We describe the macroscopic behavior of evolutions by crystalline curvature of planar sets in a chessboard-like medium, modeled by a periodic forcing term. We show that the underlying microstructure may produce both pinning and confinement effects on the geometric motion.
Citation: Annalisa Malusa, Matteo Novaga. Crystalline evolutions in chessboard-like microstructures[J]. Networks and Heterogeneous Media, 2018, 13(3): 493-513. doi: 10.3934/nhm.2018022
[1] | Jinguo Zhang, Shuhai Zhu . On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups. Communications in Analysis and Mechanics, 2023, 15(2): 70-90. doi: 10.3934/cam.2023005 |
[2] | Xueqi Sun, Yongqiang Fu, Sihua Liang . Normalized solutions for pseudo-relativistic Schrödinger equations. Communications in Analysis and Mechanics, 2024, 16(1): 217-236. doi: 10.3934/cam.2024010 |
[3] | Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033 |
[4] | Lovelesh Sharma . Brezis Nirenberg type results for local non-local problems under mixed boundary conditions. Communications in Analysis and Mechanics, 2024, 16(4): 872-895. doi: 10.3934/cam.2024038 |
[5] | Leandro Tavares . Solutions for a class of problems driven by an anisotropic $ (p, q) $-Laplacian type operator. Communications in Analysis and Mechanics, 2023, 15(3): 533-550. doi: 10.3934/cam.2023026 |
[6] | Eleonora Amoroso, Angela Sciammetta, Patrick Winkert . Anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with superlinear nonlinearities. Communications in Analysis and Mechanics, 2024, 16(1): 1-23. doi: 10.3934/cam.2024001 |
[7] | Huiting He, Mohamed Ousbika, Zakaria El Allali, Jiabin Zuo . Non-trivial solutions for a partial discrete Dirichlet nonlinear problem with $ p $-Laplacian. Communications in Analysis and Mechanics, 2023, 15(4): 598-610. doi: 10.3934/cam.2023030 |
[8] | Velimir Jurdjevic . Time optimal problems on Lie groups and applications to quantum control. Communications in Analysis and Mechanics, 2024, 16(2): 345-387. doi: 10.3934/cam.2024017 |
[9] | Qi Li, Yuzhu Han, Bin Guo . A critical Kirchhoff problem with a logarithmic type perturbation in high dimension. Communications in Analysis and Mechanics, 2024, 16(3): 578-598. doi: 10.3934/cam.2024027 |
[10] | Jonas Schnitzer . No-go theorems for $ r $-matrices in symplectic geometry. Communications in Analysis and Mechanics, 2024, 16(3): 448-456. doi: 10.3934/cam.2024021 |
We describe the macroscopic behavior of evolutions by crystalline curvature of planar sets in a chessboard-like medium, modeled by a periodic forcing term. We show that the underlying microstructure may produce both pinning and confinement effects on the geometric motion.
A mapping $ f:U \to V $ is called additive if $ f $ satisfies the Cauchy functional equation
$ f(x+y)=f(x)+f(y) $
|
(1.1) |
for all $ x, y \in U $. It is easy to see that the additive function $ f(x) = a x $ is a solution of the functional equation (1.1) and every solution of the functional equation (1.1) is said to be an additive mapping. A mapping $ f:U \to V $ is called quadratic if $ f $ satisfies the quadratic functional equation
$ f(x+y)+f(x−y)=2f(x)+2f(y) $
|
(1.2) |
for all $ x, y \in U $. A mapping $ f:U \to V $ is quadratic if and only if there exist a symmetric biadditive mapping $ B:U^2 \to V $ such that $ f(x) = B(x, x) $ and this $ B $ is unique, refer (see [1,10]). It is easy to see that the quadratic function $ f(x) = a x^2 $ is a solution of the functional equation (1.2) and every solution of the functional equation (1.2) is said to be a quadratic mapping.
Mixed type functional equation is an advanced development in the field of functional equations. A single functional equation has more than one nature is known as mixed type functional equation. Further, in the development of mixed type functional equations, atmost only few functional equations have been obtained by many researchers (see [3,6,9,11,12,16,17,22,24]).
