
k∈Iout

ϕk,n1 Qk,n1/2

)

− N

2

∣∣un0 − c0∣∣ϕ0
0 −

N

2

M∑
n=1

∣∣un0 − c0∣∣(ϕn0 − ϕn−1
0

)
+

∆t

∆x

M∑
n=0

( ∑
k∈Iout

Qk,n1/2 ϕ
n
0 −

∑
k∈Iin

Qk,n−1/2ϕ
n
0

)
.

After shifting the i index on the second line we get

0 > −∆t∆x

M∑
n=1

∑
k∈I

∑
i∈Dk

disc

∣∣uk,ni − ck
∣∣(ϕk,ni − ϕk,n−1

i

∆t

)
︸ ︷︷ ︸

=A1
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−∆x
∑
k∈I

∑
i∈Dk

disc

∣∣uk,0i − ck∣∣ϕk,0i︸ ︷︷ ︸
=A2

−∆t∆x

M∑
n=0

( ∑
k∈Iin

∑
i∈Dk

disc

Qk,ni+1/2

(
ϕk,ni+1 − ϕ

k,n
i

∆x

)

+
∑

k∈Iout

∑
i∈Dk

disc

Qk,ni−1/2

(
ϕk,ni − ϕk,ni−1

∆x

))
︸ ︷︷ ︸

=A3

−∆x
N

2

∣∣u0
0 − c0

∣∣ϕ0
0 −∆t∆x

N

2

M∑
n=1

∣∣un0 − c0∣∣(ϕn0 − ϕn−1
0

∆t

)
︸ ︷︷ ︸

=A4

.

Taking limits we get for ∆t,∆x→ 0

A1 →
∑
k∈I

ˆ ∞
0

ˆ
Dk

∣∣uk − ck∣∣ϕkt dx dt,
and for ∆x→ 0

A2 →
∑
k∈I

∣∣uk0 − ck∣∣(x)ϕk(x, 0) dx, A4 → 0.

Thus, we are left with A3. Since the scheme is the upwind method, we can write

A3 = ∆t∆x

M∑
n=0

( ∑
k∈Iin

∑
i∈Dk

disc

qkck
(
uk,ni

)(ϕk,ni+1 − ϕ
k,n
i

∆x

)

+
∑

k∈Iout

∑
i∈Dk

disc

qkck
(
uk,ni

)(ϕk,ni − ϕk,ni−1

∆x

))

→
∑
k∈I

ˆ T

0

ˆ
Dk

qkck
(
uk(x, t)

)
ϕx(x, t) dx dt

as ∆t,∆x→ 0, due to the a.e. pointwise convergence of u∆t to u.

Now we have everything in place to proof a compactness theorem.

Theorem 5.3 (Compactness and Convergence to a Weak Solution). Fix T > 0.
Assume that each flux function fk is locally Lipschitz continuous and strictly mono-
tone. Let G 0

disc be a set of discrete stationary states for the upwind method. Let u∆t

be computed from the upwind method with initial data ū ∈ L∞oco(G 0
disc) ∩ L1(Ω;λ),

and assume that TV(ū) < ∞. Then the numerical solution {u∆t}∆t>0 converges
in C([0, T ], L1

loc(Ω;λ)) to a weak solution u.

Proof. We first show convergence of the sequence of functions g∆t : Ω× [0, T ]→ R,

g∆t(x, k, t) := fk(uk∆t(x, t)).
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The sequence g∆t is uniformly L∞ bounded, by Proposition 4.11, and it is Lipschitz
continuous in time:ˆ

Ω

∣∣g∆t(t
n+1)− g∆t(t

n)
∣∣ dλ 6 Cf

ˆ
Ω

∣∣u∆t(t
n+1)− u∆t(t

n)
∣∣ dλ

6 Cf (C TV(ū) + M̄)∆t,

by Corollary 4.15. We can bound the total variation of g∆t by

TV(g∆t(·, t)) =
∑
k∈I

∑
i∈Dk

disc

∣∣fk(uk,ni )− fk(uk,ni−1)
∣∣

+
∑
k∈Iin

∣∣fk(un0 )− fk(uk,n−1 )
∣∣

6
∑
k∈I

∑
i∈Dk

disc

∣∣fk(uk,ni )− fk(uk,ni−1)
∣∣+N‖g∆t‖∞

=
∑
k∈I

∑
i∈Dk

disc

∣∣F k,ni+1/2 − F
k,n
i−1/2

∣∣+N‖g∆t‖∞

=
∆x

∆t

∑
k∈I

∑
i∈Dk

disc

∣∣uk,n+1
i − uk,ni

∣∣+N‖g∆t‖∞

6 ∆x(C TV(ū) + M̄) +N‖g∆t‖∞.

