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Abstract. In this paper, we study a rumor spreading model in which several

types of ignorants exist with trust rate distributions λi, 1 ≤ i ≤ N . We rigor-

ously show the existence of a threshold on a momentum type initial quantity
related to rumor outbreak occurrence regardless of the total initial population.

We employ a steady state analysis to obtain the final size of the rumor. Us-
ing numerical simulations, we demonstrate the analytical result in which the

threshold phenomenon exists for rumor size and discuss interaction between

the ignorants of several types of trust rates.

1. Introduction. Currently it is the digital era where there is a steady flood of
information. Such information inundation makes a variety of mass media more
important, for example, newspapers, broadcast, social network system media, and
public speaking. Before developing mass media, rumors propagated by word of
mouth and played a crucial role in communication between people or groups. This
process can be understood as a kind of homogenization of information system and
social interaction [1]. With the emergence of multimedia and social media, rumors
have spread faster and have wide transmissions [5]. However, some harmful and
powerful rumor outbreaks arise from such wide transmission via these media [10,
14, 18]. Moreover, their influence causes multiple effects for a variety of situations
rather than the mono effect for localized situations [12].

As a benefit in return for the homogenization, personality is more heavily em-
phasized and the diversity of people has garnered much attention in our social
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community. In the microscopic viewpoint of rumor spreading, this variety of char-
acteristics is important. Many researchers already have investigated that the degree
of belief is important in rumor spreading [8, 16]. From this perspective, we assume
that there will be various groups that share the same trust rate. In this paper, we
propose an SIR type rumor spreading model with given spreading rate distributions
λi, 1 ≤ i ≤ N . Each spreading rate distribution λi represents a different character
of several classes of groups. With the distribution λi, we present a sufficient con-
dition for the rumor outbreak. To obtain a rumor outbreak, we need a sufficiently
large initial quantity that represents the momentum of rumor spreading. We also
provide numerical simulations to verify our analysis with several combinations of
different parameters. We notice that the authors in [19] studied an SIR type rumor
spreading model with a reputation mechanism and considered a probability that
represents the reputation of the opinion, where reputation is related to the trust
rate. They used a single ignorant SIR model. On the other hand, we consider a
model with several classes of ignorants and trust rate distributions λi, 1 ≤ i ≤ N .

Next we provide a brief historical review of the rumor spreading model. Starting
the pioneering studies by Daley and Kendall [3, 4], a lot of researchers have studied
rumor spreading and tried to build mathematical models [11, 17]. Zanette [23, 24]
numerically obtained the existence of a critical threshold for a rumor spreading
model regarding small-world networks. In [13], the authors derived the mean-field
equation of complex heterogeneous networks. For other topological settings, see
[7, 15]. Most mathematical models for rumor spreading are based on the epidemic
model. In [27], the authors considered an SIR type rumor spreading model with
forgetting mechanism. See also [6, 28] for other models with forgetting mechanisms.
In [26], the authors added a hibernator variable to the SIR type rumor spreading
model. Similarly, in [20, 22], the authors adapted several new variables to construct
a more realistic model for the rumor spreading phenomena. In [25], the authors
employed the probability that ignorants directly become stiflers when they are aware
of a rumor. We refer to papers [2, 9, 29] for other rumor spreading models.

The paper is organized as follows. In Section 2, we present the trust distribution
and its mechanism in the SIR type model. In Section 3, we derive a single equation
for the rumor size φ. In Section 4, we provide proof of the main theorem. In Section
5, we demonstrate our results by numerical simulations. Finally, we summarize our
results in Section 6.
Notation: Throughout the paper, we use the following simplified notation:

I(t) = (I1(t), . . . , IN (t)), I̊ = (I̊1, . . . , I̊N ), I̊n = (I̊n1 , . . . , I̊
n
N ), n,N ∈ N.

2. Spreading rate distribution model. Let V and E be sets of vertices and
edges, respectively. Representing the individuals and contacts as the vertices and
edges, a social network leads to an undirected graph G = (V,E). A general social
network is close to a small-world network [21]. In [13], the authors derived the
mean-field rate equation based on the Poisson distribution of small-world network.
As in [13], we consider a rumor spreading model based on the SIR model of a
homogeneous network.