Let $ G $ be a group and $ H $ be a metric group with a metric $ d(., .) $. Given $ \epsilon > 0 $ does there exists a $ \delta > 0 $ such that if a function $ f:G \rightarrow H $ satisfies $ d(f(xy), f(x)f(y)) < \delta $ for all $ x, y \in G $, then is there exist a homomorphism $ a: G \rightarrow H $ with $ d(f(x), a(x)) < \epsilon $ for all $ x\in G $? This problem for the stability of functional equations was raised by Ulam [23] and answerd by Hyers [7]. Later, it was developed by Rassias [20], Rassias [18,21] and G${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over v} }}$uruta [5].
The probabilistic modular space was introduced by Nourouzi [14] in 2007. Later, it was developed by K. Nourouzi [4,15].
Definition 1.1. Let $ V $ be a real vector space. If $ \mu:V\to \Delta $ fulfills the following conditions
(ⅰ) $ \mu(v)(0) = 0 $,
(ⅱ) $ \mu(v)(t) = 1 $ for all $ t > 0 $, if and only if $ v = \gamma $ ($ \gamma $ is the null vector in $ V $),
(ⅲ) $ \mu(-v)(t) = \mu(v)(t) $,
(ⅳ) $ \mu(a u+b v)(r+t)\geq\mu(v)(r)\wedge\mu(v)(t) $
for all $ u, v\in V $, $ a, b, r, t\in \mathbb{R^{+}} $, $ a+b = 1 $, then a pair $ (V, \mu) $ is called a probabilistic modular space and $ (V, \mu) $ is $ b $-homogeneous if $ \rho(a v)(t) = \mu(v)(\frac{t}{|a|^b}) $ for all $ v\in V, t > 0 $, $ a\in \mathbb{R} \backslash \{0\} $. Here $ \Delta $ is $ g:\mathbb{R} \to \mathbb{R^+} $ the set of all nondecreasing functions with $ \inf_{t\in\mathbb{R}}g(t) = 0 $ and $ \sup_{t\in\mathbb{R}}g(t) = 1 $. Also, the function $ \min $ is denoted by $ \wedge $.
Example 1.2. Let $ V $ be a real vector space and $ \mu $ be a modular on $ X $. Then a pair $ (V, \mu) $ is a probabilistic modular space, where
$ \mu(v)(t) = \left\{ {tt+ρ(x),t>0,v∈V0,t≤0,v∈V. } \right. $
|
In 2002, Rassias [19] studied the Ulam stability of a mixed-type functional equation
$ g(3∑i=1xi)+3∑i=1g(xi)=∑1≤i≤j≤3g(xi+xj). $
|
Later, Nakmalachalasint [13] generalized the above functional equation and obtained an $ n $-variable mixed-type functional equation of the form
$ g(n∑i=1xi)+(n−2)n∑i=1g(xi)=∑1≤i≤j≤ng(xi+xj) $
|
for $ n > 2 $ and investigated its Ulam stability.
In 2005, Jun and Kim [8] introduced a generalized $ AQ $-functional equation of the form
$ g(x+ay)+ag(x−y)=g(x−ay)+ag(x+y) $
|
for $ a\neq 0, \pm 1 $.
In 2013, Zolfaghari et al. [25] investigated the Ulam stability of a mixed type functional equation in probabilistic modular spaces. In the same year, Cho et al. [2] introduced a fixed point method to prove the Ulam stability of $ AQC $-functional equations in $ \beta $-homogeneous probabilistic modular spaces.
Motivated from the notion of probabilistic modular spaces and by the mixed type functional equations, we introduce a new mixed type functional equation satisfied by the solution $ f(x) = x+x^2 $ of the form
$ n−1∑i=1,j=i+1(f(2xi+xj))+f(2xn+x1)−2[n−1∑i=1,j=i+1(f(xi+xj))+f(xn+x1)]=n∑i=1f(−xi), $
|
(1.3) |
for $ n\in \mathbb{N} $ and investigate its Ulam stability in probabilistic modular spaces.
This paper is organized as follows: In Section 1, we provide a necessary introduction of this paper. In Sections 2 and 3, we obtain the general solution of the functional equation (1.3) in even case and in odd case, respectively. In Sections 4 and 5, we investigate the Ulam stability of (1.3) in probabilistic modular space by using fixed point theory for even and odd cases, respectively and the conclusion is given in Section 6.
