The aim of this work is to provide further insight into the qualitative behavior of mechanical systems that are well described by Lennard-Jones type interactions on an atomistic scale. By means of $Γ$-convergence techniques, we study the continuum limit of one-dimensional chains of atoms with finite range interactions of Lennard-Jones type, including the classical Lennard-Jones potentials. So far, explicit formula for the continuum limit were only available for the case of nearest and next-to-nearest neighbour interactions. In this work, we provide an explicit expression for the continuum limit in the case of finite range interactions. The obtained homogenization formula is given by the convexification of a Cauchy-Born energy density.
Furthermore, we study rescaled energies in which bulk and surface contributions scale in the same way. The related discrete-to-continuum limit yields a rigorous derivation of a one-dimensional version of Griffith' fracture energy and thus generalizes earlier derivations for nearest and next-to-nearest neighbors to the case of finite range interactions.
A crucial ingredient to our proofs is a novel decomposition of the energy that allows for refined estimates.
Citation: Mathias Schäffner, Anja Schlömerkemper. 2018: On Lennard-Jones systems with finite range interactions and their asymptotic analysis, Networks and Heterogeneous Media, 13(1): 95-118. doi: 10.3934/nhm.2018005
[1] | Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005 |
[2] | Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879 |
[3] | Andrea Braides, Anneliese Defranceschi, Enrico Vitali . Variational evolution of one-dimensional Lennard-Jones systems. Networks and Heterogeneous Media, 2014, 9(2): 217-238. doi: 10.3934/nhm.2014.9.217 |
[4] | Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379 |
[5] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[6] | Thomas Hudson . Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501 |
[7] | Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115 |
[8] | Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551 |
[9] | Valerii Maksimov, Luca Placidi, Francisco James León Trujillo, Chiara De Santis, Anil Misra, Dmitry Timofeev, Francesco Fabbrocino, Emilio Barchiesi . Dynamic strain gradient brittle fracture propagation: comparison with experimental evidence. Networks and Heterogeneous Media, 2024, 19(3): 1058-1084. doi: 10.3934/nhm.2024047 |
[10] | Laura Sigalotti . Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7(3): 543-582. doi: 10.3934/nhm.2012.7.543 |
The aim of this work is to provide further insight into the qualitative behavior of mechanical systems that are well described by Lennard-Jones type interactions on an atomistic scale. By means of $Γ$-convergence techniques, we study the continuum limit of one-dimensional chains of atoms with finite range interactions of Lennard-Jones type, including the classical Lennard-Jones potentials. So far, explicit formula for the continuum limit were only available for the case of nearest and next-to-nearest neighbour interactions. In this work, we provide an explicit expression for the continuum limit in the case of finite range interactions. The obtained homogenization formula is given by the convexification of a Cauchy-Born energy density.
Furthermore, we study rescaled energies in which bulk and surface contributions scale in the same way. The related discrete-to-continuum limit yields a rigorous derivation of a one-dimensional version of Griffith' fracture energy and thus generalizes earlier derivations for nearest and next-to-nearest neighbors to the case of finite range interactions.
A crucial ingredient to our proofs is a novel decomposition of the energy that allows for refined estimates.
Our article follows the general aim of deriving continuum theories for mechanical systems from underlying discrete systems, see e.g. [2]. Here, we are interested in discrete systems with non-convex interaction potentials that allow for fracture of mechanical systems. One of the first contributions in this direction is due to Truskinovsky [24]. In that article a chain of atoms which interact by Lennard-Jones potentials is considered and a model for fracture is derived. Later this approach was extended by using the notion of
The main scope of the present paper is to provide a rather explicit description of limiting functionals for discrete systems with Lennard-Jones type interactions of finite range. To make this more precise, we fix some notation. We consider a chain of
$H_n(u) = \sum\limits_{j = 1}^K\sum\limits_{i = 0}^{n-1}\lambda_nJ_j\left(\frac{u^{i+j}-u^i}{j\lambda_n}\right),$ |
where
We are interested in the asymptotic behavior of the system as
$ H(u) = \int_0^1 \phi(u'(x))dx, $ | (1) |
where
$
ϕ(z):=limN→∞min{1NK∑j=1N−j∑i=0J(ui+j−ui)|u:N0→R,ui=zi if i∉{K+1,…,N−K−1}},
$
|
(2) |
cf. [9,Theorem 23].
