
NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2013.8.501
c©American Institute of Mathematical Sciences
Volume 8, Number 2, June 2013 pp. 501–527

GAMMA-EXPANSION FOR A 1D CONFINED

LENNARD-JONES MODEL WITH POINT DEFECT

Thomas Hudson

Mathematical Institute

24-29 St Giles’
Oxford, OX1 3LB, United Kingdom

(Communicated by Antonio DeSimone)

Abstract. We compute a rigorous asymptotic expansion of the energy of a

point defect in a 1D chain of atoms with second neighbour interactions. We
propose the Confined Lennard-Jones model for interatomic interactions, where

it is assumed that nearest neighbour potentials are globally convex and second

neighbour potentials are globally concave. We derive the Γ-limit for the energy
functional as the number of atoms per period tends to infinity and derive an

explicit form for the first order term in a Γ-expansion in terms of an infinite cell

problem. We prove exponential decay properties for minimisers of the energy in
the infinite cell problem, suggesting that the perturbation to the deformation

introduced by the defect is confined to a thin boundary layer.

1. Introduction. The analysis of discrete lattice systems and their relationship to
continuum mechanics is currently a growing area of study within applied analysis.
Many rigorous results have been obtained over the past ten years connecting discrete
models with continuum limits, and the area was extensively surveyed in [3]. The
most well-developed approaches have been either to apply Γ-convergence1 to discrete
energy functionals parametrised by the number of atoms per unit volume in the
model (see [1, 7, 15]), or to apply forms of the inverse function theorem to show
that for a discrete energy with the same parameter fixed, the Cauchy–Born rule
holds; i.e. for a given atomistic deformation and a certain range of atomic densities
there exist continuum deformations which are close in some norm, and have a similar
energy (see [11, 13]).

Here, we take the former approach. We build upon recent works on surface
energies in discrete systems [5, 14], which employ ‘Γ-development’ as first defined in
[2], and extensively discussed in [8]. We define energy functionals with and without
defects, and present the Confined Lennard-Jones model for interatomic interactions,
which we motivate with a formal analysis. We then investigate the scaling of the
perturbation to the energy which is introduced by the defect. We also provide a
concrete cell problem that may be used for explicit computation of the first-order
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energy, and show that a minimiser of this cell problem decays exponentially away
from the defect. This allows us to conclude that minimisers of the energies with and
without a defect are essentially the same except on a thin boundary layer around
the defect.

(a) 2D Defects (b) 1D Defect

Figure 1. Impurities and Interstitials.

1.1. Motivation. The tools developed to study the relationship between atomistic
and continuum models rely upon the high level of symmetry which is maintained
after deforming a crystal. However, the pure lattice behaviour is not the only
factor in determining the bulk properties of such materials. The last century saw a
revolution in the materials science, as it was realised that lattice defects can change
the strength of an otherwise perfect crystal by orders of magnitude. Understanding
defects, how they scale and in what rigorous ways one might modify the continuum
approximation of crystalline solids to take them into account is therefore key to
developing our understanding of how best to model and predict their behaviour.

As a first step towards this goal, we consider arguably the simplest crystalline
defect, a dilute point defect. A point defect is an interruption of the pure lattice
structure caused by substituting an atom at some lattice site with an atom of a
different type, (called an impurity) or by inserting an atom into the structure at
a point which is not a lattice site (called an interstitial). In 1D, impurities and
interstitials are essentially identical when atoms are treated as point particles with
hard-core interactions, since atoms cannot move past one another, and so it is
easy to modify the reference configuration to take such a defect into account. In
higher dimensions, the two defects are qualitatively different (see Figure 1), with an
interstitial requiring an additional point in the reference configuration which breaks
the symmetry.

The model we analyse is one-dimensional, and to avoid surface effects, we use a
periodic reference domain, so that in effect the atoms lie on a one-dimensional torus.
The defect considered is dilute since only one atom in the chain is of a different type.