Let $ U $ and $ V $ be real vector spaces. In this section, we obtain the general solution of a mixed type functional equation (1.3) for even case of the form
$ n−1∑i=1,j=i+1(f(2xi+xj))+f(2xn+x1)−2[n−1∑i=1,j=i+1(f(xi+xj))+f(xn+x1)]=n∑i=1f(xi) $
|
(2.1) |
for $ n \in \mathbb{N} $.
Theorem 2.1. Let $ f:U \to V $ satisfy the functional equation (2.1). If $ f $ is an even mapping, then $ f $ is quadratic.
Proof. Assume that $ f: U \to V $ is even and satisfies the functional equation (2.1). Replacing $ (x_1, x_2, \dots, x_n) $ by $ (0, 0, \dots, 0) $ and by $ (x_1, 0, \dots, 0) $ in (2.1), we obtain $ f(0) = 0 $ and
$ f(2x1)=4f(x1) $
|
(2.2) |
for all $ x_1 \in U $, respectively. Again, replacing $ (x_1, x_2, x_3, \dots, x_n) $ by $ (x_1, x_1, 0, \dots, 0) $ in (2.1), we have
$ f(3x1)=9f(x1) $
|
(2.3) |
for all $ x_1 \in U $. Now, from (2.2) and (2.3), we get
$ f(n x_1) = n^2 f(x_1), $ |
for all $ x_1 \in U $. Replacing $ (x_1, x_2, x_3, x_4, \dots, x_n) $ by $ (x_1, x_2, x_2, 0, \dots, 0) $ in (2.1), we obtain
$ f(2x1+x2)+f(x1+2x2)=4f(x1+x2)+f(x1)+f(x2) $
|
(2.4) |
for all $ x_1, x_2 \in U $. Replacing $ (x_1, x_2, x_3, x_4, \dots, x_n) $ by $ (x_1, x_2, 0, 0, \dots, 0) $ in (2.1), we get
$ f(2x1+x2)+f(x2)=2f(x1+x2)+2f(x1) $
|
(2.5) |
for all $ x_1, x_2 \in U $. Replacing $ x_2 $ by $ -x_2 $ in (2.5), using the evenness of $ f $ and again adding the resultant to (2.5), we get
$ f(2x1+x2)+f(2x1−x2)+2f(x2)=2f(x1+x2)+2f(x1−x2)+4f(x1) $
|
(2.6) |
for all $ x_1, x_2 \in U $. Replacing $ (x_1, x_2) $ by $ (x_1+x_2, x_1-x_2) $ in (2.6), we get
$ f(3x1+x2)+f(x1+3x2)=4f(x1+x2)−2f(x1−x2)+8f(x1)+8f(x2) $
|
(2.7) |
for all $ x_1, x_2 \in U $. Letting $ (x_1, x_2) $ by $ (x_1, x_1+x_2) $ in (2.5), we get
$ f(3x1+x2)+f(x1+x2)=2f(2x1+x2)+2f(x1) $
|
(2.8) |
for all $ x_1, x_2 \in U $. Replacing $ x_1 $ by $ x_2 $ and $ x_2 $ by $ x_1 $ in (2.8), we have
$ f(x1+3x2)+f(x1+x2)=2f(x1+2x2)+2f(x2) $
|
(2.9) |
for all $ x_1, x_2 \in U $. Now, adding (2.8) and (2.9), we obtain
$ f(3x1+x2)+f(x1+3x2)+2f(x1+x2)=2f(2x1+x2)+2f(x1+2x2)+2f(x1)+2f(x2) $
|
(2.10) |
for all $ x_1, x_2 \in U $. Using (2.4), (2.7) and (2.10), we obtain (1.2). Hence the mapping $ f $ is quadratic.
Let $ U $ and $ V $ be real vector spaces. In this section, we obtain the general solution of a mixed type functional equation (1.3) for even case of the form
$ n−1∑i=1,j=i+1(f(2xi+xj))+f(2xn+x1)−2[n−1∑i=1,j=i+1(f(xi+xj))+f(xn+x1)]=−n∑i=1f(xi) $
|
(3.1) |
for $ n \in \mathbb{N} $.
Theorem 3.1. Let $ f:U \to V $ satisfy the functional equation (3.1). If $ f $ is an odd mapping, then $ f $ is additive.