If
$\phi = J_{CB}^{**},$ |
with the Cauchy-Born energy density
$J_{CB} = \sum\limits_{j = 1}^KJ_j.$ |
Thus, the formula (2) for
Let us recall the following major difference between
$ J_0(z): = J_2(z)+\tfrac12\inf\{J_1(z_1)+J_1(z_2),z_1+z_2 = 2z\}, $ |
see e.g. [8,Remark 3.3]. With this formula at hand it is not difficult to show that in the case of Lennard-Jones type potentials there are essentially no oscillations on the lattice-level and it holds
The key idea in our proof for general finite range interactions is to bypass the absence of a 'single cell formula' for
As an aside, we mention that the pointwise limit of
The above
The limiting functional
$ E_n(v): = \sum\limits_{j = 1}^K\sum\limits_{i = 0}^{n-1}J_j\left(\gamma+\frac{v^{i+j}-v^i}{j\sqrt{\lambda_n}}\right)-nJ_{CB}(\gamma) $ | (3) |
with certain periodic boundary conditions, see below, where
$ E(v) = \tfrac12J_{CB}''(\gamma)\int_0^1 v'(x)^2\,dx+\beta \# S_v,\;\;\; [v](x) > 0\mbox{ for }x\in S_v, $ |
where
We consider a one-dimensional lattice given by
$ \mathcal{A}_n^\#(0,1): = \big\{u\in W_{{\operatorname{loc}}}^{1,\infty}(\mathbb{R}):u\mbox{ is affine on }(i,i+1)\lambda_n \;\forall i\in\mathbb{Z}, u'\mbox{ is 1-periodic}\big\}. $ |
For given
$ H_n(u): = \sum\limits_{j = 1}^K\sum\limits_{i = 0}^{n-1}\lambda_nJ_j\left(\frac{u^{i+j}-u^i}{j\lambda_n}\right), $ | (4) |
where
(ⅰ)
(ⅱ)
(ⅲ)
(ⅳ)
Let
$ \sum\limits_{i = 0}^{n-1}J_1\left(\frac{u^{i+1}-u^i}{\lambda_n}\right) = \sum\limits_{i = 0}^{n-1}\frac{1}{j}\sum\limits_{s = i}^{i+j-1}J_1\left(\frac{u^{s+1}-u^s}{\lambda_n}\right). $ | (5) |
Let
$ H_n(u) = \sum\limits_{j = 2}^K\sum\limits_{i = 0}^{n-1}\lambda_n\left\{J_j\left(\frac{u^{i+j}-u^i}{j\lambda_n}\right)+\frac{c_j}{j} \sum\limits_{s = i}^{i+j-1}J_1\left(\frac{u^{s+1}-u^s}{\lambda_n}\right)\right\}. $ | (6) |
For given
$ J_{0,j}(z): = J_{j}(z)+\frac{c_j}{j}\inf\left\{\sum\limits_{s = 1}^jJ_1(z_s), \sum\limits_{s = 1}^jz_s = jz\right\}. $ | (7) |
Note that the definition of
$J_{0,2}(z) = J_2(z)+\frac12\inf\{J_1(z_1)+J_1(z_2): z_1+z_2 = 2z\},$ |
which is exactly the effective energy density which shows up in [5,19,20], and similarly in [13].
Next, we formulate further assumptions on the potentials
(ⅴ) There exists
(ⅵ) There exists a unique
$ \{\gamma\} = {\operatorname{argmin}}_{z\in\mathbb{R}} J_{0,j}(z). $ | (8) |
Furthermore,
$ \{(z,\dots,z)\} = {\operatorname{argmin}}\left\{\sum\limits_{s = 1}^jJ_1(z_s), \sum\limits_{s = 1}^jz_s = jz\right\}\;\;\;\;\mbox{for all }\;z\leq \gamma+\varepsilon. $ | (9) |
(ⅶ) There exists
$ J_j(z)+\frac{c_j}{j}\sum\limits_{s = 1}^jJ_1(z_s)\geq J_j(z)+c_jJ_1(z)+C\sum\limits_{s = 1}^j(z_s-z)^2 $ | (10) |
whenever
(ⅷ)
Remark 1. Note that a direct consequence of hypothesis (ⅵ) is
$ J_{0,j}(z) = J_j(z)+c_jJ_1(z) = :\psi_j(z)\;\;\;\mbox{for all }\;z\leq \gamma+\varepsilon\mbox{ and } \;\;\psi_j''(\gamma) > 0 $ | (11) |
for all
Assumptions (ⅴ)-(ⅶ) are tailor-made in order to rule out certain microscopic relaxation effects which in general might occur for discrete systems with non-convex interaction potentials, see Remark 4. We will show in Proposition 1 that the classical Lennard-Jones potentials indeed satisfy assumptions (ⅰ)-(ⅷ).
Note that (6) and the assumptions (ⅴ) and (ⅵ) imply
$ H_n(u)\geq \sum\limits_{j = 2}^K\sum\limits_{i = 0}^{n-1}\lambda_n J_{0,j}\left(\frac{u^{i+j}-u^i}{j\lambda_n}\right)\geq \sum\limits_{j = 2}^K(J_j(\gamma)+c_jJ_1(\gamma)) = \sum\limits_{j = 1}^KJ_j(\gamma). $ | (12) |
Hence,
$ E_n(v): = \sum\limits_{j = 1}^K\sum\limits_{i = 0}^{n-1}J_j\left(\gamma+\frac{v^{i+j}-v^i}{j\sqrt{\lambda_n}}\right)-nJ_{CB}(\gamma) = \frac{H_n(u_{\min}+\sqrt{\lambda_n}v)-\inf H_n}{\lambda_n}, $ |
where
$ J_{CB}(z): = \sum\limits_{j = 1}^KJ_j(z). $ | (13) |
In Section 4, we derive a
$
E_n^{\ell}(v): = {En(v)if v∈A#,ℓn(0,1),+∞else,
$
|
(14) |
where
$ \mathcal{A}_n^{\#,\ell}(0,1): = \{v\in \mathcal{A}_n^\#(0,1):\;x\mapsto v(x)-\ell x\mbox{ is 1-periodic}\}. $ | (15) |
In Theorem 4.2, we derive the
Next we show that the assumptions (ⅰ)-(ⅷ) are reasonable in the sense that they are satisfied by the classical Lennard-Jones potentials.
Proposition 1. For
$ J_j(z) = J(jz)\;\;with\;\; J(z) = \frac{k_1}{z^{12}}-\frac{k_2}{z^6},\;\;for \;\;z > 0\;\; and \;\;J(z) = +\infty\;\; for \;\;z\leq0 $ | (16) |
and
$
J_{0,j}^{**}(z) = \psi_j^{**}(z) = {ψj(z)ifz≤γ,ψj(γ)ifz>γ.