Applying Ascoli’s compactness theorem together with Helly’s theorem, we get the
existence of a subsequence ∆t` → 0 such that g∆t` → g in C([0, T ], L1

loc(Ω;λ)) for
some function g. The strict monotonicity of fk implies that

u∆t(x, k, t) = (fk)−1
(
g∆t(x, k, t)

)
,

and hence, also u∆t` converges in C([0, T ], L1
loc(Ω;λ)) to some function u. Theo-

rem 5.1 implies that u is the entropy solution; since this solution is unique (Theo-
rem 3.1), the entire sequence {u∆t}∆t>0 must converge to u.

6. Discrete stationary solutions for monotone flux functions. So far we
have shown that if a sufficiently large class of stationary and discrete stationary
solutions exists, then our equations on the network are well posed and the finite
volume numerical approximations converge to the entropy solution. In this section
we show that such classes exist in the case where either all fluxes fk are strictly
increasing or all are strictly decreasing. We also remark on the more general case.

6.1. Monotone flux functions. We henceforth assume that all fluxes are increas-
ing; one can attain analogous results for decreasing fluxes following the same ar-
guments. In the following we want to investigate the sets of discrete stationary
solutions implied by the upwind method.

We define

fin(u) :=
∑
k∈Iin

fk(u), fout(u) :=
∑

k∈Iout

fk(u) for u ∈ R.

It is clear that fin, fout are monotone by the monotonicity of their summand com-
ponents. In particular, the two functions are invertible.



CONSERVATION LAWS ON NETWORKS 121

For the upwind method the conditions (4.9a) and (4.9b) become

fk(ck) = fk(ck) for k ∈ Iin, (6.1a)

fk(c0) = fk(ck) for k ∈ Iout. (6.1b)

This is equivalent to

ck = ck for k ∈ Iin, (6.2a)

c0 = ck for k ∈ Iout, (6.2b)

due to the invertibility of the flux functions fk. It is obvious as well, that for two
different discrete stationary solutions c,d satisfying ck 6 dk for k ∈ I , we also
have c0 6 d0. Henceforth, we denote

G 0
disc :=

{
all discrete stationary states for the upwind method

}
and we let

Gdisc :=
{(
c−Nin , . . . , c−1, c1, . . . , cNout

)
| c ∈ G 0

disc)
}
.

Although it might be too difficult to find a full characterization of the set L∞oco(G )
of admissible initial data, we will be able to characterize large subsets of L∞oco(G ).
Let

Iin := f−1
in (Rin ∩Rout), Iout := f−1

out(Rin ∩Rout)

where

Rin := fin(R), Rout := fout(R).

By the continuity of fin, fout, the sets Iin, Iout are closed intervals.

Theorem 6.1. We have L ⊂ L∞oco(Gdisc), where

L :=
{

u ∈ L∞(Ω;λ) | uk(x) ∈ Iin ∀ k ∈ Iin, u
k(x) ∈ Iout ∀ k ∈ Iout

}
.

In particular, if fin, fout have the same range Rin, Rout, then L∞oco(Gdisc) = L∞(Ω;λ).

Proof. Let u ∈ L . Since u ∈ L∞(Ω;λ), and Iin, Iout are closed, we also have

cin := inf
x∈Dk

k∈Iin

uk(x) ∈ Iin, cin := sup
x∈Dk

k∈Iin

uk(x) ∈ Iin

and likewise for cout, cout. By continuity of fin, fout, there are din ∈ Iin and dout ∈
Iout satisfying din 6 cin and dout 6 cout so that fin(din) = fout(dout), that is, the
vector d :=

(
din, . . . , din, dout, . . . , dout

)
is a stationary solution. This stationary

solution clearly satisfies (6.2), whence d ∈ G 0
disc.

In a similar way one finds a stationary solution d :=
(
din, . . . , din, dout, . . . , dout

)
∈

G 0
disc which bounds u from above. Since now

din 6 uk(x) 6 din ∀ k ∈ Iin and dout 6 uk(x) 6 dout ∀ k ∈ Iout

we conclude that u ∈ L∞oco(Gdisc).