Proof. Assume that $ f $ is odd and satisfies the functional equation (3.1). Replacing $ (x_1, x_2, \dots, x_n) $ by $ (0, 0, \dots, 0) $ and $ (x_1, 0, \dots, 0) $ in (3.1), we obtain $ f(0) = 0 $ and
$ f(2x1)=2f(x1) $
|
(3.2) |
for all $ x_1 \in U $, respectively. Again, replacing $ (x_1, x_2, x_3, \dots, x_n) $ by $ (x_1, x_1, 0, \dots, 0) $ in (3.1), we have
$ f(3x1)=9f(x1) $
|
(3.3) |
for all $ x_1 \in U $. Now, from (3.2) and (3.3), we get
$ f(n x_1) = n f(x_1) $ |
for all $ x_1 \in U $. Replacing $ (x_1, x_2, x_3, x_4, \dots, x_n) $ by $ (x_1, x_2, 0, 0, \cdots, 0) $ in (3.1), we get
$ f(2x1+x2)−2f(x1+x2)=−f(x2) $
|
(3.4) |
for all $ x_1, x_2 \in U $. Replacing $ x_2 $ by $ -x_2 $ in (3.4), using the oddness of $ g $ and again adding the resultant to (3.4), we get
$ f(2x1+x2)+f(2x1−x2)=2f(x1+x2)+2f(x1−x2) $
|
(3.5) |
for all $ x_1, x_2 \in U $. Replacing $ (x_1, x_2) $ by $ (x_1+x_2, x_1-x_2) $ in (3.5), we get
$ f(3x1+x2)+f(x1+3x2)=4f(x1)+4f(x2) $
|
(3.6) |
for all $ x_1, x_2 \in U $. Replacing $ x_1 $ by $ x_2 $ and $ x_2 $ by $ x_1 $ in (3.4), we have
$ f(2x1+x2)+f(x1+2x2)=4f(x1+x2)−f(x1)−f(x2) $
|
(3.7) |
for all $ x_1, x_2 \in U $. Replacing $ (x_1, x_2) $ by $ (x_1, x_1+x_2) $ in (3.4), we get
$ f(3x1+x2)−2f(2x1+x2)=−f(x1+x2) $
|
(3.8) |
for all $ x_1, x_2 \in U $. Replacing $ x_1 $ by $ x_2 $ and $ x_2 $ by $ x_1 $ in (3.8) and adding the resultant equation to (3.8), we obtain
$ f(3x1+x2)+f(x1+3x2)−2f(2x1+x2)−2f(x1+2x2)=−2f(x1+x2) $
|
(3.9) |
for all $ x_1, x_2 \in U $. Using (3.6), (3.7) and (3.9), we obtain (1.1). Hence the mapping $ f $ is additive.
In this section, we prove the Ulam stability of the $ n $-variablel mixed type functional equation (1.3) for even case in probabilistic modular spaces (PM-spaces) by using fixed point technique.
For a mapping $ f: M \to (V, \mu) $, consider
$ Se(x,y)=n−1∑i=1,j=i+1(f(2xi+xj))+f(2xn+x1)−2[n−1∑i=1,j=i+1(f(xi+xj))+f(xn+x1)]−n∑i=1f(xi) $
|
for $ n\in \mathbb{N} $.
Theorem 4.1. Let $ M $ be a linear space and $ (V, \mu) $ be a $ \mu $-complete $ b $-homogeneous $ PM $-space. Suppose that a mapping $ f: M \to (V, \mu) $ satisfies an inequality
$ μ(Se(x1,x2,…,xn))≥ρ(x1,x2,…,xn)(t) $
|
(4.1) |
for all $ x_1, x_2, \dots, x_n \in M $ and a given mapping $ \rho: M \times M \to \Delta $ such that
$ ρ(2ax,0,…,0)(22baNt)≥ρ(x,0,…,0)(t) $
|
(4.2) |
for all $ x\in M $ and
$ ρ(2amx1,2amx2,…,2amxn)(22bamt)=1 $
|
(4.3) |
for all $ x_1, x_2, \dots, x_n\in M $ and a constant $ 0 < N < \frac{1}{2^b}. $ Then there exists a unique quadratic mapping $ T:M\to (V, \mu) $ satisfying (2.1) and
$ μ(T(x)−f(x))(t22bNa−12(1−2bN))≥ρ(x,0,…,0)(t) $
|
(4.4) |
for all $ x \in M $.
