Citation: Thomas Hudson. Gamma-expansion for a 1D confined Lennard-Jones model with point defect[J]. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501
[1] | R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM Journal of Mathematical Analysis, 36 (2004), 1-37. doi: 10.1137/S0036141003426471 |
[2] | G. Anzellotti and S. Baldo, Asymptotic development by $\Gamma$-convergence, Applied Mathematics and Optimization, 27 (1993), 105-123. doi: 10.1007/BF01195977 |
[3] | X. Blanc, C. Le Bris and P.-L. Lions, Atomistic to continuum limits for computational materials science, M2AN. Mathematical Modelling and Numerical Analysis, 41 (2007), 391-426. doi: 10.1051/m2an:2007018 |
[4] | A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001 |
[5] | A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Mathematical Models and Methods in Applied Science, 17 (2007), 985-1037. doi: 10.1142/S0218202507002182 |
[6] | A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case, Archive for Rational Mechanics and Analysis, 146 (1999), 23-58. doi: 10.1007/s002050050135 |
[7] | A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Mathematics and Mechanics of Solids, 7 (2002), 41-66. doi: 10.1177/1081286502007001229 |
[8] | A. Braides and L. Truskinovsky, Asymptotic expansions by $\Gamma$-convergence, Continuum Mechanics and Thermodynamics, 20 (2008), 21-62. doi: 10.1007/s00161-008-0072-2 |
[9] | B. Dacorogna, "Direct Methods in the Calculus of Variations," $2^{nd}$ edition, Applied Mathematical Sciences, 78, Springer, New York, 2008. |
[10] | G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8 |
[11] | W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Archive for Rational Mechanics and Analysis, 183 (2007), 241-297. doi: 10.1007/s00205-006-0031-7 |
[12] | L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. |
[13] | to appear in Archive for Rational Mechanics and Analysis, arXiv:1202.3858. |
[14] | L. Scardia, A. Schlömerkemper and C. Zanini, Boundary layer energies for nonconvex discrete systems, Mathematical Models and Methods in Applied Science, 21 (2011), 777-817. doi: 10.1142/S0218202511005210 |
[15] | B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Modeling & Simulation, 5 (2006), 664-694. doi: 10.1137/050646251 |
[16] | E. Süli and D. F. Mayers, "An Introduction to Numerical Analysis," Cambridge University Press, Cambridge, 2003. |
[17] | G. Zanzotto, The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals, Acta Crystallographica Section A, 52 (1996), 839-849. doi: 10.1107/S0108767396006654 |