In this paper we introduce a natural compactification of a left (right) invariant affine control system on a semi-simple Lie group $ G $ in which the control functions belong to the Lie algebra of a compact Lie subgroup $ K $ of $ G $ and we investigate conditions under which the time optimal solutions of this compactified system are "approximately" time optimal for the original system. The basic ideas go back to the papers of R.W. Brockett and his collaborators in their studies of time optimal transfer in quantum control ([
In the second part of the paper we applied our results to the quantum systems known as Icing $ n $-chains (introduced in [
Citation: Velimir Jurdjevic. Time optimal problems on Lie groups and applications to quantum control[J]. Communications in Analysis and Mechanics, 2024, 16(2): 345-387. doi: 10.3934/cam.2024017
In this paper we introduce a natural compactification of a left (right) invariant affine control system on a semi-simple Lie group $ G $ in which the control functions belong to the Lie algebra of a compact Lie subgroup $ K $ of $ G $ and we investigate conditions under which the time optimal solutions of this compactified system are "approximately" time optimal for the original system. The basic ideas go back to the papers of R.W. Brockett and his collaborators in their studies of time optimal transfer in quantum control ([
In the second part of the paper we applied our results to the quantum systems known as Icing $ n $-chains (introduced in [
[1] | R. Brockett, S. J. Glaser, N. Khaneja, Time optimal control in spin systems, Phys. Rev. A, 63 (2001), 032308. https://doi.org/10.1103/PhysRevA.63.032308 doi: 10.1103/PhysRevA.63.032308 |
[2] | N. Khaneja, S. J. Glazer, R. Brockett, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer, Phys. Rev. A, 65 (2002), 032301. https://doi.org/10.1103/PhysRevA.65.032301 doi: 10.1103/PhysRevA.65.032301 |
[3] | H. Yuan, Geometry, Optimal Control and Quantum Computing, Ph.D thesis, Harvard, 2006. |
[4] | B. Bonnard, T. Combot, L. Jassionnesse, Integrability methods in the time minimal coherence transfer for Ising chains of three spins, Discrete Contin. Dyn. Syst., 35 (2015), 4095–4114. https://doi.org/10.3934/dcds.2015.35.4095 doi: 10.3934/dcds.2015.35.4095 |
[5] | P. Eberlein, Geometry of nonpositively curved manifolds. Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, 1996. |
[6] | S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. |
[7] | V. Jurdjevic, Optimal Control and Geometry: Integrable systems, Cambridge University Press, Cambridge Studies in Advanced Mathematics, (2016), Cambridge, UK. https://doi.org/10.1017/CBO9781316286852 |
[8] | A. Agrachev, T. Chambrion, An estimation of the controllability time for single input time on compact Lie groups, ESAIM: Control, Optimization and Calculus of Variations, 12 (2006), 409–441. https://doi.org/10.1051/cocv:2006007 doi: 10.1051/cocv:2006007 |
[9] | J. P. Gauthier, F. Rossi, A universal gap for non-spin quantum control systems, Proc. Amer. Math. Soc., 149 (2021), 1203–1214. https://doi.org/10.1090/proc/15301 doi: 10.1090/proc/15301 |
[10] | F. Albertini, D. D'Alessandro, B. Sheller, Sub-Riemannian geodesics in $SU(n)/S(U(n-1)\times U(1))$ and Optimal Control of Three Level Quantum Systems, IEEE Trans. Automat. Contr., 65 (2020), 1176–1191. https://doi.org/10.1109/TAC.2019.2950559 doi: 10.1109/TAC.2019.2950559 |
[11] | V. Jurdjevic, Geometric Control Theory, Cambridge University Press, Cambridge Studies in Advanced Mathematics, New York, 1987. https://doi.org/10.1017/CBO9780511530036 |
[12] | A. A. Kirillov, Lectures on the orbit method., Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/gsm/064 |
[13] | R. Montgomery Isoholonomic Problems and Some Applications, Commun. Math. Phys, 128 (1990), 565–592. https://doi.org/10.1007/BF02096874 |
[14] | V. Jurdjevic, H. J. Sussmann, Control systems on Lie groups, Jour. Diff. Equations, 12 (1972), 313–329. https://doi.org/10.1016/0022-0396(72)90035-6 doi: 10.1016/0022-0396(72)90035-6 |
[15] | F. Wellstood, Notes about Bloch sphere, Lecture notes, 2016, University of Maryland. |
[16] | N. Khaneja, S. J. Glaser, Efficient transfer of coherence through Ising spin chains, Phys. Rev. A, 66 (2002), 060301. https://doi.org/10.1103/PhysRevA.66.060301 doi: 10.1103/PhysRevA.66.060301 |
[17] | H. Yuan, S. J. Glaser, N. Khaneja, Geodesics for efficient creation and propagation of order along Ising spin chains, Phys. Rev. A, 76 (2007), 012316. https://doi.org/10.1103/PhysRevA.76.012316 doi: 10.1103/PhysRevA.76.012316 |
[18] | U. Boscain, T. Chambrion, J. P. Gauthier, On the K+P problem for a three-level quantum system: optimality implies resonance, J. Dynam. Control Systems, 8 (2002), 547–572. https://doi.org/10.1023/A:1020767419671 doi: 10.1023/A:1020767419671 |
[19] | H. Yuan, R. Zeier, N. Khaneja, Elliptic functions and efficient control of Ising spin chains with unequal couplings, Phys. Rev. A, 77 (2008), 032340. https://doi.org/10.1103/PhysRevA.77.032340 doi: 10.1103/PhysRevA.77.032340 |
[20] | R. Appell, E. Lacour Principes de la théorie des fonctions elliptiques, Gauthier Villars (1922). |