By computing the Γ-limit of the sequence of energy functionals for the model
described here, we arrive at an energy which encodes some of the properties of the
minimisers of the functionals along the sequence, but no quantitative information
about the error made. Computing higher-order limits gives further, more quan-
titative control on the energy minima, and in this case will also allow us to say
something more qualitative about the minimisers.

1.2. Outline. As discussed above, we apply Γ-convergence to a sequence of atom-
istic energy functionals that depend on the parameter ε, which is the inverse of the
number of atoms per unit volume.
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In the remainder of §1, we propose a model for interatomic interactions in a
1D chain including a point defect. We then make a formal analysis of the model
to motivate this study and the Confined Lennard-Jones model which we propose,
before reformulating the problem in a format amenable to analysis in the framework
of the one-dimensional Calculus of Variations.

In §2, we derive the Γ-limit for the series of functionals defined in §1 as ε tends
to zero, and note that the introduction of the defect does not perturb the Γ-limit
at this order.

In §3, we collect and prove some results about the minimum problem for the
0th-order Γ-limit of the atomistic energies, including existence, uniqueness and reg-
ularity for minimisers.

In §4, we proceed to derive a first-order Γ-limit, expressing it in terms of a
minimisation problem in an infinite cell, and prove some properties of this minimum
problem along the way.

1.3. Physical model. For now, fix N ∈ N. We consider 2N atoms indexed by

i ∈ {−N, . . . , N − 1}

which have a spatial density of 2N/L, where L is the total length of the deformed
configuration. To make the domain periodic, we identify an atom indexed by i = N
with the atom i = −N so that we avoid boundary effects, and defining ε = 1/2N ,
we choose to take reference positions for these atoms to be

xi := iε ∈ Ωε :=
{
− 1

2 ,−
1
2 + ε, . . . , 1

2

}
.

We also define

Ω := [− 1
2 ,

1
2 ],

so that Ωε = Ω ∩ εZ. It should be noted at the outset that the choice to use 2N
atoms will not be restrictive to our analysis but will make some of the concepts
easier to elucidate, and that we will frequently write ε→ 0 to mean N →∞.

Fixing the coordinate system so that atom −N lies at 0, any configuration can
be described by a map

y : Ωε → [0, L] such that y(− 1
2 ) = 0, y( 1

2 ) = L.

We will use the shorthand

yi := y(xi),

and extend y to a map on the whole of εZ by defining

y2kN+i+1 − y2kN+i := yi+1 − yi

for any k ∈ Z.
The atoms in our model are assumed to interact through pair potentials which

decay rapidly so that it suffices to consider an interaction between atoms and their
2 immediate neighbours on either side. As explained in §1.1, all atoms except one
are of the same type, regarded as the ‘pure’ species. As in [6], the potential energy
of a bond between atoms is assumed to be expressed as a function of the relative
displacement

Djyi :=
yi+j − yi
xi+j − xi

=
yi+j − yi

jε
.
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Figure 2. Pair Potentials

In the case where all atoms are of the pure species, a bond with relative length t has
energy φ1(t) for nearest neighbours, and φ2(t) for second neighbours. The internal
energy of the configuration arising from the interatomic forces is

Eεp(y) :=

N−1∑
i=−N

φ1(D1yi) + φ2(D2yi).

Since in each configuration we assume there is a single defect, we assume without
loss of generality that the defect is at index i = 0. The energy of bonds of relative
length t between this atom and its neighbours are ψ1(t) for the nearest neighbours
and ψ2(t) for second neighbours (see Figure 2).

The introduction of the defect causes a modification of the energy which is given
by the addition of the following energy term:

Ed(y) := ψ2(D2y−2)− φ2(D2y−2) + ψ1(D1y−1)− φ1(D1y−1)

+ψ1(D1y0)− φ1(D1y0) + ψ2(D2y0)− φ2(D2y0).