Proof. Replacing $ (x_1, x_2, \dots, x_n) $ by $ (x, 0, \dots, 0) $ in (4.1), we obtain
$ μ(f(2x)−22f(x))(t)≥ρ(x,0,…,0)(t) $
|
(4.5) |
for all $ x \in M $. This implies
$ μ(f(2x)22−f(x))(t)=μ(f(2x)−22f(x))(22bt)≥ρ(x,0,…,0)(22bt) $
|
(4.6) |
for all $ x \in M $. Replacing $ x $ by $ 2^{-1}x $ in (4.6), we obtain
$ μ(f(2−1x)2−2−f(x))(t)=μ(f(x)22−f(2−1x))(t22b)≥ρ(2−1x,0,…,0)(22bN−1Nt22b)≥ρ(x,0,…,0)(22bN−1t). $
|
(4.7) |
From (4.6) and (4.7), we obtain
$ μ(f(2ax)22a−f(x))(t)≥Ψ(x)(t):=ρ(x,0,…,0)(22bNa−12t) $
|
(4.8) |
for all $ x\in M $.
Consider $ P: = \{f:M\to(U, \mu)|f(0) = 0\} $ and define $ \eta $ on $ P $ as follows:
$ η(f)=inf{l>0:μ(f(x))(lt)≥Ψ(x)(t),∀x∈M}. $
|
It is simple to prove that $ \eta $ is modular on $ N $ and indulges the $ \Delta_2 $-condition with $ 2^b = \kappa $ and Fatou property. Also, $ N $ is $ \eta $-complete (see [25]). Consider the mapping $ Q: P_\eta \to P_\eta $ defined by $ QT(x): = \frac{T(2^a x)}{2^{2a}} $ for all $ T\in P_\eta $.
Let $ f, j \in P_\eta $ and $ l > 0 $ be an arbitrary constant with $ \eta(f-j)\leq l. $ From the definition of $ \eta $, we get
$ μ(f(x)−j(x))(lt)≥Ψ(x)(t) $
|
for all $ x \in M $. This implies
$ μ(Qf(x)−Qj(x))(Nlt)=μ(2−2af(2ax)−2−2aj(2ax))(Nlt)=μ(f(2ax)−j(2ax))(22baNlt)≥Ψ(2ax)(22baNt)≥Ψ(x)(t) $
|
for all $ x \in M $. Hence $ \eta(Qf-Qj)\leq N \eta(f-j) $ for all $ f, j\in P_\eta $, which means that $ Q $ is an $ \eta $-strict contraction. Replacing $ x $ by $ 2^a x $ in (4.8), we have
$ μ(f(22ax)22a−f(2ax))(t)≥Ψ(2ax)(t) $
|
(4.9) |
for all $ x\in M $ and therefore
$ μ(2−2(2a)f(22ax)−2−2af(2ax))(Nt)=μ(2−2af(22ax)−f(2ax))(22baNt)≥Ψ(2ax)(22baNt)≥Ψ(x)(t) $
|
(4.10) |
for all $ x \in E $. Now
$ μ(f(22ax)22(2a)−f(x))(2b(Nt+t))≥μ(f(22ax)22(2a)−f(2ax)22a)(Nt)∧μ(f(2ax)22a−f(x))(t)≥Ψ(x)(t) $
|
(4.11) |
for all $ x \in M $. In (4.11), replacing $ x $ by $ 2^a x $ and $ 2^b (Nt+t) $ by $ 2^{2\beta a} 2^b(N^2 t+Nt) $, we obtain
$ μ(f(23ax)22(2a)−f(2ax))(22ba2b(N2t+Nt))≥Ψ(2ax)(22bjNt)≥Ψ(x)(t) $
|
(4.12) |
for all $ x \in M $. Therefore,
$ μ(f(23ax)23(2a)−f(2ax)22a)(2b(N2t+Nt))≥Ψ(x)(t) $
|
(4.13) |
for all $ x \in M $. This implies
$ μ(f(23ax)23(2a)−f(x))(2b(2b(N2t+Nt)+t))≥μ(f(23ax)23(2a)−f(2ax)22a)(2b(N2t+Nt))∧μ(f(2ax)22a−f(x))(t)≥Ψ(x)(t) $
|
(4.14) |
for all $ x\in M $. Generalizing the above inequality, we get