There are three groups of populations: ignorants (I), spreaders (S), and stiflers
(R). At the first stage, ignorants contact a spreader, realize a rumor, and accept the
hearsay. According to the acceptance with rate λ, some of them become spreaders
and then spread the rumor to other ignorants. However, as spreaders lose interest
in spreading the rumor, they become stiflers. Based on this mechanism, the SIR
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rumor spreading model [3, 4] is given by

İ = −kλSI,

Ṡ = kλSI − kS(σ1S + σ2R),

Ṙ = kσS(S +R),

where k is the average degree of the network, λ is the spreading rate of the system, σ1

is the contact rate between spreaders, and σ2 is the contact rate between spreaders
and stiflers.

As in [25], we assume that spreaders lose their interest in rumors with probability
δ and become stiflers. Moreover, stiflers interact with spreaders to create other
stiflers from other spreaders. Spreaders also have a negative effect on other spreaders
because they consider the rumor to be outdated if the spreader meets with other
spreaders frequently. For simplicity, we assume that the contact rates σ1 and σ2

are the same, say σ = σ1 = σ2. As mentioned before, we consider several groups of
ignorants with different spreading rates λi, i = 1, . . . , N , motivated by [8, 16]. The
mean-field equation is then given by

İi = −kλiSIi, i = 1, . . . , N,

Ṡ =

N∑
i=1

kλiSIi − kσS(S +R)− δS,

Ṙ = kσS(S +R) + δS,

(1)

subject to initial data Ii(0) = I̊i, i = 1, . . . , N, S(0) = S̊, R(0) = R̊, where Ii
is the population density of the ith group of ignorants with spreading (trust) rate
λi. S and R are the density of spreaders and stiflers, respectively. Moreover, σ
is the contact rate between spreaders and stiflers, and δ denotes the decay rate of
spreaders to stiflers.

Throughout this paper, we assume that

(1) k, σ and δ are fixed positive constants.
(2) The spreading (trust) rate distribution λi is nonnegative constant for each

1 ≤ i ≤ N .

We will consider a family of initial data I̊1, . . . , I̊N , S̊ and R̊ such that

T̊ =
( N∑
j=1

I̊j

)
+ S̊ + R̊

for a fixed total initial population T̊ .
Next, we define the rumor size, a momentum type quantity of the initial data

and rumor outbreak.

Definition 2.1. [19, 25, 26]For a solution (I, S,R) to system (1), we define the
rumor size φ of (I, S,R):

φ(t) =

∫ t

0

S(τ)dτ.

Definition 2.2. Let (I, S,R) be a solution to system (1) with initial data I̊, S̊ and

R̊. We define initial reliability of ignorants M1(I̊):
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M1(I̊) =

N∑
i=1

λiI̊i

and total population with initial T (0) = T̊ :

T (t) =
( N∑
i=1

Ii(t)
)

+ S(t) +R(t).

Definition 2.3. Let (I, S,R) be solutions to system (1) subject to initial data I̊,

S̊ and R̊ = 0. If φ(t) in Definition 2.1 converges as t → ∞, we define φ∞ as the
final size of the rumor:

φ∞(I̊ , S̊) := lim
t→∞

φ(t).

Definition 2.4. For a given initial data I̊ , S̊ and R̊ of system (1) with S̊ = 0 and

R̊ = 0, let I̊n, S̊n and R̊n be sequences satisfying

I̊n → I̊ , S̊n → 0 as n→∞
and

S̊n > 0, R̊n = 0 for n ∈ N.
We additionally assume that the total populations are the same:

T̊ =
( N∑
i=1

I̊i

)
+ S̊ + R̊ =

( N∑
i=1

I̊ni

)
+ S̊n + R̊n = T̊n.

We say that a rumor outbreak occurs if the following limit exists

φe(I̊) = lim
n→∞

φ∞(I̊n, S̊n)

and φe(I̊) is positive, where φ∞(I̊n, S̊n) is the final size of the rumor for the initial

data I̊n, S̊n, R̊n.

Remark 1. (1) In [13, 15, 25], the authors define that the rumor outbreak occurs
if

lim
R̊→0

R(∞) > 0.

This is essentially equivalent to Definition 2.4. We use φ(∞) instead of R(∞), since
R(t) = R(φ(t)). See the result in Lemma 3.3.

