Gamma-expansion for a 1D confined Lennard-Jones model with point defect

  • Received: 01 April 2012 Revised: 01 April 2013
  • Primary: 49J45; Secondary: 70C20, 74B20, 74G65, 74Q15.

  • We compute a rigorous asymptotic expansion of the energy of a point defect in a 1D chain of atoms with second neighbour interactions. We propose the Confined Lennard-Jones model for interatomic interactions, where it is assumed that nearest neighbour potentials are globally convex and second neighbour potentials are globally concave. We derive the $\Gamma$-limit for the energy functional as the number of atoms per period tends to infinity and derive an explicit form for the first order term in a $\Gamma$-expansion in terms of an infinite cell problem. We prove exponential decay properties for minimisers of the energy in the infinite cell problem, suggesting that the perturbation to the deformation introduced by the defect is confined to a thin boundary layer.

    Citation: Thomas Hudson. Gamma-expansion for a 1D confined Lennard-Jones model with point defect[J]. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501

    Related Papers:

  • We compute a rigorous asymptotic expansion of the energy of a point defect in a 1D chain of atoms with second neighbour interactions. We propose the Confined Lennard-Jones model for interatomic interactions, where it is assumed that nearest neighbour potentials are globally convex and second neighbour potentials are globally concave. We derive the $\Gamma$-limit for the energy functional as the number of atoms per period tends to infinity and derive an explicit form for the first order term in a $\Gamma$-expansion in terms of an infinite cell problem. We prove exponential decay properties for minimisers of the energy in the infinite cell problem, suggesting that the perturbation to the deformation introduced by the defect is confined to a thin boundary layer.


    加载中
    [1] R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM Journal of Mathematical Analysis, 36 (2004), 1-37. doi: 10.1137/S0036141003426471
    [2] G. Anzellotti and S. Baldo, Asymptotic development by $\Gamma$-convergence, Applied Mathematics and Optimization, 27 (1993), 105-123. doi: 10.1007/BF01195977
    [3] X. Blanc, C. Le Bris and P.-L. Lions, Atomistic to continuum limits for computational materials science, M2AN. Mathematical Modelling and Numerical Analysis, 41 (2007), 391-426. doi: 10.1051/m2an:2007018
    [4] A. Braides, "$\Gamma$-Convergence for Beginners," Oxford Lecture Series in Mathematics and its Applications, 22, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
    [5] A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Mathematical Models and Methods in Applied Science, 17 (2007), 985-1037. doi: 10.1142/S0218202507002182
    [6] A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case, Archive for Rational Mechanics and Analysis, 146 (1999), 23-58. doi: 10.1007/s002050050135
    [7] A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Mathematics and Mechanics of Solids, 7 (2002), 41-66. doi: 10.1177/1081286502007001229
    [8] A. Braides and L. Truskinovsky, Asymptotic expansions by $\Gamma$-convergence, Continuum Mechanics and Thermodynamics, 20 (2008), 21-62. doi: 10.1007/s00161-008-0072-2
    [9] B. Dacorogna, "Direct Methods in the Calculus of Variations," $2^{nd}$ edition, Applied Mathematical Sciences, 78, Springer, New York, 2008.
    [10] G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8
    [11] W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Archive for Rational Mechanics and Analysis, 183 (2007), 241-297. doi: 10.1007/s00205-006-0031-7
    [12] L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
    [13] to appear in Archive for Rational Mechanics and Analysis, arXiv:1202.3858.
    [14] L. Scardia, A. Schlömerkemper and C. Zanini, Boundary layer energies for nonconvex discrete systems, Mathematical Models and Methods in Applied Science, 21 (2011), 777-817. doi: 10.1142/S0218202511005210
    [15] B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models, Multiscale Modeling & Simulation, 5 (2006), 664-694. doi: 10.1137/050646251
    [16] E. Süli and D. F. Mayers, "An Introduction to Numerical Analysis," Cambridge University Press, Cambridge, 2003.
    [17] G. Zanzotto, The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals, Acta Crystallographica Section A, 52 (1996), 839-849. doi: 10.1107/S0108767396006654
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3050) PDF downloads(75) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog