
In this paper, we study a rumor spreading model in which several types of ignorants exist with trust rate distributions $λ_i $, $≤ i≤ N$. We rigorously show the existence of a threshold on a momentum type initial quantity related to rumor outbreak occurrence regardless of the total initial population. We employ a steady state analysis to obtain the final size of the rumor. Using numerical simulations, we demonstrate the analytical result in which the threshold phenomenon exists for rumor size and discuss interaction between the ignorants of several types of trust rates.
Citation: Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi. SIR Rumor spreading model with trust rate distribution[J]. Networks and Heterogeneous Media, 2018, 13(3): 515-530. doi: 10.3934/nhm.2018023
[1] | Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi . SIR Rumor spreading model with trust rate distribution. Networks and Heterogeneous Media, 2018, 13(3): 515-530. doi: 10.3934/nhm.2018023 |
[2] | Sun-Ho Choi, Hyowon Seo . Rumor spreading dynamics with an online reservoir and its asymptotic stability. Networks and Heterogeneous Media, 2021, 16(4): 535-552. doi: 10.3934/nhm.2021016 |
[3] | Xiaoqian Gong, Benedetto Piccoli . A measure model for the spread of viral infections with mutations. Networks and Heterogeneous Media, 2022, 17(3): 427-442. doi: 10.3934/nhm.2022015 |
[4] | Don A. Jones, Hal L. Smith, Horst R. Thieme . Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327 |
[5] | Gary Bunting, Yihong Du, Krzysztof Krakowski . Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583 |
[6] | Xia Li, Chuntian Wang, Hao Li, Andrea L. Bertozzi . A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies. Networks and Heterogeneous Media, 2022, 17(3): 311-331. doi: 10.3934/nhm.2022009 |
[7] | Meng Zhao, Jiancheng Liu, Yindi Zhang . Influence of environmental pollution and bacterial hyper-infectivity on dynamics of a waterborne pathogen model with free boundaries. Networks and Heterogeneous Media, 2024, 19(3): 940-969. doi: 10.3934/nhm.2024042 |
[8] | Rossella Della Marca, Nadia Loy, Andrea Tosin . An SIR–like kinetic model tracking individuals' viral load. Networks and Heterogeneous Media, 2022, 17(3): 467-494. doi: 10.3934/nhm.2022017 |
[9] | Richard Carney, Monique Chyba, Taylor Klotz . Using hybrid automata to model mitigation of global disease spread via travel restriction. Networks and Heterogeneous Media, 2024, 19(1): 324-354. doi: 10.3934/nhm.2024015 |
[10] | A.C. Rocha, L.H.A. Monteiro . On the spread of charitable behavior in a social network: a model based on game theory. Networks and Heterogeneous Media, 2023, 18(2): 842-854. doi: 10.3934/nhm.2023036 |
In this paper, we study a rumor spreading model in which several types of ignorants exist with trust rate distributions $λ_i $, $≤ i≤ N$. We rigorously show the existence of a threshold on a momentum type initial quantity related to rumor outbreak occurrence regardless of the total initial population. We employ a steady state analysis to obtain the final size of the rumor. Using numerical simulations, we demonstrate the analytical result in which the threshold phenomenon exists for rumor size and discuss interaction between the ignorants of several types of trust rates.
Currently it is the digital era where there is a steady flood of information. Such information inundation makes a variety of mass media more important, for example, newspapers, broadcast, social network system media, and public speaking. Before developing mass media, rumors propagated by word of mouth and played a crucial role in communication between people or groups. This process can be understood as a kind of homogenization of information system and social interaction [1]. With the emergence of multimedia and social media, rumors have spread faster and have wide transmissions [5]. However, some harmful and powerful rumor outbreaks arise from such wide transmission via these media [10,14,18]. Moreover, their influence causes multiple effects for a variety of situations rather than the mono effect for localized situations [12].
As a benefit in return for the homogenization, personality is more heavily emphasized and the diversity of people has garnered much attention in our social community. In the microscopic viewpoint of rumor spreading, this variety of characteristics is important. Many researchers already have investigated that the degree of belief is important in rumor spreading [8,16]. From this perspective, we assume that there will be various groups that share the same trust rate. In this paper, we propose an SIR type rumor spreading model with given spreading rate distributions
Next we provide a brief historical review of the rumor spreading model. Starting the pioneering studies by Daley and Kendall [3,4], a lot of researchers have studied rumor spreading and tried to build mathematical models [11,17]. Zanette [23,24] numerically obtained the existence of a critical threshold for a rumor spreading model regarding small-world networks. In [13], the authors derived the mean-field equation of complex heterogeneous networks. For other topological settings, see [7,15]. Most mathematical models for rumor spreading are based on the epidemic model. In [27], the authors considered an SIR type rumor spreading model with forgetting mechanism. See also [6,28] for other models with forgetting mechanisms. In [26], the authors added a hibernator variable to the SIR type rumor spreading model. Similarly, in [20,22], the authors adapted several new variables to construct a more realistic model for the rumor spreading phenomena. In [25], the authors employed the probability that ignorants directly become stiflers when they are aware of a rumor. We refer to papers [2,9,29] for other rumor spreading models.
The paper is organized as follows. In Section 2, we present the trust distribution and its mechanism in the SIR type model. In Section 3, we derive a single equation for the rumor size
Notation: Throughout the paper, we use the following simplified notation:
$I(t) = (I_1(t), \ldots, I_N(t)), ~~~~ \mathring{I} = (\mathring{I}_{1}, \ldots, \mathring{I}_{N}), ~~~~\mathring{I}^n = (\mathring{I}_{1}^{n}, \ldots, \mathring{I}_{N}^{n}), ~~~~ n, N\in \mathbb{N}.$ |
Let
There are three groups of populations: ignorants (I), spreaders (S), and stiflers (R). At the first stage, ignorants contact a spreader, realize a rumor, and accept the hearsay. According to the acceptance with rate
$
˙I=−kλSI,˙S=kλSI−kS(σ1S+σ2R),˙R=kσS(S+R),
$
|
where
As in [25], we assume that spreaders lose their interest in rumors with probability
$
˙Ii=−kλiSIi, i=1,…,N,˙S=N∑i=1kλiSIi−kσS(S+R)−δS,˙R=kσS(S+R)+δS,
$
|
(1) |
subject to initial data
Throughout this paper, we assume that
(1)
(2) The spreading (trust) rate distribution
We will consider a family of initial data
$\mathring{T} = \Big(\sum\limits_{j = 1}^N\mathring{I}_{j}\Big)+\mathring{S}+\mathring{R}$ |
for a fixed total initial population
Next, we define the rumor size, a momentum type quantity of the initial data and rumor outbreak.
Definition 2.1. [19,25,26]For a solution
$ \phi(t) = \int_0^t S(\tau)d\tau. $ |
Definition 2.2. Let
$ M_1(\mathring{I}) = \sum\limits_{i = 1}^N\lambda_i \mathring{I}_i $ |
and total population with initial
$T(t) = \Big(\sum\limits_{i = 1}^NI_{i}(t)\Big)+S(t)+R(t).$ |
Definition 2.3. Let
$\phi^\infty(\mathring{I}, \mathring{S}): = \lim\limits_{t\to\infty}\phi(t).$ |
Definition 2.4. For a given initial data
$\mathring{I}^{n}\to \mathring{I},~~~~ \mathring{S}^{n}\to0 ~~~~ \mbox{as} ~~~~ n\to\infty$ |
and
$ \mathring{S}^n > 0,~~~~ \mathring{R}^n = 0~~~~ \mbox{for}~~n\in \mathbb{N}.$ |
We additionally assume that the total populations are the same:
$\mathring{T} = \Big(\sum\limits_{i = 1}^N\mathring{I}_{i}\Big)+\mathring{S}+\mathring{R} = \Big(\sum\limits_{i = 1}^N\mathring{I}_{i}^n\Big)+\mathring{S}^n+\mathring{R}^n = \mathring{T}^n.$ |
We say that a rumor outbreak occurs if the following limit exists
$\phi_e(\mathring{I}) = \lim\limits_{n\to \infty}\phi^\infty(\mathring{I}^n, \mathring{S}^n)$ |
and
Remark 1. (1) In [13,15,25], the authors define that the rumor outbreak occurs if
$\lim\limits_{\mathring{R}\to 0}R(\infty) > 0.$ |
This is essentially equivalent to Definition 2.4. We use
(2) The rumor spreading begins with one spreader. Therefore,
The following is the main theorem of this paper.
Theorem 2.5. Let
We assume that each
$\mathring{T} = \Big(\sum\limits_{k = 1}^N\mathring{I}_{k}^n\Big)+\mathring{S}^n = \sum\limits_{i = 1}^N\mathring{I}_i.$ |
Then, there exists the following limit of steady states:
$\phi_e = \phi_e(\mathring{I}) = \lim\limits_{\mathring{S}^n\to 0, \mathring{I}^n\to \mathring{I} }\phi^\infty(\mathring{I}^n, \mathring{S}^n), $ |
where
Furthermore, if
Remark 2. An equivalent condition of occurring a rumor outbreak is
$kM_1(\mathring{I}) > \delta.$ |
In this section, we derive a single equation for
Lemma 3.1. Let
$ I_i(t) = \mathring{I}_ie^{- k \lambda_i \phi(t)}, ~~~~i = 1, \ldots, N, $ | (2) |
where
Proof. From the first equation of system (1), we have
$ \frac{d}{dt}\log I_i(t) = - k \lambda_i S(t), ~~~~ i = 1, \ldots, N. $ |
Integrating the above relation gives
$ \log I_i(t) = \log \mathring{I}_i -\int_0^t k \lambda_i S(\tau)d\tau, ~~~~ i = 1, \ldots, N.$ |
For the population density of
$ I_i(t) = \mathring{I}_ie^{-\int_0^t k \lambda_i S(\tau)d\tau}, ~~~~ i = 1, \ldots, N.$ |
Clearly, we have
Lemma 3.2. Let
$ T(t) = \mathring{T}, ~~~~for ~~~~any~~ t > 0.$ | (3) |
Proof. Note that the summation of all equations in system (1) yields
$\Big(\sum\limits_{i = 1}^N\dot{I_i}\Big)+\dot{S}+\dot{R} = 0.$ |
Integrating the above equation leads to
$T(t) = \Big(\sum\limits_{i = 1}^NI_i(t)\Big)+S(t)+R(t) = \Big(\sum\limits_{i = 1}^N\mathring{I}_i\Big)+\mathring{S}+\mathring{R} = \mathring{T}. $ |
Remark 3. By the conservation property (3) in Lemma 3.2 and the formula in (2), we easily obtain the following formula for
$ S(t) = \mathring{T}-\sum\limits_{i = 1}^NI_i(t)-R(t) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)}-R(t). $ | (4) |
Lemma 3.3. Let
$ R(t) = R(\phi(t)) = \mathring{R}+ k \sigma \mathring{T} \phi(t) - k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } - k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) +\delta \phi(t) .$ |
Proof. The third equation in system (1) gives us that
$ R(t)-\mathring{R} = \int_0^t \dot{R}(\tau) d\tau = \int_0^t \Big[ k \sigma S(\tau)(S(\tau)+R(\tau))+\delta S(\tau)\Big]d\tau. $ |
From (4) and the definition of
$
R(t)−˚R=kσ∫t0S(τ)[S(τ)+R(τ)]dτ+δϕ(t)=kσ∫t0S(τ)(˚T−N∑i=1Ii(τ))dτ+δϕ(t)=kσ∫t0ϕ′(τ)(˚T−N∑i=1˚Iie−kλiϕ(τ))dτ+δϕ(t)=kσ˚T∫t0ϕ′(τ)dτ−∑λi≠0kσ∫t0ϕ′(τ)˚Iie−kλiϕ(τ)dτ−∑λi=0kσ∫t0ϕ′(τ)˚Iie−kλiϕ(τ)dτ+δϕ(t)=K1+K2+K3+K4.
$
|
We directly have
$K_1 = k \sigma \mathring{T} \phi(t) ~~~~\mbox{and}~~~~ K_4 = \delta \phi(t).$ |
For
$ K_2 = -\sum\limits_{\lambda_i\ne 0 } k \sigma \int_0^t \phi'(\tau)e^{- k \lambda_i \phi(\tau)}d\tau\\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \int_{\phi(0)}^{\phi(t)} e^{- k \lambda_i \eta}d\eta \\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \frac{e^{- k \lambda_i \phi(0)}-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } \\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i }. $ |
Similarly, we have
$K_3 = -\sum\limits_{\lambda_i = 0 } k \sigma \int_0^t \phi'(\tau)e^{- k \lambda_i \phi(\tau)}d\tau \\ = -\sum\limits_{\lambda_i = 0 } k \sigma \int_0^t \phi'(\tau)d\tau \\ = -\sum\limits_{\lambda_i = 0 } k \sigma (\phi(t)-\phi(0)) \\ = -\sum\limits_{\lambda_i = 0 } k \sigma \phi(t).$ |
Therefore, the above elementary calculations yield
$ R(t)-\mathring{R} = k \sigma \mathring{T} \phi(t) - k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } - k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) +\delta \phi(t).$ |
The formula (4) of
$ \frac{d\phi(t)}{dt} = S(t) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)}-R(t) .$ |
By the result in Lemma 3.3, we derive a single decoupled equation for
$ \frac{d\phi(t)}{dt} = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)} -\mathring{R}- k \sigma \mathring{T} \phi(t) \\ + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } + k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) -\delta \phi(t). $ |
For simplicity, we define
$
F(ϕ)=F(ϕ,˚I,˚S,˚R,˚T):=˚T−N∑i=1˚Iie−kλiϕ−˚R−kσ˚Tϕ+kσ∑λi≠0˚Ii1−e−kλiϕkλi+kσ∑λi=0˚Iiϕ(t)−δϕ.
$
|
(5) |
Then,
$ \dot{\phi}(t) = F(\phi(t)). $ | (6) |
In this section, we use the steady state analysis to obtain the threshold phenomena for asymptotic behavior of the solution to system (1). To obtain the asymptotic behavior of solutions to (6), we first consider a steady state
$ F(\phi) = 0, $ | (7) |
where
$ G(\phi) = G(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i } $ | (8) |
and
$ H(\phi) = H(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \Big(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \Big)\phi . $ | (9) |
Then, we divide
$ H(\phi) = G(\phi). $ |
Lemma 4.1. Let
$G(0) = \mathring{S}, ~~~~and~~~~ \lim\limits_{\phi\to \infty}G(\phi) < \infty, ~~~~if~~~ \mathring{R} = 0.$ |
Proof. By the definition of
For the next result, we take the limit such that
$ \lim\limits_{\phi\to \infty}G(\phi) = \lim\limits_{\phi\to \infty}\Big(\mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i }\Big)\\ = \lim\limits_{\phi\to \infty}\Big(\mathring{T}-\sum\limits_{\lambda_i\ne 0} \mathring{I}_ie^{- k \lambda_i \phi}-\sum\limits_{\lambda_i = 0} \mathring{I}_i -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i }\Big) \\ = \mathring{T}-\sum\limits_{\lambda_i = 0} \mathring{I}_i -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i }. $ |
Therefore, we have
$\displaystyle k \sigma \sum\limits_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i } < \infty.$ |
Therefore, we conclude that
Lemma 4.2. Assume that
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} \Big( k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \mathring{I}_i e^{- k \lambda_i \phi}\Big) > 0. $ |
Proof. Note that the derivative of
$ \frac{dG}{d\phi} = -\frac{d}{d\phi}\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}. $ |
We can calculate the first term in the above as