$ μ(f(2amx)22(am)−f(x))((2bN)m−1t+2bm−1∑i=1(2bN)i−1t)≥Ψ(x)(t) $
|
(4.15) |
for all $ x\in M $ and a positive integer $ m $. Hence we have
$ η(Qmf−f)≤(2bN)m−1+2bm−1∑i=1(2bN)i−1≤2bm∑i=1(2bN)i−1≤2b1−2bN. $
|
(4.16) |
Now, one can easily prove that $ \{Q^m(f)\} $ is $ \eta- $converges to $ T\in P_\eta $ (see [25]). Thus (4.16) becomes
$ η(T−f)≤2b1−2bN, $
|
(4.17) |
which implies
$ μ(T(x)−f(x))(2b1−2bNt)≥Ψ(x)(t)=ρ(x,0,…,0)(2b22bNa−12t) $
|
(4.18) |
for all $ x\in M $ and hence we have
$ μ(T(x)−f(x))(t22bNa−12(1−2bN))≥ρ(x,0,…,0)(t) $
|
(4.19) |
for all $ x\in M $ and hence the inequality (4.4) holds. One can easily prove the uniqueness of $ T $ (see [25]).
In this section, we prove the Ulam stability of the $ n $-variable mixed type functional equation (1.3) for odd case in probabilistic modular spaces (PM-spaces) by using fixed point technique.
For a mapping $ f: M \to (U, \mu) $, consider
$ So(x1,x2,…,xn)=n−1∑i=1,j=i+1(f(2xi+xj))+f(2xn+x1)−2[n−1∑i=1,j=i+1(f(xi+xj))+f(xn+x1)]+n∑i=1f(xi) $
|
for $ n\in \mathbb{N} $.
Theorem 5.1. Let $ M $ be a linear space and $ (V, \mu) $ be a $ \mu $-complete $ b $-homogeneous $ PM $-space. Suppose that a mapping $ f: M \to (V, \mu) $ satisfies an inequality
$ μ(So(x1,x2,…,xn))≥ρ(x1,x2,…,xn)(t) $
|
(5.1) |
for all $ x_1, x_2, \dots, x_n \in M $ and a given mapping $ \rho: M \times M \to \Delta $ such that
$ ρ(2ax,0,…,0)(2baNt)≥ρ(x,0,…,0)(t) $
|
(5.2) |
for all $ x\in M $ and
$ ρ(2amx1,2amx2,…,2amxn)(2bamt)=1 $
|
(5.3) |
for all $ x_1, x_2, \dots, x_n\in M $ and a constant $ 0 < N < \frac{1}{2^b}. $ Then there exists a unique additive mapping $ A:M\to (V, \mu) $ satisfying (3.1) and
$ μ(A(x)−f(x))(t2bNa−12(1−2bN))≥ρ(x,0,…,0)(t) $
|
(5.4) |
for all $ x \in M $.
Proof. Replacing $ (x_1, x_2, \dots, x_n) $ by $ (x, 0, \dots, 0) $ in (5.1), we obtain
$ μ(f(2x)−2f(x))(t)≥ρ(x,0,…,0)(t) $
|
(5.5) |
for all $ x \in M $. This implies
$ μ(f(2x)2−f(x))(t)=μ(f(2x)−2f(x))(2bt)≥ρ(x,0,…,0)(2bt) $
|
(5.6) |
for all $ x \in M $. Replacing $ x $ by $ 2^{-1}x $ in (5.6), we obtain
$ μ(f(2−1x)2−1−f(x))(t)=μ(f(x)2−f(2−1x))(t2b)≥ρ(2−1x,0,…,0)(2bN−1Nt2b)≥ρ(x,0,…,0)(2bN−1t). $
|
(5.7) |
From (5.6) and (5.7), we obtain
$ μ(f(2ax)2a−f(x))(t)≥Ψ(x)(t):=ρ(x,0,…,0)(2bNa−12t) $
|
(5.8) |
for all $ x\in M $.