(2) The rumor spreading begins with one spreader. Therefore, S̊ = 1/N , where N
is the total population number. Generally, N is a large number and this implies that
S̊ ≈ 0. However, if we assume that I̊ = T̊ and S̊ = R̊ = 0, then the corresponding
solution (I(t), S(t), R(t)) is the trivial stationary solution. Therefore, to get an
intrinsic property of the system, we have to consider a limit of sequence with initial
data S̊n → 0.

The following is the main theorem of this paper.

Theorem 2.5. Let k, σ, δ and T̊ be positive constants and R̊ = R̊n = 0. Let
{(In(t), Sn(t), Rn(t))} be a sequence of solutions to system (1) subject to initial

data I̊n, S̊n and R̊n = 0, respectively.
We assume that each S̊n is positive, I̊n → I̊ and S̊n → 0 for an N-dimensional

vector I̊, and

T̊ =
( N∑
k=1

I̊nk

)
+ S̊n =

N∑
i=1

I̊i.
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Then, there exists the following limit of steady states:

φe = φe(I̊) = lim
S̊n→0,I̊n→I̊

φ∞(I̊n, S̊n),

where φ∞(I̊n, S̊n) is the final size of the rumor for the initial data I̊n and S̊n with

R̊n = 0.
Furthermore, if kM1(I̊) > δ, φe(I̊) is positive and if kM1(I̊) ≤ δ, φe(I̊) is zero.

Remark 2. An equivalent condition of occurring a rumor outbreak is

kM1(I̊) > δ.

3. An equation for rumor size φ. In this section, we derive a single equation
for φ and consider the steady state analysis for the rumor spreading model (1) via
a derived single equation of φ from the next argument.

Lemma 3.1. Let (I, S,R) be a solution to system (1) with an initial data I̊, S̊ and

R̊. Then each Ii(t) satisfies

Ii(t) = I̊ie
−kλiφ(t), i = 1, . . . , N, (2)

where φ(t) is a function defined in Definition 2.1.

Proof. From the first equation of system (1), we have

d

dt
log Ii(t) = −kλiS(t), i = 1, . . . , N.

Integrating the above relation gives

log Ii(t) = log I̊i −
∫ t

0

kλiS(τ)dτ, i = 1, . . . , N.

For the population density of S(t), we can obtain the following formula for Ii:

Ii(t) = I̊ie
−

∫ t
0
kλiS(τ)dτ , i = 1, . . . , N.

Clearly, we have
d

dt
φ(t) = S(t), which implies that φ(t)−φ(0) =

∫ t

0

S(τ)dτ .

Lemma 3.2. Let (I, S,R) be a solution to system (1) with initial data I̊, S̊ and R̊.
For the given initial data, the total population T (t) of the solution to system (1) is
conserved. Thus, we have

T (t) = T̊ , for any t > 0. (3)

Proof. Note that the summation of all equations in system (1) yields( N∑
i=1

İi

)
+ Ṡ + Ṙ = 0.

Integrating the above equation leads to

T (t) =
( N∑
i=1

Ii(t)
)

+ S(t) +R(t) =
( N∑
i=1

I̊i

)
+ S̊ + R̊ = T̊ .
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Remark 3. By the conservation property (3) in Lemma 3.2 and the formula in (2),
we easily obtain the following formula for S(t):

S(t) = T̊ −
N∑
i=1

Ii(t)−R(t) = T̊ −
N∑
i=1

I̊ie
−kλiφ(t) −R(t). (4)

Lemma 3.3. Let (I, S,R) be a solution to system (1) with initial data I̊, S̊ and R̊.
Then R(t) is a function depending on φ:

R(t) = R(φ(t)) = R̊+ kσT̊φ(t)− kσ
∑
λi 6=0

I̊i
1− e−kλiφ(t)

kλi
− kσ

∑
λi=0

I̊iφ(t) + δφ(t).

Proof. The third equation in system (1) gives us that

R(t)− R̊ =

∫ t

0

Ṙ(τ)dτ =

∫ t

0

[
kσS(τ)(S(τ) +R(τ)) + δS(τ)

]
dτ.