$
|
(17) |
Proof. By the definition of
$ \delta_j = \frac{1}{j}\left(\frac{2k_1}{k_2}\right)^{1/6}, $ | (18) |
and
$J_{CB}(z) = \sum\limits_{j = 1}^KJ(jz) = \frac{k_1}{z^{12}}\sum\limits_{j = 1}^K\frac{1}{j^{12}}-\frac{k_2}{z^6}\sum\limits_{j = 1}^K\frac{1}{j^{6}}.$ |
Hence,
$ \gamma = \left(\frac{2k_1}{k_2}\right)^{1/6}\left(\frac{\sum\nolimits_{j = 1}^K\frac{1}{j^{12}}}{\sum\nolimits_{j = 1}^K\frac{1}{j^{6}}}\right)^{1/6} < \delta_1. $ | (19) |
It can be checked that
$ c_j: = -\frac{jJ'(j\gamma)}{J'(\gamma)} > 0. $ | (20) |
Since
Next, we show that
● Argument for (ⅵ). Consider
$J_{0,j}(z) = \psi_j(z) = \frac{k_1}{z^{12}}\left(\frac{1}{j^{12}}+c_j\right)-\frac{k_2}{z^{6}}\left(\frac{1}{j^{6}}+c_j\right)\;\;\;\mbox{for}\;\;z\leq \delta_1.$ |
Hence,
● Argument for (ⅶ). Let
$j∑s=1J(zs)=jJ(z)+J′(z)j∑s=1(zs−z)+j∑s=1∫10(1−t)J″(z+t(zs−z))(zs−z)2dt. $
|
The second term on the right-hand side vanishes since
● Argument for (ⅷ). Let
$\liminf\limits_{z\to\infty}J_{0,j}(z) = \lim\limits_{n\to\infty}J_{0,j}(z_n).$ |
For every
$J_{0,j}(z_n)\geq J(jz_n)+\frac{c_j}{j}\sum\limits_{s = 1}^jJ(z_n^s)-\eta\;\;\;\mbox{with} \;\;\;\sum\limits_{s = 1}^jz_n^s = jz_n.$ |
Since
$\liminf\limits_{n\to\infty}J_{0,j}(z_n)\geq \frac{c_j}{j}\liminf\limits_{n\to\infty}\sum\limits_{s = 2}^jJ(z_n^s)-\eta\geq c_j\frac{j-1}{j}J(\delta_1)-\eta.$ |
Since
$cjj−1jJ(δ1)−η>cjj−1jJ(δ1)−η+12J(jδ1)+cjjJ(δ1)=ψj(δ1)>ψj(γ), $
|
and since
Finally, we comment on identity (17). We already observed that
Remark 2. The proof of Proposition 1 can be applied almost verbatim also to slightly more general potentials of the form
$ J_j(z) = J(jz)\;\;\mbox{with}\;\; J(z) = \frac{k_1}{z^{m}}-\frac{k_2}{z^n},\;\;\mbox{for }\;\;z > 0\;\;\mbox{ and }\;\;J(z) = +\infty\;\;\mbox{ for }\;\;z\leq0, $ |
Remark 3. If
$
J_{CB}^{**}(z) = \sum\limits_{j = 2}^KJ_{0,j}^{**}(z) = \sum\limits_{j = 2}^K\psi_{j}^{**}(z) = {JCB(z)if z≤γJCB(γ)if z≥γ.
$
|
(21) |
In this section, we give an explicit expression for the
$
H_n^{\ell}(u): = {Hn(u)if u∈A#,ℓn(0,1),+∞else,
$
|
where
$ BV^{\ell}(0,1): = \{u\in BV_{{\operatorname{loc}}}(\mathbb{R})\,:\,x\mapsto u(x)-\ell x \;\mbox{is 1-periodic}\}. $ |
Theorem 3.1. Let
$ \lim\limits_{z\to-\infty}\frac{\Psi(z)}{|z|} = +\infty $ | (22) |
and there exist constants
$ d^1(\Psi(z)-1)\leq J_j(z)\leq d^2\max\{\Psi(z),|z|\}\;\; for \;\;all \;\;z\in\mathbb{R}.$ | (23) |
Moreover, assume that the
$
H^{\ell}(u): = {∫10J∗∗CB(u′(x))dxifu∈BVℓ(0,1),Dsu≥0,+∞elseonL1loc(R),
$
|
where
Remark 4. (a) As discussed in the introduction, the
$ \overline \phi(z): = \inf\{\phi(z_1)\, :\, z_1\leq z\}\;\;\mbox{where} \;\;\phi = \Gamma\text{-}\lim\limits_{N\to\infty}\phi_N^{**}, $ |
with
$
ϕN(z)=min{1NK∑j=1N−j∑i=0Jj(ui+j−uij):u:N0→R,ui=zi if i∈{0,…,K}∪{N−K,…,N}}.
$
|
For general non-convex interaction potentials, one cannot expect a simplification of the asymptotic homogenization formulas
(b) Theorem 3.1 follows by showing that
Proof of Theorem 3.1. Liminf inequality. Let
Let us now estimate the energy. By (12), we have
$Hℓn(un)≥K∑j=2n−1∑i=0λnJ∗∗0,j(ui+jn−uinjλn)=K∑j=2j−1∑s=0∑i∈(s+jZ)∩[0,n)λnJ∗∗0,j(ui+jn−uinjλn). $
|
Fix
$ \sum\limits_{i\in (s+j\mathbb{Z})\cap [0,n)}j\lambda_nJ_{0,j}^{**}\left(\frac{u_n^{i+j}-u_n^i}{j\lambda_n}\right)\geq \int_\rho^1 J_{0,j}^{**}({u_{n,j}^s}'(x))\,dx+2\rho (J_{0,j}(\gamma)\wedge0), $ |
where
$ u_{n,j}^s(t): = u_n^{s+ji}+\frac{t-(s+ji)\lambda_n}{j\lambda_n}(u_n^{s+j(i+1)}-u_n^{s+ji}) $ | (24) |
for
$
lim infn→∞K∑j=21jj−1∑s=0∫1−ρρJ∗∗0,j(usn,j′(x))dx≥K∑j=21jj−1∑s=0∫1−ρρJ∗∗0,j(u′(x))dx=∫1−ρρJ∗∗CB(u′(x))dx,
$
|
and the constraint
Limsup inequality. Step 1. We provide the limsup inequality for a modified discrete energy which does not take the boundary conditions into account and is given by
$
\hat H_n(u): = {K∑j=1n−j∑i=0Jj(ui+j−uijλn)if u∈An(0,1),+∞else on L1(0,1),
$
|
where
$ \mathcal{A}_n(0,1): = \big\{u\in W^{1,\infty}(0,1):u\mbox{ is affine on }(i,i+1)\lambda_n\mbox{ for }i\in\{0,\dots,n\}\big\}. $ |
We claim that for every
$ \limsup\limits_{n\to\infty} \hat H_n(u_n)\leq \int_0^1J_{CB}^{**}(u'(x))\,dx. $ |
By density and relaxation arguments it suffices to provide the above inequality for the simpler cases of
First, we consider functions
$ \limsup\limits_{n\to\infty} \hat H_n(u_n)\leq \sum\limits_{j = 1}^K J_j(z) = \int_0^1J_{CB}^{**}(u'(x))\,dx. $ |
Let us now consider
$ \lim\limits_{n\to\infty} N_n = +\infty\;\;\;\;\mbox{and}\;\;\;\; \lim\limits_{n\to\infty} \lambda_n N_n = 0. $ |
Moreover, we define a sequence
$ r_n: = \sup\{r\in\mathbb{N}\, :\, r N_n\leq n\}. $ |
Set
$
u_n(x) = {u(λntin)+γ(x−λntin)for x∈λn[tin,ti+1n−1] and i∈{0,…,rn−2},u(x)for x∈[λntrn−1n,1].
$
|
By the definition of
$ \limsup\limits_{n\to\infty} \hat H_n(u_n)\leq \sum\limits_{j = 1}^K J_j(\gamma) = \int_0^1J_{CB}^{**}(u'(x))\,dx. $ |
Step 2. We show that there exists for every
Let us first consider functions with a jump at zero: Let
$ \limsup\limits_{n\to\infty} \hat H_n(u_n) = \limsup\limits_{n\to\infty}\sum\limits_{j = 1}^K\sum\limits_{i = 0}^{n-j}J_j\left(\frac{u_n^{i+j}-u_n^i}{j\lambda_n}\right)\leq \int_0^1J_{CB}^{**}(u'(x))\,dx. $ | (25) |
Next, we introduce a suitable perturbation of
$\tfrac12(u(0-)+u(0+))+2\varepsilon \gamma < u(\varepsilon),\;\;\; u(1-\varepsilon)+ 2\varepsilon \gamma < \tfrac12(u(1-)+u(1+)) .$ |
Let
$
v_{n,\varepsilon}^i = {12(u(0−)+u(0+))+iλnγfor 0≤i<h1nun(ε)−12γεfor i=h1n,uinfor h1n<i<h2n,un(1−ε)+12γεfor i=h2n,12(u(1−)+u(1+))−γ+iλnγfor h2n<i<n.
$
|
We observe that
$
u_\varepsilon(x) = {12(u(0−)+u(0+))+γxif x∈(0,ε),u(x)if x∈(ε,1−ε),12(u(1−)+u(1+))+γ(x−1)if x∈(1−ε,1).
$
|
The construction of
$ \lim\limits_{n\to\infty}\frac{v_{n,\varepsilon}^{h_n^{i}+s}-v_{n,\varepsilon}^{h_n^{i}+s-1}}{\lambda_n} = +\infty\;\;\;\;\mbox{for }i\in\{1,2\}\mbox{ and }s\in\{0,1\}. $ | (26) |
Combining (25)-(26),
$
lim supn→∞Hℓn(vn)≤lim supn→∞K∑j=1n−1∑i=0λnJj(vi+jn,ε−vin,εjλn)≤∫1−εεJ∗∗CB(u′(x))dx+2εJCB(γ)=Hℓ(uε).
$
|
(27) |
From (27) the existence of a recovery sequence for
Finally, we consider
In this section, we derive the
$ \zeta_{j,n}^i: = J_j\left(\frac{v_n^{i+j}-v_n^i}{j\sqrt{\lambda_n}}+\gamma\right)+\frac{c_j}{j}\sum\limits_{s = i}^{i+j-1}J_1\left(\frac{v_n^{s+1}-v_n^s}{\sqrt{\lambda_n}}+\gamma\right)-J_{0,j}(\gamma). $ | (28) |
Using (5) and
$ E_n^\ell(v_n) = \sum\limits_{j = 2}^K\sum\limits_{i = 0}^{n-1}\zeta_{j,n}^i. $ | (29) |
By the definition of
Lemma 4.1. Suppose that
$ J_j\left(\sum\limits_{s = 1}^j\frac{z_s}{j}\right)+\frac{c_j}{j}\sum\limits_{s = 1}^jJ_1(z_s)-J_{0,j}(\gamma)\geq C_1\sum\limits_{s = 1}^j(z_s-\gamma)^2 $ | (30) |
if
Proof. Fix
Let us now show (30) whenever
$J_j(\hat z)+\frac{c_j}{j}\sum\limits_{s = 1}^jJ_1(\hat z_s)-J_{0,j}(\gamma)\leq \frac{C}{N}\sum\limits_{s = 1}^j(\hat z_s-\gamma)^2,$ |
where
$Jj(ˆz)+cjjj∑s=1J1(ˆzs)−J0,j(γ)≤CNj∑s=1(ˆzs−γ)2≤2CNj∑s=1(ˆzs−ˆz)2+2CjN(ˆz−γ)2≤2N(Jj(ˆz)+cjjj∑s=1J1(ˆzs)−ψj(ˆz))+2CjN(ˆz−γ)2. $
|
Using
$ψj(ˆz)−ψj(γ)≤Jj(ˆz)+cjjj∑s=1J1(ˆzs)−ψj(γ)≤2jCN−2(ˆz−γ)2. $
|
Clearly, this is, for
$\psi_j(\hat z)-\psi_j(\gamma) = \int_0^1\psi_j''(\gamma + s(\hat z-\gamma))(1-s)(\hat z-\gamma)^2\,ds\geq\frac12\delta(\hat z-\gamma)^2,$ |
where we use
We are now in the position to prove the main result of this section which is a
Theorem 4.2. Suppose that
$
E^\ell(v) = {α∫10v′(x)2dx+β(#Sv∩[0,1))if[v](x)>0onSv,+∞else,
$
|
where
$ \beta: = 2B(\gamma)-\sum\limits_{j = 1}^KjJ_j(\gamma) $ | (31) |
with
$
B(γ):=infN∈N0min{∑i≥0{K∑j=1Jj(ui+j−uij)−JCB(γ)}:u:N0→R,u0=0,ui+1−ui=γifi≥N}.
$
|
(32) |
Moreover, if
$ \lim\limits_{n\to\infty}\inf\limits_v E_n^\ell(v) = \min\limits_v E^\ell(v) = \min\{\alpha \ell^2,\beta\}. $ |
As already mentioned in the introduction, we present here a direct proof of Theorem 4.2 which follows the line of arguments of [12,Theorem 4]. In Remark 6 below, we sketch an alternative proof of Theorem 4.2 based on an application of [12,Theorem 4] to certain auxiliary multibody potentials.
The following equivalent formulation of the boundary layer energy will be convenient for the proof of Theorem 4.2:
Lemma 4.3. Let
$\beta = 2\widetilde B(\gamma)-\sum\limits_{j = 2}^KjJ_{0,j}(\gamma),$ |
where
$
˜B(γ):=infk∈N0min{K∑j=2cjj−1∑s=1j−sjJ1(us−us−1)+K∑j=2∑i≥0{Jj(ui+j−uij)+cjji+j−1∑s=iJ1(us+1−us)−J0,j(γ)}:u:N0→R,u0=0,ui+1−ui=γifi≥k}.
$
|
(33) |
We postpone the calculations regarding Lemma 4.3 and directly turn to the proof of Theorem 4.2.
Proof of Theorem 4.2. Coerciveness. Let
$ \zeta_{n,j}^i \geq \left\{K_1\sum\limits_{s = i}^{i+j-1}\left(\frac{v_n^{s+1}-v_n^s}{\sqrt{\lambda_n}}\right)^2\right\}\wedge K_2, $ | (34) |
where
$
Eℓn(vn)≥K∑j=2n−1∑i=0{λnK1i+j−1∑s=i(vs+1n−vsnλn)2}∧K2≥n−1∑i=0(λnK1(vi+1n−vinλn)2∧K2).
$
|
(35) |
The discrete energy on the right-hand side of (35) is well studied, see e.g. [12,Remark 9]. In particular, we can conclude from (35) that if
Let us remark that
$
I−n:={i∈{0,…,n−1}:vi+1n<vin},I−−n:={i∈I−n:λnK1(vi+1n−vinλn)2≥K2}.
$
|
The estimate (35) implies
$ \gamma+\frac{v_n^{i+1}-v_n^i}{\sqrt{\lambda_n}}\geq M. $ | (36) |
Hence, using Hölder's inequality,
$‖(v′n)−‖L1(0,1)≤∑i∈I−n∖I−−nλn|vi+1n−vinλn|+∑i∈I−−n√λn|vi+1n−vin√λn|≤(1K1Eℓn(vn))12+1+√λn#I−−|M−γ|. $
|
Thus there exists
Liminf inequality. Let
Step 1. We estimate the elastic energy and show non-existence of negative jumps.
To this end, we adjust arguments given in [12,Proof of Theorem 4,Step 2] to the present situation. In particular, we show that the maps
The assumptions (ⅱ), (ⅵ) and (ⅷ) imply
$ \liminf\limits_{z\to+\infty} J_{0,j}(z) > J_{0,j}(\gamma), \;\;\; \liminf\limits_{z\to-\infty}J_{0,j}(z) = +\infty. $ | (37) |
Combining (37) and the fact that
$
J_{0,j}(z)-J_{0,j}(\gamma)\geq \Psi_j(z-\gamma): = {C1,j(z−γ)2∧C2,jif z≥γ,C1,j(z−γ)2∧C3,jif z≤γ.
$
|
(38) |
Since
$ \sup\left\{C_{1,j}:\mbox{(38) holds }\right\} = \frac12 \psi_j''(\gamma)\;\;\;\;\mbox{for all }j\in\{2,\dots,K\}. $ | (39) |
Moreover, (37) implies
$ \sup\left\{C_{3,j}:\mbox{(38) holds for some }C_{1,j}\mbox{ and }C_{2,j}\right\} = +\infty\;\;\;\;\mbox{for all }j\in\{2,\dots,K\}. $ | (40) |
Using (38), we have the following estimate
$
Eℓn(vn)=K∑j=2n−1∑i=0ζij,n≥K∑j=2n−1∑i=0{J0,j(γ+vi+jn−vinj√λn)−J0,j(γ)}≥K∑j=2j−1∑s=0∑i∈(s+jZ)∩[0,n)Ψj(vi+jn−vinj√λn).
$
|
(41) |
As mentioned above, discrete energies with potentials of the type
$
lim infn→∞∑i∈(s+jZ)∩[0,n)Ψj(vi+jn−vinj√λn)≥C1,jj∫10v′(x)2dx+C2,j#{t∈Sv:[v](t)>0}+C3,j#{t∈Sv:[v](t)<0}.
$
|
(42) |
Here, we use that the piecewise affine interpolations
$ \liminf\limits_{n\to\infty} E_n^\ell(v_n) = \liminf\limits_{n\to\infty}\sum\limits_{j = 2}^K\sum\limits_{i = 0}^{n-1}\zeta_{j,n}^i\geq \alpha\int_0^1v'(x)^2\,dx+C_2\# S_v $ | (43) |
with
For later usage, we state an estimate involving only terms which contribute to the elastic energy and are sufficiently far away from the jump. For given
$ \liminf\limits_{n\to\infty}\sum\limits_{j = 2}^K\left\{\sum\limits_{i = 0}^{\hat k_n^1}\zeta_{j,n}^i+\sum\limits_{i = \hat k_n^2}^{n-1}\zeta_{j,n}^i\right\}\geq \alpha\int_{(0,1)\setminus (\frac12-3\rho,\frac12+3\rho)}v'(x)^2\,dx. $ | (44) |
Step 2. We estimate the jump energy.
Recall that
$ \lim\limits_{n\to\infty}\frac{v_n^{k_n^1+s+1}-v_n^{k_n^1+s}}{\sqrt{\lambda_n}} = 0, \;\;\;\;\lim\limits_{n\to\infty}\frac{v_n^{k_n^2+s+1}-v_n^{k_n^2+s}}{\sqrt{\lambda_n}} = 0\;\;\;\;\mbox{for }s = 1,\dots,K-1. $ | (45) |
We argue by contradiction: suppose that there exists
$E_n^\ell(v_n)\geq \sum\limits_{i = i_n^\rho+1}^{j_n^\rho-K}\zeta_{n,K}^i\geq \sum\limits_{i = i_n^\rho+1}^{j_n^\rho-K}K_1c^2\wedge K_2\geq K_1c^2\wedge K_2(j_n^\rho-i_n^\rho-K)\to+\infty$ |
as
We claim that
$ \liminf\limits_{n\to\infty}\sum\limits_{j = 2}^K\sum\limits_{i = k_n^1+1}^{k_n^2}\zeta_{j,n}^i\geq 2\widetilde B(\gamma)-\sum\limits_{j = 2}^KjJ_{0,j}(\gamma), $ | (46) |
where
$ \liminf\limits_{n\to\infty} E_n^\ell(v_n) = \liminf\limits_{n\to\infty}\sum\limits_{j = 2}^K\sum\limits_{i = 0}^{n-1}\zeta_{j,n}^i\geq \alpha\int_{(0,1)\setminus (\frac12-3\rho,\frac12+3\rho)}v'(x)^2\,dx+\beta, $ |
and the
Let us prove (46). From
$\lim\limits_{n\to\infty}\frac{v_n^{h_n+1}-v_n^{h_n}}{\sqrt{\lambda_n}} = +\infty.$ |
Indeed, otherwise
Since
$r_1(n): = \sum\limits_{j = 1}^K\sum\limits_{s = h_n-j+1}^{h_n}J_j\left(\gamma+\frac{v_n^{s+j}-v_n^s}{j\sqrt{\lambda_n}}\right).$ |
It will be useful to rewrite the terms which involve
$K∑j=2hn∑i=hn−j+1ζij,n=K∑j=2cjj∑s=1j−sj(J1(γ+vhn−s+1n−vhn−sn√λn)+J1(γ+vhn+s+1n−vhn+sn√λn))−K∑j=2jJ0,j(γ)+r1(n). $
|
Hence,
$
K∑j=2k2n∑i=k1n+1ζij,n=K∑j=2{hn−j∑i=k1n+1ζij,n+cjj−1∑s=1j−sjJ1(γ+vhn−s+1n−vhn−sn√λn)+k2n∑i=hn+1ζij,n+cjj−1∑s=1j−sjJ1(γ+vhn+s+1n−vhn+sn√λn)}−K∑j=2jJ0,j(γ)+r1(n).
$
|
(47) |
Thus it remains to prove that
$ \sum\limits_{j = 2}^K\bigg\{\sum\limits_{i = k_n^1+1}^{h_n-j}\zeta_{j,n}^i+c_j\sum\limits_{s = 1}^{j-1}\frac{j-s}{j}J_1\left(\gamma+\frac{v_n^{h_n-s+1}-v_n^{h_n-s}}{\sqrt{\lambda_n}}\right)\bigg\}\geq \widetilde B(\gamma)-r_2(n) $ | (48) |
$ \sum\limits_{j = 2}^K\bigg\{\sum\limits_{i = h_n+1}^{k_n^2}\zeta_{j,n}^i+c_j\sum\limits_{s = 1}^{j-1}\frac{j-s}{j} J_1\left(\gamma+\frac{v_n^{h_n+s+1}-v_n^{h_n+s}}{\sqrt{\lambda_n}}\right)\bigg\}\geq \widetilde B(\gamma)-r_3(n) $ | (49) |
with
$
\tilde v_n^i = {γi+vhnn−vhn−ih√λnif 0≤i≤hn−k1n−1,γi+vhnn−vk1n+1n√λnif i≥hn−k1n−1.
$
|
(50) |
Now we rewrite the left-hand side in (48) in terms of
$K∑j=2{hn−j∑i=k1n+1ζij,n+cjj−1∑s=1j−sjJ1(γ+vhn−s+1n−vhn−sn√λn)}=K∑j=2cjj∑s=1j−sjJ1(˜vsn−˜vs−1n)+K∑j=2∑i≥0{Jj(˜vi+jn−˜vjnj)+cjji+j−1∑s=iJ1(˜vs+1n−vsn)−J0,j(γ)}−r2(n) $
|
where
$r2(n):=K∑j=2hn−k1n−2∑i=hn−k1n−j{Jj(˜vi+jn−˜vjnj)+cjji+j−1∑s=iJ1(˜vs+1n−vsn)−J0,j(γ)}. $
|
Indeed, the definition of
$\lim\limits_{n\to\infty}\left(\tilde v_n^{h_n-k_n^1-K+s}-\tilde v_n^{h_n-k_n^1-K+s-1}\right) = \gamma+\lim\limits_{n\to\infty}\frac{v_n^{k_n^1+1+K-s}-v_n^{k_n^1+K-s}}{\sqrt{\lambda_n}} = \gamma$ |
for
Limsup inequality. To complete the
Let
Fix
$K∑j=2cjj−1∑s=1j−sjJ1(ws−ws−1)+K∑j=2∑i≥0{Jj(wi+j−wij)+cjji+j−1∑s=iJ1(ws+1−ws)−J0,j(γ)}≤˜B(γ)+η. $
|
Since the term in the infinite sum vanishes identically for
$ N\leq \min\{h_n-k_n^1-K, k_n^2-h_n-K\} $ | (51) |
is satisfied. We define a sequence
$
v_n^i = {˜v(iλn)if 0≤i≤k1nv(t−)−√λn(whn−i−wN+γ(i−hn+N))if k1n≤i≤hn,v(t+)+√λn(wi−(hn+1)−wN−γ(i−hn−1−N))if hn+1≤i≤k2n,v(t+)+˜v(iλn)if k2n≤i≤n.
$
|
By the definition of
$\frac{v_n^{h_n+j-s}-v_n^{h_n-s}}{\sqrt{\lambda_n}} = \frac{v(t+)-v(t-)}{\sqrt{\lambda_n}}+\mathcal O(1)\to+\infty\;\;\;\;\mbox{as }\;n\to\infty,$ |
for all
$K∑j=2k2n∑i=k1nζij,n=K∑j=2{hn−j∑i=k1nζij,n+cjj−1∑s=1j−sjJ1(γ+vhn−s+1n−vhn−sn√λn)+k2n∑i=hn+1ζij,n+cjj−1∑s=1j−sjJ1(γ+vhn+s+1n−vhn+sn√λn)}−K∑j=2jJ0,j(γ)+r(n), $
|
where
$r(n): = \sum\limits_{j = 1}^K\sum\limits_{s = -j+1}^0J_j\left(\gamma+\frac{v_n^{h_n+j+s}-v_n^{h_n+s}}{j\sqrt{\lambda_n}}\right)\to0\;\;\;\;\mbox{as }\;n\to\infty.$ |
By the definition of
$
K∑j=2{hn−j∑i=k1nζij,n+cjj−1∑s=1j−sjJ1(γ+vhn−s+1n−vhn−sn√λn)}=K∑j=2hn−k1n−j∑i=0{Jj(wi+j−wij)+cjji+j−1∑s=iJ1(ws+1−ws)−J0,j(γ)}+K∑j=2cjj−1∑s=1j−sjJ1(ws+1−ws)≤˜B(γ)+η,
$
|
(52) |
where we used
$ \sum\limits_{j = 2}^K\left\{\sum\limits_{i = h_n+1}^{k_n^2}\zeta_{j,n}^i+c_j\sum\limits_{s = 1}^{j-1}\frac{j-s}{j}J_1\left(\gamma+\frac{v_n^{h_n+s+1}-v_n^{h_n+s}}{\sqrt{\lambda_n}}\right)\right\}\leq \widetilde B(\gamma)+\eta. $ | (53) |
Let us now recover the integral term. A Taylor expansion of
$J_j(\gamma+z) = J_j(\gamma)+J_j'(\gamma)z+\frac12 J_j''(\gamma)z^2+\eta_j(z),$ |
where
$ J_j(\gamma+z)+\frac{c_j}{j}\sum\limits_{s = 1}^jJ_1(\gamma+z_s)-J_{0,j}(\gamma) $ | (54) |
$
≤12J″j(γ)(1jj∑s=1zs)2+cj2jJ″1(γ)j∑s=1z2s+ω(max1≤s≤j|zs|)=αjjj∑s=1z2s−J″j(γ)2j2j−1∑s=1j∑m=s+1(zs−zm)2+ω(max1≤s≤j|zs|),
$
|
(55) |
where we use in the last step:
$\left(\sum\limits_{s = 1}^ja_s\right)^2 = \sum\limits_{s = 1}^ja_s^2+2\sum\limits_{s = 1}^{j-1}\sum\limits_{m = s+1}^ja_sa_m = j\sum\limits_{s = 1}^ja_s^2-\sum\limits_{s = 1}^{j-1}\sum\limits_{m = s+1}^j(a_s-a_m)^2.$ |
Combining (54) with
$ζij,n≤λn{αjji+j−1∑s=i(vs+1n−vsnλn)2+r2(n)}, $
|
for
$
K∑j=2∑i∈Qnζij,n≤K∑j=2αjjλn∑i∈Qni+j−1∑s=i(vs+1n−vsnλn)2+r2(n)=K∑j=2αjλn∑i∈Qn(vi+1n−vinλn)2+r2(n)=α∫(0,1)∖(t−ρ4,t+ρ4)v′n(x)2dx+r2(n),
$
|
(56) |
where we use in the second step the periodicity of
$lim supn→∞Eℓn(vn)=lim supn→∞K∑j=2n−1∑i=0ζij,n≤α∫10˜v′(x)2dx+2˜B(γ)−K∑j=2jψj(γ)+2η $
|
and the claim follows from
Convergence of minimization problems. The convergence of minimal energies follows from the coerciveness of
Proof of Lemma 4.3. We prove that
$ B(\gamma)-\frac12J_1(\gamma) = \widetilde B(\gamma)-\frac12\sum\limits_{j = 2}^Kjc_jJ_1(\gamma), $ | (57) |
where
$\beta = 2B(\gamma)-\sum\limits_{j = 1}^KjJ_j(\gamma) = 2\widetilde B(\gamma)-\sum\limits_{j = 2}^Kj(J_j(\gamma)+c_jJ_1(\gamma)) = 2\widetilde B(\gamma)-\sum\limits_{j = 2}^Kj\psi_j(\gamma).$ |