Consider $ P: = \{f:M\to(U, \mu)|f(0) = 0\} $ and define $ \eta $ on $ P $ as follows:
$ η(f)=inf{l>0:μ(f(x))(lt)≥Ψ(x)(t),∀x∈M}. $
|
It is simple to prove that $ \eta $ is modular on $ N $ and indulges the $ \Delta_2 $-condition with $ 2^b = \kappa $ and Fatou property. Also, $ N $ is $ \eta $-complete (see [25]). Consider a mapping $ Q: P_\eta \to P_\eta $ defined by $ QA(x): = \frac{A(2^a x)}{2^{a}} $ for all $ A\in P_\eta $.
Let $ f, j \in P_\eta $ and $ l > 0 $ be an arbitrary constant with $ \eta(f-j)\leq l. $ From the definition of $ \eta $, we get
$ μ(f(x)−j(x))(lt)≥Ψ(x)(t) $
|
for all $ x \in M $. This implies
$ μ(Qf(x)−Qj(x))(Nlt)=μ(2−af(2ax)−2−aj(2ax))(Nlt)=μ(f(2ax)−j(2ax))(2baNlt)≥Ψ(2ax)(2baNt)≥Ψ(x)(t) $
|
for all $ x \in M $. Hence $ \eta(Qf-Qj)\leq N \eta(f-j) $ for all $ f, j\in P_\eta $, which means that $ Q $ is an $ \eta $-strict contraction. Replacing $ x $ by $ 2^a x $ in (5.8), we get
$ μ(f(22ax)2a−f(2ax))(t)≥Ψ(2ax)(t) $
|
(5.9) |
for all $ x\in M $ and thus
$ μ(2−2af(22ax)−2−af(2ax))(Nt)=μ(2−af(22ax)−f(2ax))(2baNt)≥Ψ(2ax)(2baNt)≥Ψ(x)(t), $
|
(5.10) |
for all $ x \in E $. Now
$ μ(f(22ax)22a−f(x))(2b(Nt+t))≥μ(f(22ax)22a−f(2ax)2a)(Nt)∧μ(f(2ax)2a−f(x))(t)≥Ψ(x)(t) $
|
(5.11) |
for all $ x \in M $. In (5.11), replacing $ x $ by $ 2^a x $ and $ 2^b (Nt+t) $ by $ 2^{b a} 2^b(N^2 t+Nt) $, we obtain
$ μ(f(23ax)22a−f(2ax))(2ba2b(N2t+Nt))≥Ψ(2ax)(2bjNt)≥Ψ(x)(t) $
|
(5.12) |
for all $ x \in M $. Therefore,
$ μ(f(23ax)23a−f(2ax)2a)(2b(N2t+Nt))≥Ψ(x)(t) $
|
(5.13) |
for all $ x \in M $. This implies
$ μ(f(23ax)23a−f(x))(2b(2b(N2t+Nt)+t))≥μ(f(23ax)23a−f(2ax)2a)(2b(N2t+Nt))∧μ(f(2ax)2a−f(x))(t)≥Ψ(x)(t) $
|
(5.14) |
for all $ x\in M $. Generalizing the above inequality, we have
$ μ(f(2amx)2am−f(x))((2bN)m−1t+2bm−1∑i=1(2bN)i−1t)≥Ψ(x)(t) $
|
(5.15) |
for all $ x\in M $ and a positive integer $ m $. Hence we have
$ η(Qmf−f)≤(2bN)m−1+2bm−1∑i=1(2bN)i−1≤2bm∑i=1(2bN)i−1≤2b1−2bN. $
|
(5.16) |
Now, one can easily prove that $ \{Q^m(f)\} $ is $ \eta $-convergent to $ A\in P_\eta $ (see [25]). Thus (4.16) becomes
$ η(A−f)≤2b1−2bN, $
|
(5.17) |
which leads
$ μ(A(x)−f(x))(2b1−2bNt)≥Ψ(x)(t)=ρ(x,0,…,0)(2b2bNa−12t) $
|
(5.18) |
for all $ x\in M $ and hence we have
$ μ(A(x)−f(x))(t2bNa−12(1−2bN))≥ρ(x,0,…,0)(t) $
|
(5.19) |
for all $ x\in M $ and hence the inequality (5.4) holds. One can easily prove the uniqueness of $ A $ (see [25]).