From (4) and the definition of φ: φ(t) =

∫ t

0

S(τ)dτ , we get

R(t)− R̊ = kσ

∫ t

0

S(τ)
[
S(τ) +R(τ)

]
dτ + δφ(t)

= kσ

∫ t

0

S(τ)
(
T̊ −

N∑
i=1

Ii(τ)
)
dτ + δφ(t)

= kσ

∫ t

0

φ′(τ)
(
T̊ −

N∑
i=1

I̊ie
−kλiφ(τ)

)
dτ + δφ(t)

= kσT̊

∫ t

0

φ′(τ)dτ −
∑
λi 6=0

kσ

∫ t

0

φ′(τ)I̊ie
−kλiφ(τ)dτ

−
∑
λi=0

kσ

∫ t

0

φ′(τ)I̊ie
−kλiφ(τ)dτ + δφ(t)

= K1 +K2 +K3 +K4.

We directly have K1 and K4 with

K1 = kσT̊φ(t) and K4 = δφ(t).

For K2, we use λi 6= 0 for all 1 ≤ i ≤ N . By the change of variables and the fact
that φ(0) = 0, we obtain

K2 = −
∑
λi 6=0

kσ

∫ t

0

φ′(τ)e−kλiφ(τ)dτ

= −
∑
λi 6=0

kσ

∫ φ(t)

φ(0)

e−kλiηdη

= −
∑
λi 6=0

kσ
e−kλiφ(0) − e−kλiφ(t)

kλi

= −
∑
λi 6=0

kσ
1− e−kλiφ(t)

kλi
.
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Similarly, we have K3 with

K3 = −
∑
λi=0

kσ

∫ t

0

φ′(τ)e−kλiφ(τ)dτ

= −
∑
λi=0

kσ

∫ t

0

φ′(τ)dτ

= −
∑
λi=0

kσ(φ(t)− φ(0))

= −
∑
λi=0

kσφ(t).

Therefore, the above elementary calculations yield

R(t)− R̊ = kσT̊φ(t)− kσ
∑
λi 6=0

I̊i
1− e−kλiφ(t)

kλi
− kσ

∑
λi=0

I̊iφ(t) + δφ(t).

The formula (4) of S(t) implies that

dφ(t)

dt
= S(t) = T̊ −

N∑
i=1

I̊ie
−kλiφ(t) −R(t).

By the result in Lemma 3.3, we derive a single decoupled equation for φ such
that

dφ(t)

dt
= T̊ −

N∑
i=1

I̊ie
−kλiφ(t) − R̊− kσT̊φ(t)

+kσ
∑
λi 6=0

I̊i
1− e−kλiφ(t)

kλi
+ kσ

∑
λi=0

I̊iφ(t)− δφ(t).

For simplicity, we define

F (φ) =F (φ, I̊, S̊, R̊, T̊ )

:=T̊ −
N∑
i=1

I̊ie
−kλiφ − R̊− kσT̊φ

+ kσ
∑
λi 6=0

I̊i
1− e−kλiφ

kλi
+ kσ

∑
λi=0

I̊iφ(t)− δφ.

(5)

Then, φ(t) is the solution to the following single equation subject to initial data
φ(0) = 0.

φ̇(t) = F (φ(t)). (6)

4. Steady state analysis. In this section, we use the steady state analysis to
obtain the threshold phenomena for asymptotic behavior of the solution to system
(1). To obtain the asymptotic behavior of solutions to (6), we first consider a steady
state φ to (6). In other words, the steady state φ satisfies

F (φ) = 0, (7)
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where F (φ) = F (φ, I̊, S̊, R̊, T̊ ) is the function defined in (5). Therefore, φ is one of
solutions to equation (7). Using a standard method from [19, 25, 26], we can obtain
a sufficient condition for the existence of nontrivial zeros. We define G and H by

G(φ) = G(φ, I̊, S̊, R̊, T̊ ) = T̊ −
N∑
i=1

I̊ie
−kλiφ − R̊+ kσ

∑
λi 6=0

I̊i
1− e−kλiφ

kλi
(8)

and

H(φ) = H(φ, I̊, S̊, R̊, T̊ ) =
(
δ + kσT̊ − kσ

∑
λi=0

I̊i

)
φ. (9)

Then, we divide F into two parts G and H with F (φ) = G(φ)−H(φ). Note that
F is the difference between the exponential part G and the linear part H. Hence
equation (7) is equivalent to the following:

H(φ) = G(φ).

Lemma 4.1. Let G(·) be a function defined in (8) for a given initial data I̊ , S̊, R̊

and T̊ . If T̊ =
∑N
i=1 I̊i + S̊ + R̊, the following properties hold:

G(0) = S̊, and lim
φ→∞

G(φ) <∞, if R̊ = 0.

Proof. By the definition of G, we have G(0) = T̊ −
N∑
i=1

I̊i − R̊ = S̊. Relation (4)

yields the first result in this lemma.
For the next result, we take the limit such that

lim
φ→∞

G(φ) = lim
φ→∞

(
T̊ −

N∑
i=1

I̊ie
−kλiφ − R̊+ kσ

∑
λi 6=0

I̊i
1− e−kλiφ

kλi

)
= lim

φ→∞

(
T̊ −

∑
λi 6=0

I̊ie
−kλiφ −

∑
λi=0

I̊i − R̊+ kσ
∑
λi 6=0

I̊i
1− e−kλiφ

kλi

)
= T̊ −

∑
λi=0

I̊i − R̊+ kσ
∑
λi 6=0

I̊i
kλi

.

Therefore, we have lim
φ→∞

G(φ) = S̊ + kσ
∑
λi 6=0

I̊i
kλi

. Notice that the second term on

the right hand side of the above equation is finite.

kσ
∑
λi 6=0

I̊i
kλi

<∞.

Therefore, we conclude that lim
φ→∞

G(φ) <∞.

Lemma 4.2. Assume that k and σ are positive constants, λi ≥ 0 and I̊i ≥ 0 for
all i = 1, . . . , N . Let G(·) be the function defined in (8). If M1(I̊) > 0, then the
derivative G′(·) is positive and

dG

dφ
=
∑
λi 6=0

(
kλiI̊ie

−kλiφ + kσI̊ie
−kλiφ

)
> 0.
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Proof. Note that the derivative of G is

dG

dφ
= − d

dφ

N∑
i=1

I̊ie
−kλiφ + kσ

∑
λi 6=0

I̊ie
−kλiφ.

We can calculate the first term in the above as

d

dφ

N∑
i=1

I̊ie
−kλiφ =

d

dφ

∑
λi 6=0

I̊ie
−kλiφ +

d

dφ

∑
λi=0

I̊ie
−kλiφ

=
d

dφ

∑
λi 6=0

I̊ie
−kλiφ +

d

dφ

∑
λi=0

I̊i

= −
∑
λi 6=0

kλiI̊ie
−kλiφ.

Thus, if at least one non-zero λiI̊i exists, we have

dG

dφ
=
∑
λi 6=0

kλiI̊ie
−kλiφ + kσ

∑
λi 6=0

I̊ie
−kλiφ > 0.

Lemma 4.3. Let k and σ be positive constants and δ ≥ 0. Let H(·) be the function

defined in (9). If T̊ =
∑N
i=1 I̊i+ S̊+R̊, and initial data I̊i, S̊ and R̊ are nonnegative

for all i = 1, . . . , N , then H(·) is a linear function with nonnegative slope and
H(0) = 0.

Proof. Note that

δ + kσT̊ − kσ
∑
λi=0

I̊i = δ + kσ
( N∑
i=1

I̊i + S̊ + R̊
)
− kσ

∑
λi=0

I̊i

= δ + kσ
( ∑
λi 6=0

I̊i + S̊ + R̊
)
.

Therefore, δ+kσT̊−kσ
∑
λi=0 I̊i is positive and this means that δ+kσT̊ > kσ

∑
λi=0

I̊i.

This implies that H(·) is monotone increasing with H(0) = 0.

Proposition 1. Let k, σ and δ be positive constants. Let (I, S,R) be a solution to

system (1) with initial data I̊ , S̊ and R̊. We assume that S̊ is positive, I̊ ≥ 0, R̊ = 0

and T̊ =
∑N
i=1 I̊i + S̊ + R̊.

Then there is a final rumor size φ∞(I̊ , S̊) such that

φ∞(I̊ , S̊) := lim
t→∞

φ(t),

where φ(t) is the rumor size satisfying (6). Moreover, φ∞(I̊ , S̊) is the smallest
positive zero of F (·) such that

F (φ∞(I̊ , S̊)) = 0.

Proof. This follows from an elementary result of ordinary differential equations.
Note that for given initial data S̊ > 0, I̊ ≥ 0 and R̊ = 0, the corresponding equation
φ̇ = F (φ) is autonomous. Therefore, we can apply Lyapunov’s stability theorem.
From the properties of G(·) and H(·) in Lemmas 4.1 and 4.3, we have

F (0) = G(0)−H(0) = S̊ > 0,
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and
lim
φ→∞

F (φ) = G(φ)−H(φ) = −∞.

By the intermediate value theorem, there is at least one positive solution ψ > 0
such that 0 = F (ψ) = F (ψ, I̊, S̊, R̊, T̊ ) for a given initial data I̊, S̊ and R̊. Let φ∞

be the smallest element of the set of positive solutions {ψ > 0 : F (ψ) = 0}.
For a fixed S̊ > 0, F (0) = S̊ > 0. This shows that φ(t) is increasing near t = 0

and F (x) > 0 on {0 < x < φ∞}. Moreover, F (x) is differentiable with respect to
x, which implies that φ(t) → φ∞ as t → ∞ by an elementary result of ordinary
differential equations.

Proposition 2. Let k, σ and δ be positive constants and λi ≥ 0 for all i = 1, . . . , N .
Suppose that I̊i ≥ 0, i = 1, . . . , N , R̊ = S̊ = 0 and T̊ is a fixed positive constant with

T̊ =
∑N
i=1 I̊i. If we assume that M1(I̊) > 0, then the following statement holds.

The equation F (φ, I̊, S̊, R̊, T̊ ) = 0 has a positive solution φ > 0 if and only if
kM1 > δ. Moreover, if kM1 ≤ δ, then the equation has no positive zero and φ = 0
is a solution to the equation.

Proof. We have, by Lemma 4.1 and 4.3,

G(0) = S̊ = 0, lim
φ→∞

G(φ) <∞

and
H(0) = 0, lim

φ→∞
H(φ) =∞.

It follows that F (0) = 0 and

lim
φ→∞

F (φ) = −∞. (10)

Lemma 4.2 implies that the derivative of G(φ) is positive and

dG

dφ
=
∑
λi 6=0

kλiI̊ie
−kλiφ + kσ

∑
λi 6=0

I̊ie
−kλiφ > 0.

Moreover, if S̊ = 0, then we have

dH

dφ
(φ, I̊, S̊, R̊, T̊ ) = δ + kσT̊ − kσ

∑
λi=0

I̊i.

Therefore,

dF

dφ
=
dG

dφ
− dH

dφ

=
∑
λi 6=0

kλiI̊ie
−kλiφ + kσ

∑
λi 6=0

I̊ie
−kλiφ −

(
δ + kσT̊ − kσ

∑
λi=0

I̊i

)
.

(11)

So,

dF

dφ
(0) =

dG

dφ
(0)− dH

dφ
(0) =

∑
λi 6=0

kλiI̊i + kσ
∑
λi 6=0

I̊i −
(
δ + kσT̊ − kσ

∑
λi=0

I̊i

)
=

∑
λi 6=0

kλiI̊i − δ = kM1 − δ.

This yields

kM1 > δ ⇒ dF

dφ
(0) > 0, (12)
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and the continuity of F implies that there is a positive real number φε > 0 such
that

F (φε) > 0.

Thus, the intermediate value theorem and (10) show that F (φ, I̊, S̊, R̊, T̊ ) = 0 has
a positive solution φ > 0.

In order to complete the proof of this proposition, it suffices to verify that the
equation has a unique solution φ = 0 on {φ ≥ 0} if kM1 ≤ δ.

We now assume that kM1 ≤ δ. We rewrite (11) by

dF

dφ
=

∑
λi 6=0

kλiI̊ie
−kλiφ + kσ

∑
λi 6=0

I̊ie
−kλiφ −

(
δ + kσT̊ − kσ

∑
λi=0

I̊i

)
=

∑
λi 6=0

kλiI̊ie
−kλiφ + kσ

∑
λi 6=0

I̊ie
−kλiφ −

(
δ + kσT̊ − kσ

∑
λi=0

I̊ie
−kλiφ

)

=

N∑
i=1

kλiI̊ie
−kλiφ + kσ

N∑
i=1

I̊ie
−kλiφ − δ − kσT̊ .