$ \frac{d}{d\phi}\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} = \frac{d}{d\phi}\sum\limits_{\lambda_i\ne0} \mathring{I}_ie^{- k \lambda_i \phi} +\frac{d}{d\phi}\sum\limits_{\lambda_i = 0} \mathring{I}_ie^{- k \lambda_i \phi}\\ = \frac{d}{d\phi}\sum\limits_{\lambda_i\ne0} \mathring{I}_ie^{- k \lambda_i \phi} +\frac{d}{d\phi}\sum\limits_{\lambda_i = 0} \mathring{I}_i \\ = -\sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi}. $ |
Thus, if at least one non-zero
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi} > 0. $ |
Lemma 4.3. Let
Proof. Note that
$\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i = \delta+ k \sigma \Big(\sum\limits_{i = 1}^N\mathring{I}_i+\mathring{S}+\mathring{R}\Big)- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\\ = \delta+ k \sigma \Big(\sum\limits_{\lambda_i\ne 0}\mathring{I}_i+\mathring{S}+\mathring{R}\Big).$ |
Therefore,
Proposition 1. Let
Then there is a final rumor size
$\phi^\infty(\mathring{I}, \mathring{S}): = \lim\limits_{t\to\infty}\phi(t), $ |
where
$F(\phi^\infty(\mathring{I}, \mathring{S})) = 0.$ |
Proof. This follows from an elementary result of ordinary differential equations. Note that for given initial data
$F(0) = G(0)-H(0) = \mathring{S} > 0, $ |
and
$\lim\limits_{\phi\to \infty}F(\phi) = G(\phi)-H(\phi) = -\infty.$ |
By the intermediate value theorem, there is at least one positive solution
For a fixed
Proposition 2. Let
The equation
Proof. We have, by Lemma 4.1 and 4.3,
$G(0) = \mathring{S} = 0, ~~~~ \lim\limits_{\phi\to \infty}G(\phi) < \infty$ |
and
$H(0) = 0, ~~~~ \lim\limits_{\phi\to \infty}H(\phi) = \infty.$ |
It follows that
$\lim\limits_{\phi\to \infty}F(\phi) = -\infty.$ | (10) |
Lemma 4.2 implies that the derivative of
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi} > 0. $ |
Moreover, if
$\frac{dH}{d\phi}(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i .$ |
Therefore,
$
dFdϕ=dGdϕ−dHdϕ=∑λi≠0kλi˚Iie−kλiϕ+kσ∑λi≠0˚Iie−kλiϕ−(δ+kσ˚T−kσ∑λi=0˚Ii).
$
|
(11) |
So,
$ \frac{dF}{d\phi}(0) = \frac{dG}{d\phi}(0)-\frac{dH}{d\phi}(0) = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_i + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_i -\delta = kM_1-\delta. $ |
This yields
$ kM_1 > \delta \Rightarrow \frac{dF}{d\phi}(0) > 0, $ | (12) |
and the continuity of
$F(\phi_\epsilon) > 0.$ |
Thus, the intermediate value theorem and (10) show that
In order to complete the proof of this proposition, it suffices to verify that the equation has a unique solution
We now assume that
$ \frac{dF}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_ie^{ -k \lambda_i \phi }\bigg) \\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i e^{- k \lambda_i \phi}-\delta- k \sigma \mathring{T} .$ |
Since we assume that
$ \frac{dF}{d\phi} \leq \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i e^{- k \lambda_i \phi}-\sum\limits_{i = 1}^N k \lambda_i \mathring{I}_i- k \sigma \sum\limits_{i = 1}^N \mathring{I}_i\\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_i(e^{- k \lambda_i \phi}-1) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i (e^{- k \lambda_i \phi}-1) .$ |
This implies that
$\frac{dF}{d\phi} < 0 ~~~~\mbox{ if}~~~~ \phi > 0, ~~~~\mbox{ and }~~~~ \frac{dF}{d\phi}\leq 0~~~~\mbox{ if} ~~~~ \phi = 0.$ |
The fact in (10) with
$F(\phi) < 0 ~~~~\mbox{for}~\phi > 0.$ |
Therefore, we complete the proof.
We are now ready to prove the main theorem.
The proof of the main theorem. Let
$\mathring{I}^n\to \mathring{I},~~~~ \mathring{S}^n\to 0.$ | (13) |
We denote
$F(\phi, \mathring{S}^n) = F(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})~~~~ \mbox{and}~~~~ F_\infty(\phi) = F(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}).$ |
First, assume that
$F_\infty(0) = 0 ~~~~\mbox{ and}~~~~ \frac{d}{d\phi}F_\infty(\phi)\bigg|_{\phi = 0} > 0.$ |
Note that (11) implies that
$ \frac{\partial F}{\partial \phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}^n_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}^n_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}^n_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}^n_ie^{ -k \lambda_i \phi }\bigg) \\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i e^{- k \lambda_i \phi}-\delta- k \sigma \mathring{T}\\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big)+\sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i \\ + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i e^{- k \lambda_i \phi}-\delta- k \sigma \Big(\Big(\sum\limits_{i = 1}^N\mathring{I}_{i}^n\Big)+\mathring{S}^n\Big) .$ |
Therefore,
$ \frac{\partial F}{\partial \phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i \Big(e^{- k \lambda_i \phi}-1\Big)\\- k \sigma \mathring{S}^n+ k M_1(\mathring{I}^n)-\delta. $ |
By (13), there is
$k M_1(\mathring{I}^n)-\delta > \frac{1}{2}(k M_1(\mathring{I})-\delta)$ |
and
$k \sigma \mathring{S}^n\leq \frac{1}{4}(k M_1(\mathring{I})-\delta).$ |
Since
$\bigg|\sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i \Big(e^{- k \lambda_i \phi}-1\Big)\bigg|\leq \frac{1}{4}(k M_1(\mathring{I})-\delta).$ |
Thus, there are constants
$ \frac{\partial F}{\partial\phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) > 0. $ | (14) |
In order to prove convergence, we consider differentiable functions
$I(1/n) = \mathring{I}^n, ~~~~S(1/n) = \mathring{S}^n, ~~~~R(1/n) = \mathring{R}^n, ~~~~ n\in\mathbb{N}, $ |
and
$\mathring{T} = \Big(\sum\limits_{i = 1}^N I_i(s)\Big)+S(s)+R(s).$ |
We denote
We now prove that
For
For the last part, we assume that
Let
$\lim\limits_{n\to \infty}F(\phi_{n_n}, \mathring{I}_{n_n}, \mathring{S}_{n_n}, \mathring{R}_{n_n}, \mathring{T}) = F(\phi_{n_\infty}, \mathring{I}, 0, 0, \mathring{T}).$ |
Therefore, by Proposition 2,
$\lim\limits_{n\to \infty}\phi_{n} = 0.$ |
In this section, we numerically provide the solutions to system (1) with respect to several
For the numerical simulations, we used the fourth-order Runge-Kutta method with the following parameters:
$ \lambda_1 = 1, ~~~~\lambda_2 = 2, ~~~~\lambda_3 = 3, ~~~~\sigma = 0.2, ~~~~ k = 10. $ |
We take sufficiently large initial data
$\mathring{I}_1 = \mathring{I}_2 = \mathring{I}_3 = 9999, ~~~~\mathring{S} = 3, ~~~~\mathring{R} = 0.$ |
To see the threshold phenomena for
Note that in Proposition 1, we rigorously obtained that the final size of the rumor
In Figure 2, we plotted the densities of the spreaders (S) and the stiflers (R) with respect to several
In Figure 3, we plotted
From our analytic results, we can expect that the threshold occurs when
In this paper, we consider the rumor spreading model with the trust rate distribution. The model consists of several ignorants with trust rates
[1] |
Problem solving in social interactions on the Internet: Rumor as social cognition. Social Psychology Quarterly (2004) 67: 33-49. ![]() |
[2] | G. Chen, H. Shen, T. Ye, G. Chen and N. Kerr, A kinetic model for the spread of rumor in emergencies, Discrete Dynamics in Nature and Society, 2013 (2013), Art. ID 605854, 8 pp. |
[3] |
D. J. Daley and D. G. Kendall, Epidemics and rumours,
Nature, 204 (1964), 1118. doi: 10.1038/2041118a0
![]() |
[4] |
Stochastic rumours. IMA Journal of Applied Mathematics (1965) 1: 42-55. ![]() |
[5] |
N. Fountoulakis, K. Panagiotou and T. Sauerwald, Ultra-fast rumor spreading in social networks, Proceedings of the Twenty-Third Annual ACM-SIAM symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2012, 1642–1660. doi: 10.1137/1.9781611973099.130
![]() |
[6] |
The effect of the forget-remember mechanism on spreading. European Physical Journal B (2008) 62: 247-255. ![]() |