In this paper, we introduced a new $ n $-variable mixed type functional equation satisfied by the solution $ f(x) = ax+ bx^2 $. Mainly, we obtained its general solution and investigated its Ulam stability in $ PM $-spaces by using fixed point theory and we hope that this research work is a further improvement in the field of functional equations.
This work was supported by Incheon National University Research Grant 2020-2021.
The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.
The authors declare that they have no competing interests.
[1] |
Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Differential Geometry (1995) 42: 1-22. ![]() |
[2] |
Homogenization of fronts in highly heterogeneous media. SIAM J. Math. Anal. (2011) 43: 212-227. ![]() |
[3] | Approximation to driven motion by crystalline curvature in two dimensions. Adv. Math. Sci. and Appl. (2000) 10: 467-493. |
[4] |
Characterization of facet breaking for nonsmooth mean curvature flow in the convex case. Interfaces Free Bound. (2001) 3: 415-446. ![]() |
[5] |
On a crystalline variational problem, part Ⅰ: First variation and global $L^∞$ regularity. Arch. Rational Mech. Anal (2001) 57: 165-191. ![]() |
[6] |
On a crystalline variational problem, part Ⅱ: $BV$ regularity and structure of minimizers on facets. Arch. Rational Mech. Anal. (2001) 157: 193-217. ![]() |
[7] |
A. Braides,
$Γ$-convergence for Beginners, Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
![]() |
[8] |
A. Braides, Local Minimization, Variational Evolution and Γ–convergence, Lecture Notes in
Mathematics, Springer, Berlin, 2014. doi: 10.1007/978-3-319-01982-6
![]() |
[9] |
Crystalline Motion of Interfaces Between Patterns. J. Stat. Phys. (2016) 165: 274-319. ![]() |
[10] |
Motion and pinning of discrete interfaces. Arch. Ration. Mech. Anal. (2010) 195: 469-498. ![]() |
[11] |
A. Braides, A. Malusa and M. Novaga, Crystalline evolutions with rapidly oscillating forcing
terms, to appear on Ann. Scuola Norm. Sci. doi: 10.2422/2036-2145.201707_011
![]() |
[12] |
Motion of discrete interfaces in periodic media. Interfaces Free Bound. (2013) 15: 451-476. ![]() |
[13] |
Motion of discrete interfaces through mushy layers. J. Nonlinear Sci. (2016) 26: 1031-1053. ![]() |
[14] |
Homogenization of a semilinear heat equation. J. Éc. polytech. Math. (2017) 4: 633-660. ![]() |
[15] |
Curve shortening flow in heterogeneous media. Interfaces and Free Bound. (2011) 13: 485-505. ![]() |
[16] |
Existence and uniqueness for a crystalline mean curvature flow. Comm. Pure Appl. Math. (2017) 70: 1084-1114. ![]() |
[17] | A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flows, preprint, arXiv: 1702.03094. |
[18] |
Approximation of the anisotropic mean curvature flow. Math. Models Methods Appl. Sci. (2007) 17: 833-844. ![]() |
[19] |
Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis, and stability. IEEE Control Systems Magazine (2008) 28: 36-73. ![]() |
[20] |
A. F. Filippov,
Differential Equations with Discontinuous Righthand Sides, vol. 18 of Mathematics and Its Applications. Dordrecht, The Netherlands, Kluwer Academic Publishers, 1988. doi: 10.1007/978-94-015-7793-9
![]() |
[21] | Y. Giga, Surface Evolution Equations. A Level Set Approach, vol. 99 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[22] |
A comparison theorem for crystalline evolution in the plane. Quarterly of Applied Mathematics (1996) 54: 727-737. ![]() |
[23] |
Facet bending in the driven crystalline curvature flow in the plane. J. Geom. Anal. (2008) 18: 109-147. ![]() |
[24] |
Facet bending driven by the planar crystalline curvature with a generic nonuniform forcing term. J. Differential Equations (2009) 246: 2264-2303. ![]() |
[25] | M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1993. |
[26] |
Closed curves of prescribed curvature and a pinning effect. Netw. Heterog. Media (2011) 6: 77-88. ![]() |
[27] |
Crystalline variational problems. Bull. Amer. Math. Soc. (1978) 84: 568-588. ![]() |
[28] | Geometric Models of Crystal Growth. Acta Metall. Mater. (1992) 40: 1443-1474. |