Since we assume that
∑N
i=1 kλiI̊i = kM1 ≤ δ and T̊ =

∑N
i=1 I̊i,

dF

dφ
≤

N∑
i=1

kλiI̊ie
−kλiφ + kσ

N∑
i=1

I̊ie
−kλiφ −

N∑
i=1

kλiI̊i − kσ
N∑
i=1

I̊i

=

N∑
i=1

kλiI̊i(e
−kλiφ − 1) + kσ

N∑
i=1

I̊i(e
−kλiφ − 1).

This implies that

dF

dφ
< 0 if φ > 0, and

dF

dφ
≤ 0 if φ = 0.

The fact in (10) with F (0) = 0 leads us to

F (φ) < 0 for φ > 0.

Therefore, we complete the proof.

We are now ready to prove the main theorem.

The proof of the main theorem. Let R̊n = R̊ = 0 and let I̊n and S̊n be sequences
such that

I̊n → I̊ , S̊n → 0. (13)

We denote

F (φ, S̊n) = F (φ, I̊n, S̊n, R̊n, T̊ ) and F∞(φ) = F (φ, I̊, S̊, R̊, T̊ ).

First, assume that kM1(I̊) > δ. By (12), we have

F∞(0) = 0 and
d

dφ
F∞(φ)

∣∣∣∣
φ=0

> 0.

Note that (11) implies that

∂F

∂φ
(φ, I̊n, S̊n, R̊n, T̊ )

=
∑
λi 6=0

kλiI̊
n
i e
−kλiφ + kσ

∑
λi 6=0

I̊ni e
−kλiφ −

(
δ + kσT̊ − kσ

∑
λi=0

I̊ni

)
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=
∑
λi 6=0

kλiI̊
n
i e
−kλiφ + kσ

∑
λi 6=0

I̊ni e
−kλiφ −

(
δ + kσT̊ − kσ

∑
λi=0

I̊ni e
−kλiφ

)

=

N∑
i=1

kλiI̊
n
i e
−kλiφ + kσ

N∑
i=1

I̊ni e
−kλiφ − δ − kσT̊

=

N∑
i=1

kλiI̊
n
i

(
e−kλiφ − 1

)
+

N∑
i=1

kλiI̊
n
i

+kσ

N∑
i=1

I̊ni e
−kλiφ − δ − kσ

(( N∑
i=1

I̊ni

)
+ S̊n

)
.

Therefore,

∂F

∂φ
(φ, I̊n, S̊n, R̊n, T̊ ) =

N∑
i=1

kλiI̊
n
i

(
e−kλiφ − 1

)
+ kσ

N∑
i=1

I̊ni

(
e−kλiφ − 1

)
−kσS̊n + kM1(I̊n)− δ.

By (13), there is N0 ∈ N such that if n > N0, then

kM1(I̊n)− δ > 1

2
(kM1(I̊)− δ)

and

kσS̊n ≤ 1

4
(kM1(I̊)− δ).

Since I̊ni is bounded, we can choose εφ such that if 0 ≤ φ ≤ εφ, then∣∣∣∣ N∑
i=1

kλiI̊
n
i

(
e−kλiφ − 1

)
+ kσ

N∑
i=1

I̊ni

(
e−kλiφ − 1

)∣∣∣∣ ≤ 1

4
(kM1(I̊)− δ).

Thus, there are constants εφ > 0, N0 ∈ N such that if 0 ≤ φ < εφ and n > N0,
then

∂F

∂φ
(φ, I̊n, S̊n, R̊n, T̊ ) > 0. (14)

In order to prove convergence, we consider differentiable functions I(s), S(s) and
R(s) with respect to s ∈ R such that

I(1/n) = I̊n, S(1/n) = S̊n, R(1/n) = R̊n, n ∈ N,

and

T̊ =
( N∑
i=1

Ii(s)
)

+ S(s) +R(s).

We denote Fp(φ, s) = Fp(φ, I(s), S(s), R(s), T̊ ). Since ∂
∂φF (φ, s)

∣∣∣∣
φ=0,s=0

> 0, the

implicit function theorem implies that φ(s) is differentiable near s = 0. Thus,

φ∞(I̊n, S̊n) = φ(1/n) converges.
We now prove that φ∞n → φe > 0. Assume not, that is φ∞n → 0 as n→∞. Then

there is a N1 ∈ N such that n > N1 implies φ∞n (S̊) < εφ. We may take N1 ∈ N such
that N1 > N0.