[7] |
Stochastic epidemics and rumours on finite random networks. Physica A (2010) 389: 561-576. ![]() |
[8] | Who hears what from whom and with what effect:A study of rumor. Personality and Social Psychology Bulletin (1980) 6: 473-478. |
[9] |
Dynamical behavior of a rumor transmission model with Holling-type Ⅱ functional response in emergency event. Physica A (2016) 450: 228-240. ![]() |
[10] |
Analysis of commercial rumors from the perspective of marketing managers: Rumor prevalence, effects, and control tactics. Journal of Marketing Communications (2010) 16: 239-253. ![]() |
[11] | D. Maki and M. Thomson, Mathematical Models and Applications, Prentice-Hall, Englewood Cliffs, 1973. |
[12] |
M. McDonald, O. Suleman, S. Williams, S. Howison and N. F. Johnson, Impact of unexpected events, shocking news, and rumors on foreign exchange market dynamics,
Physical Review E, 77 (2008), 046110. doi: 10.1103/PhysRevE.77.046110
![]() |
[13] |
Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks,
Physical Review E, 69 (2004), 066130. doi: 10.1103/PhysRevE.69.066130
![]() |
[14] |
M. Nagao, K. Suto and A. Ohuchi, A media information analysis for implementing effective countermeasure against harmful rumor,
Journal of Physics, Conference Series, 221 (2010), 012004. doi: 10.1088/1742-6596/221/1/012004
![]() |
[15] |
Theory of rumour spreading in complex social networks. Physica A (2007) 374: 457-470. ![]() |
[16] |
Belief in rumor and likelihood of rumor transmission. Language & Communication (1986) 6: 189-194. ![]() |
[17] |
The proportion of population never hearing a rumour. Journal of Applied Probability (1985) 22: 443-446. ![]() |
[18] |
Lies, damn lies, and rumors: An analysis of collective efficacy, rumors, and fear in the wake of Katrina. Sociological Spectrum (2007) 27: 679-703. ![]() |
[19] | Rumor Spreading Model with Trust Mechanism in Complex Social Networks. Communications in Theoretical Physics (2013) 59: 510-516. |
[20] |
2SI2R rumor spreading model in homogeneous networks. Physica A (2014) 413: 153-161. ![]() |
[21] | Collective dynamics of small-world networks. Nature (1998) 393: 440-442. |
[22] |
SICR rumor spreading model in complex networks: Counterattack and self-resistance. Physica A (2014) 405: 159-170. ![]() |
[23] |
D. H. Zanette, Critical behavior of propagation on small-world networks,
Physical Review E, 64 (2001), 050901. doi: 10.1103/PhysRevE.64.050901
![]() |
[24] |
D. H. Zanette, Dynamics of rumor propagation on small-world networks,
Physical Review E, 65 (2002), 041908. doi: 10.1103/PhysRevE.65.041908
![]() |
[25] |
SIR rumor spreading model in the new media age. Physica A (2013) 392: 995-1003. ![]() |
[26] | SIHR rumor spreading model in social networks. Physica A (2012) 391: 2444-2453. |
[27] |
Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal. Physica A (2011) 390: 2619-2625. ![]() |
[28] |
A rumor spreading model with variable forgetting rate. Physica A (2013) 392: 6146-6154. ![]() |
[29] |
Complex dynamic behavior of a rumor propagation model with spatial-temporal diffusion terms. Information Sciences (2016) 349/350: 119-136. ![]() |
1. | Jiajun Xian, Dan Yang, Liming Pan, Ming Liu, Wei Wang, Containing rumors spreading on correlated multiplex networks, 2020, 2020, 1742-5468, 023402, 10.1088/1742-5468/ab6849 | |
2. | Sun-Ho Choi, Hyowon Seo, Minha Yoo, Phase transitions of the SIR Rumor spreading model with a variable trust rate, 2022, 27, 1531-3492, 1827, 10.3934/dcdsb.2021111 | |
3. | J. Franceschi, L. Pareschi, M. Zanella, From agent-based models to the macroscopic description of fake-news spread: the role of competence in data-driven applications, 2022, 3, 2662-2963, 10.1007/s42985-022-00194-z | |
4. | Yuan Xu, Renjie Mei, Yujie Yang, Zhengmin Kong, Modeling and Analysis of Rumor Spreading with Social Reinforcement Mechanism, 2019, 2019, 1687-9120, 1, 10.1155/2019/7241021 | |
5. | Haoming Guo, Xuefeng Yan, Juping Zhang, Modeling and simulation of rumor propagation and optimal control strategy based on social positive reinforcement, 2025, 140, 2190-5444, 10.1140/epjp/s13360-024-05953-y |