Let
$K∑j=2∑i≥0{Jj(ui+j−uij)+cjji+j−1∑s=iJ1(us+1−us)−J0,j(γ)}=N−1∑i=0{K∑j=2Jj(ui+j−uij)−K∑j=2J0,j(γ)}+K∑j=2cjjN−1∑i=0i+j−1∑s=iJ1(us+1−us). $
|
For given
$1jN−1∑i=0i+j−1∑s=iJ1(us+1−us)=N−1∑i=0J1(ui+1−ui)−j−1∑s=1j−sjJ1(us−us−1)+1jN−1∑i=N−j+1i+j−1∑s=NJ1(us+1−us), $
|
where the third term on the right-hand side above simplifies since
$1jN−1∑i=N−j+1i+j−1∑s=NJ1(us+1−us)=12(j−1)J1(γ). $
|
Combining the previous identities, we obtain that
$K∑j=2cjj−1∑s=1j−sjJ1(us−us−1)+K∑j=2∑i≥0{Jj(ui+j−uij)+cjji+j−1∑s=iJ1(us+1−us)−J0,j(γ)}−12K∑j=2jcjJ1(γ)=N−1∑i=0{K∑j=2Jj(ui+j−uij)−K∑j=2J0,j(γ)}+K∑j=2cjN−1∑i=0J1(ui+1−ui)−12J1(γ)=N−1∑i=0{K∑j=1Jj(ui+j−uij)−JCB(γ)}−12J1(γ)=∑i≥0{K∑j=1Jj(ui+j−uij)−JCB(γ)}−12J1(γ). $
|
By the arbitrariness of
Remark 5. In the case of nearest and next-to-nearest neighbour interactions, i.e.
$
˜B(γ)=infk∈N0min{12J1(u1−u0)+∑i≥0{J2(ui+2−ui2)+12i+1∑s=iJ1(us+1−us)−JCB(γ)}:u:N0→R,u0=0,ui+1−ui=γ if i≥k}.
$
|
This coincides with the definition of the (free) boundary layer energy
$\beta = 2\widetilde B(\gamma)-2J_{CB}(\gamma),$ |
and coincides with the corresponding jump energies defined in [5,12,19].
Remark 6. The above proof of Theorem 4.2 follows closely the arguments of the proof of [12,Theorem 4]. Next, we briefly discuss another proof, which was pointed out to us by an anonymous referee; it is rather based on an application of [12,Theorem 4] than on the methods of its proof. Firstly, we notice that for every
$ \sum\limits_{j = 1}^K\sum\limits_{i = 1}^{n-1}J_j\left(\frac{u^{i+j}-u^i}{j\lambda_n}\right) = \sum\limits_{j = 1}^K\sum\limits_{i = 0}^{n-1}\phi_j\left(\frac{u^{i+1}-u^i}{\lambda_n},\dots,\frac{u^{i+j}-u^{i+j-1}}{\lambda_n}\right), $ |
where
$ϕ1(z):=cK2J1(z),ϕj(z1,…,zj):=Jj(1jj∑s=1zs)+cjjj∑s=1J1(zs),for j=2,…,K−1,ϕK(z1,…,zK):=JK(1KK∑s=1zs)+cK2KK∑s=1J1(zs). $
|
It is straightforward to check that if
$\Phi_-(z): = \inf\left\{\sum\limits_{j = 1}^K\sum\limits_{i = 1}^{K-j+1}\frac{1}{K-j+1}\phi_j(z_i,\dots,z_{i+j-1})\,:\,\sum\limits_{s = 1}^Kz_s = Kz\right\},$ |
cf. [12,eq. (8)]. It is assumed that
$Φ−(z)=inf{K∑j=2K−j+1∑i=11K−j+1{Jj(1jj∑s=1zs)+cjjj∑s=1J1(zs)}:K∑s=1zs=Kz}, $
|
and using the assumptions on
This work was partly supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) SCHL 1706/2-1. The authors thank an anonymous referee for carefully reading the manuscript and in particular pointing out the content of Remark 6.
1. | Sabine Jansen, Wolfgang König, Bernd Schmidt, Florian Theil, Distribution of Cracks in a Chain of Atoms at Low Temperature, 2021, 22, 1424-0637, 4131, 10.1007/s00023-021-01076-7 | |
2. | Sabine Jansen, Wolfgang König, Bernd Schmidt, Florian Theil, Surface Energy and Boundary Layers for a Chain of Atoms at Low Temperature, 2021, 239, 0003-9527, 915, 10.1007/s00205-020-01587-3 | |
3. | A. S. Rodrigues, P. G. Kevrekidis, M. Dobson, N -break states in a chain of nonlinear oscillators, 2019, 99, 2470-0045, 10.1103/PhysRevE.99.022201 | |
4. | Laura Lauerbach, Stefan Neukamm, Mathias Schäffner, Anja Schlömerkemper, Continuum Limit and Homogenization of Stochastic and Periodic Discrete Systems – Fracture in Composite Materials, 2019, 19, 1617-7061, 10.1002/pamm.201900070 | |
5. | Patrick van Meurs, Discrete-to-continuum limits of interacting particle systems in one dimension with collisions, 2024, 539, 0022247X, 128537, 10.1016/j.jmaa.2024.128537 |