For n > N1, we have F (0, I̊n, S̊n, R̊n, T̊ ) = S̊n > 0 and F (φ∞n , I̊
n, S̊n, R̊n, T̊ ) = 0.

However, by (14), ∂F∂φ (φ, I̊n, S̊n, R̊n, T̊ ) > 0. This is a contradiction. Thus we obtain

the desired result.
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For the last part, we assume that kM1 ≤ δ. Then, φ = 0 is the unique nonnega-
tive solution to F (φ, I̊, S̊, R̊, T̊ ) = 0. Moreover φ∞(I̊n, S̊n) > 0. Let {φnn

} be any

convergent subsequence of {φ∞(I̊n, S̊n)}.
Let φn∞ = limn→∞ φnn

≥ 0. Since F is a continuous function,

lim
n→∞

F (φnn , I̊nn , S̊nn , R̊nn , T̊ ) = F (φn∞ , I̊, 0, 0, T̊ ).

Therefore, by Proposition 2, φn∞ = 0, i.e., limn→∞ φnn
= 0. We proved that any

convergent subsequence of {φ∞(I̊n, S̊n)} converges to zero. Thus, by an elementary
theorem in analysis,

lim
n→∞

φn = 0.

5. Numerical simulation. In this section, we numerically provide the solutions
to system (1) with respect to several δ and compare them with the analytical results
in Section 4. The main result in this paper suggests that the condition for rumor
outbreak is that M1(I0) is less than δ/k.
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Figure 1. Temporal evolution of φ(t) with respect to δ and the
plot of F (φ)

For the numerical simulations, we used the fourth-order Runge-Kutta method
with the following parameters:

λ1 = 1, λ2 = 2, λ3 = 3, σ = 0.2, k = 10.

We take sufficiently large initial data I̊i, i = 1, 2 and 3, and sufficiently small S̊ such
that

I̊1 = I̊2 = I̊3 = 9999, S̊ = 3, R̊ = 0.

To see the threshold phenomena for M1(I0) and δ/k, we consider δ = 0.5 ×
105, 1.5× 105, 2.5× 105, 3.5× 105, 4.5× 105 and 5.5× 105.

Note that in Proposition 1, we rigorously obtained that the final size of the rumor
φ∞ = limt→∞ φ(t) is the smallest positive zero of F (φ). In Figure 1, we plotted the
rumor size φ(t) and F (φ) with respect to several δ > 0. Here, we can observe that
the final size of the rumor φ∞ is also the smallest positive zero of F (φ). Thus the
numerical results are consistent with the analytical result.

In Figure 2, we plotted the densities of the spreaders (S) and the stiflers (R) with
respect to several δ > 0. Thus, we can see that the rumor size are proportional to
1/δ.
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Figure 2. Temporal evolution of the densities S(t) and R(t) with
respect to δ

In Figure 3, we plotted φ∞ with respect to δ > 0 to see the threshold phenomena
for M1(I0) and δ/k. Note that S̊ ' 0, M1(I̊) = λ1I̊1 + λ2I̊2 + λ2I̊2 ' 6× 104.
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Figure 3. The final size of the rumor φ∞ with respect to δ

From our analytic results, we can expect that the threshold occurs when δ =
kM1(I̊) ' 6 × 105. In Figure 3, φ∞ decreases almost linearly in δ, and the graph
of φ∞(δ) is very close to the line φ∞ = 0 as δ goes to 6 × 105. Therefore, this
numerical simulation coincides with our analytic result. By the way, a small error
occurs between the analytical and the numerical results. We guess that this error
may result from the nonzero assumption for S̊ > 0.

6. Conclusion. In this paper, we consider the rumor spreading model with the
trust rate distribution. The model consists of several ignorants with trust rates λi,
i = 1, . . . , N . We provide the threshold phenomenon for this model by using classical
steady state analysis. Fortunately, we can obtain the corresponding equation of
rumor size for this model with several types of ignorants. We also present a rigorous
proof for the convergence result. As seen from the steady state analysis, we obtain
that the threshold phenomena depends on the decay rate δ of spreaders to stiflers

and the momentum type quantity M1 defined in Definition 2.2:M1(I̊) =

N∑
i=1

λiI̊i.

We conclude that a necessary and sufficient condition for rumor outbreak is that
the trust momentum M1(I̊) is greater than some combination of parameters δ/k.
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