Proposition 6.2. Consider a conservation law on a network with strictly increasing
fluxes fk. Let G 0

disc denote the set of all discrete stationary solutions for the upwind
method. Then the set

Gdisc :=
{(
c−Nin , . . . , c−1, c1, . . . , cNout

)
| c ∈ G 0

disc

}
is a mutually consistent and maximal set of stationary solutions.
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Proof. Every c ∈ Gdisc is a stationary solution due to (4.8).
To prove mutual consistency of Gdisc we plug a discrete stationary solution d ∈

G 0
disc into (5.1) to get for n ∈ N,

Qk,n−1/2 > Qk,n−3/2 for k ∈ Iin and Qk,n3/2 > Qk,n1/2 for k ∈ Iout.

Since we are using the upwind scheme, this reduces to

qkck(dk) > qkc0(d0) for k ∈ Iin and qkc0(d0) > qkck(dk) for k ∈ Iout.

In the same manner, plugging d0 into (5.2) gives us∑
k∈Iin

Qk,n−1/2 >
∑

k∈Iout

Qk,n1/2 .

Combining these two observations, we get∑
k∈Iin

qkck(dk) >
∑
k∈Iin

qkc0(d0) >
∑

k∈Iout

qkc0(d0) >
∑

k∈Iout

qkck(dk).

As c,d were arbitrary, it follows that Gdisc is mutually consistent.
If for some vector d, the set Gdisc ∪ {d} is mutually consistent, then∑

k∈Iin

qkck
(
dk
)
>

∑
k∈Iout

qkck
(
dk
)
.

We choose ck = dk ∀ k ∈ Iin and c0 = (fout)
−1(
∑
k∈Iin

fk(ck)). Since all fk are

monotonically increasing, the entropy flux reduces to qkck(dk) =
∣∣fk(ck) − fk(dk)

∣∣
and thus,

0 >
∑

k∈Iout

∣∣fk(c0)− fk(dk)
∣∣,

which implies dk = c0 for k ∈ Iout, and thus, d ∈ Gdisc. In other words, Gdisc is
maximal.

6.2. General flux functions. Although the framework presented in this manu-
script is only applied to monotone flux functions, we remark here on the gener-
alization of our results to more general choices of fk. The two main ingredients
are

• compactness of the sequence of approximations (here achieved via a TV bound
on the (upwind) numerical flux);

• the existence of a maximal set of stationary states, and the consistency of the
approximations with respect to that set.

A TV bound on the numerical fluxes can be achieved in a more general setting, but
that does not easily translate to compactness of the approximation itself. This can
be achieved by a detour via the Temple functional [28]. The derivation of a maximal
set of stationary states requires a careful design of the numerical method. We
address both of these issues in the upcoming paper [13], where we prove convergence
of an Engquist–Osher-type finite volume method for more general flux functions.

7. Numerical examples. We show numerical experiments for some example cases
including results for linear and nonlinear as well as convex and concave fluxes.
In all experiments we use a CFL number of 1/2 – that is, ∆t is chosen so that
there is equality in (4.7). In all experiments we compute the experimental order of

convergence (EOC) as p ≈ log(ej+1/ej)

log(∆xj+1/∆xj)
on a series of successive grids with 2j
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cells, where ej denotes the L1 error on grid level j. The error is computed as the L1

difference to a high-resolution reference solution. All errors and EOC are displayed
in Table 1.

D1
out

D2
out

Dround

D−2
in

v

Figure 2. A network with a periodic edge.

Example 7.1 (Burgers’ equation with roundabout). In this example we include
a roundabout – an edge whose endpoints meet at the same vertex, as shown in
Figure 2. This case was not included in the theory but is interesting because it is
analogous to a periodic boundary condition. We also include an ingoing edge and
two outgoing edges, amounting to a total of two ingoing and three outgoing edges.
As initial data we choose constants on the roundabout and the outgoing edges and
two different constants on the independent ingoing edge. After a while the shock
in the initial data on the independent ingoing edge will reach the edge and create
new Riemann problems. We choose the initial data

ū−1(x) =

{
2 if 0 6 x < 0.5,√

2 if 0.5 6 x,
ū−2 = ū1 = ū2 = ū3 ≡ 1.

We take all edges to have length 1 and choose zero Neumann boundary data on the
outer boundaries. On the vertex we set u0

0 = 1. On the ingoing edge with index −1
we have a travelling shock wave

u−1(x, t) =

{
2 if 0 6 x < 1

2−
√

2
t

√
2 if 1

2−
√

2
t 6 x

which will hit the vertex at t∗ = 1 − 1√
2
. To compute the solution after t∗ we

compute the new vertex value c0 =
√

5/3 and therefore get the Riemann problem

uk(x, t∗) =

{√
5/3 if x = 0,

1 if 0 < x
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Figure 3. Initial state and state at t = 0.7 of a Burgers-type
equation with travelling shock wave which hits the vertex at time
t = 1− 1√

2
. Here, the graph includes a periodic edge.

for k = 1, 2, 3, which results in a travelling shock wave with speed s = 1√
5/3−1

. At

time t∗∗ :=
√

5/3− 1√
2

the travelling shock wave which originated on the roundabout

edge hits the vertex once again, resulting in a new set of Riemann problems on the
outgoing edge. This process will continue in a periodic fashion.

We compute up to time T = 0.5. A plot of the exact and approximate solution
to this example at two different times is shown in Figure 3. The accuracy and order
of convergence of the numerical approximation are shown in Table 1.

Example 7.2. We construct an example where we take the flux function from
the traffic flow example in [18], f(u) = 4u(1 − u), but allow for different fluxes on
different edges, fk(u) = αkf

(
u
αk

)
for αk > 0, and compute on a star shaped graph

with two ingoing edges and three outgoing edges like in Figure 1. The initial data is
chosen so that all fluxes are strictly increasing over the range of ū; thus, the fluxes
fk are in effect monotonously increasing functions. We choose constant solutions
on the two ingoing roads and constant initial data on the outgoing roads which are
chosen such that on one road a shock will develop, on one road the solution will
stay constant over time and on one road a rarefaction wave will develop.

Solving the conditions (4.8), (4.9) for c0 yields

c0 =
3±

√
9− 4

(
1
α1

+ 1
α2

+ 1
α3

)(
u−1 − 1

α−1
(u−1)2 + u−2 − 1

α−2
(u−2)2

)
2
(

1
α1

+ 1
α2

+ 1
α3

) .

For the incoming edges to have a monotonically increasing flux we impose u−i 6
1
2α−i, for i = 1, 2 and for outgoing edges c0 6 1

2 min{α1, α2, α3}. We choose
α−1 = α−2 = 1, α1 = α2 = 4 and α3 = 2 with initial data

ū−1 = ū−2 ≡ 0.5, ū1 ≡ 0, ū2 ≡ 1

2

(
3−
√

7
)
, ū3 ≡ 1.

This gives us c0 = 1
2 (3 −

√
7). On the outer boundary we choose zero Neumann

boundary conditions. For u3 we will get a shock

u3(x, t) =

{
1
2 (3−

√
7) if x < st,

0 if x > st,
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Figure 4. Initial state at t = 0 and state at t = 0.2 of a traffic flow
problem with an initial shock at the vertex developing a different
elementary wave on each outgoing edge.

with speed s =
(3−
√

7)(2− 3−
√

7
4 )−3

3−
√

7
2 −1

, and a rarefaction wave for u1 of the form

u1(x, t) =


3−
√

7
2 if x < 2(

√
7− 1)t,

1− x
4t if 2(

√
7− 1)t 6 x < 4t,

0 if 4t 6 x.

On edge 2 we get the constant solution u2 ≡ 1
2 (3−

√
7).

We compute up to time T = 0.2. A plot of the exact and approximate solution
at two different timepoints is shown in Figure 4. Accuracy and order of convergence
of the numerical approximation are shown in Table 1.

In addition to the examples described above we show errors and experimental
order of convergence (EOC) for several additional examples in Table 1.

Example 7.3 (EOC: Linear advection). We consider a linear advection equation
with two ingoing edges and three outgoing edges as in Figure 1 with initial data

ū−1(x, t) =

{
2 0 6 x < 0.8,

1 0.8 6 x,
ū−2 ≡ 1, ū1 = ū2 = ū3 ≡ 2

3
,

and Dirichlet boundary conditions adapted to the edge values. We initialize the
vertex node by u0

0 = 2
3 . We compute up to time T = 0.5.

Example 7.4 (EOC: Burgers’ equation with elementary waves). We choose ū−1 =

ū−2 ≡ 1 as initial data on the ingoing roads and ū1 ≡ 0, ū2 ≡
√

2/3 and ū3 ≡ 2
on the outgoing edges of a star shaped graph as in Figure 1. The conditions on
the numerical flux imply then 3(c0)2 = 2⇔ c0 =

√
3/2. Thus, we get the following

Riemann problems on the outgoing roads:

ū1(x) =

{√
2/3 x = 0,

0 x > 0,
ū2 =

{√
2/3 x = 0,√
2/3 x > 0,

ū3 =

{√
2/3 x = 0,

2 x > 0,

with zero Neumann boundary conditions at the outer edges. The solution to these
problems are a shock, a constant solution and a rarefaction wave, respectively. We
compute up to time T = 0.3.
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Example 7.5 (EOC: Burgers’ equation with travelling shock). We consider a
Burgers-type equation with two ingoing edges and three outgoing edges as in Fig-
ure 1 with initial data

ū−1(x) =

{
2 0 6 x < 0.8,

1 0.8 6 x,
ū−2 ≡ 1, ū1 = ū2 = ū3 ≡

√
2

3
,

with Dirichlet boundary conditions of the same value as the associated edge. On

the vertex node the initial condition is chosen as u0
0 =

√
2
3 . We compute up to

T = 0.5.

Example 7.3 Example 7.5 Example 7.4 Example 7.1 Example 7.2

Grid level L1 error EOC L1 error EOC L1 error EOC L1 error EOC L1 error EOC

3 0.10877 - 0.11630 - 0.14459 - 0.07087 - 0.09904 -

4 0.05496 0.98 0.07136 0.70 0.08016 0.85 0.0546 0.38 0.04913 1.01

5 0.03649 0.59 0.04372 0.71 0.04651 0.79 0.03117 0.81 0.02844 0.79

6 0.02629 0.47 0.02255 0.96 0.02711 0.78 0.01903 0.71 0.01627 0.81

7 0.01830 0.52 0.01360 0.73 0.01495 0.86 0.01115 0.77 0.00919 0.82

8 0.01255 0.54 0.00653 1.06 0.00925 0.69 0.00644 0.79 0.00527 0.80

9 0.00883 0.51 0.00325 1.01 0.00480 0.95 0.00330 0.96 0.00268 0.98

10 0.00625 0.50 0.00160 1.02 0.00295 0.70 0.00173 0.93 0.00150 0.84

11 0.00442 0.50 0.00086 0.90 0.00152 0.96 0.00085 1.03 0.00084 0.84

12 0.00312 0.50 0.00040 1.10 0.00081 0.91 0.00042 1.02 0.00047 0.84

Table 1. L1 errors and estimated orders of convergence (EOC)
for a selection of examples.

7.1. Comments on the experiments. Convergence order estimates for finite
volume methods for nonlinear scalar conservation laws are due to Kuznetsov [22]
for the continuous flux case and due to Badwaik, Ruf [5] for the case of monotone
fluxes with points of discontinuity. In both of those cases the analytically proven
convergence rate is at least

√
∆x. Our numerical experiments indicate the same

lower bound on the convergence rate for our numerical methods on graphs. Con-
sidering the fact that fin and fout from Section 6 are monotone it might be possible
to generalize the result of Badwaik and Ruf to networks.

8. Summary and outlook. In conclusion we have defined a framework for the
analysis and numerical approximation of conservation laws on networks. We ex-
tended the concepts well known from the conventional case such as weak solution,
entropy solution and monotone methods to make sense on a directed graph. We
defined a reasonable entropy condition under which we have shown stability and
uniqueness of an analytic solution. Existence is shown by convergence of a conser-
vative, consistent, monotone difference scheme. In an upcoming work [13] we want
to address convergence of a numerical method where the fluxes fk are not mono-
tone but concave, as is usually found in traffic flow models. This includes deriving
a sufficiently large set of stationary and discrete stationary solutions for this case.
Further, we want to extend our model to include boundary conditions and derive
a convergence order estimate for numerical approximations. As for future work, a
generalization to systems of conservation laws would be highly desirable. One could
also try to construct numerical schemes for equations incorporating diffusive fluxes
like it was done in [20] on the line. Generalized models would span more complex
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scenarios such as blood circulation [6] in a network of veins or a river delta by the
means of Euler equations and shallow water equations, respectively.
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