Finally, we also consider dead loads fi acting on each atom. Taking as initial
positions the points L(xi + 1

2 ), the work done by these forces is

Eεf (y) :=

N−1∑
i=−N

fi
(
yi − L(xi + 1

2 )
)
.

This term can be though of as the work done by a linearisation of some external
force field near the homogeneous linear state yi = L(xi + 1

2 ). To keep notation
concise, we will frequently write ui to mean

ui := yi − L(xi + 1
2 ),

and we extend f by periodicity to a map over εZ by defining

f2kN+i = fi

for any k ∈ Z.
The total energy for the atomistic system considered is therefore

Eε(y) := Eεp(y) + Ed(y) + Eεf (y).

1.4. Formal analysis. We expect that atoms should minimise the energy Eε, and
we therefore seek to characterise the minimal energy and the states which attain
this minimum. We will consider the situation when N is large, and when the
material is behaving elastically. In this case, interatomic displacements should vary
slowly over the domain, and so we assume the Cauchy–Born hypothesis holds (for
more information, see [17]). This states that interatomic displacements follow linear
deformations of small volumes of the solid, and so we assume that

D1yi, D2yi ' Dy(xi),
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where y : Ω→ [0, L] is some suitably smooth function describing the displacement.
This means that the energy

φ1(D1yi) + φ2(D2yi) ' φ1

(
Dy(xi)

)
+ φ2

(
Dy(xi)

)
.

Motivated by this, we define W , the continuum elastic energy density to be

W (t) := φ1(t) + φ2(t). (1)

The total energy is now approximately

Eε(y) '
N−1∑
i=−N

W (Dy(xi)) + Ed(y) + Eεf (y).

We expect this energy to grow linearly as the number of atoms increases, so it makes
sense to look at the mean energy per atom, εEε, as N gets large. The size of the
defect is fixed and small, so εEd(y) should vanish as ε→ 0, and

εEε(y) ' ε
N−1∑
i=−N

W
(
Dy(xi)

)
+ fiui

' F0(y) :=

∫
Ω

W (Dy) + fudx,

where u(x) = y(x)− L(x+ 1
2 ). The minimiser of the right hand side should satisfy

the Euler–Lagrange equation for this functional,

d
dx

(
W ′(Dy)

)
= f(x).

This equation can be integrated to give

W ′(Dy) = σ(x) + Σ, where σ(x) =

∫ x

−1/2

f(t) dt.

The defect should then contribute a further term proportional to its size, O(ε), to
the energy. Since the mean energy is only perturbed by a small amount, we should
expect that any perturbation to the minimiser would also occur close to the defect,
due to the mismatch between φi and ψi there. The defect always remains at i = 0,
so when N is large, we make the ansatz that close to the defect D1yi ' F0 + ri,
where F0 := Dy(0) and ri is a small perturbation. Defining2

σε−N := − 1
2εf−N and σεi := σεi−1 + εfi−1,

then integrating by parts, we can rewrite the external force terms as

N−1∑
i=−N

fiui = −
N−1∑
i=−N

σεi D1ui and

∫
Ω

fudx = −
∫

Ω

σDu dx.

This then means the additional contribution is

εEε(y)−F0(y)

ε
' Ẽ∞(r) := Ẽd(r)+

∞∑
i=−∞

(
φ1

(
F0+ri

)
+φ2

(
F0+ ri+ri+1

2

)
−W (F0)

+ σ(0)
(
F0 + ri − L

)
− σ(0)

(
F0 − L

))
,

2The definition of σε
−N given here is used for technical reasons during the course of §4.1; this

formal analysis does not appear to require this choice.
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where we have defined

Ẽd(r) := ψ2(F0 + r−2+r−1

2 )− φ2(F0 + r−2+r−1

2 ) + ψ1(F0 + r−1)− φ1(F0 + r−1)

+ ψ1(F0 + r0)− φ1(F0 + r0) + ψ2(F0 + r0+r1
2 )− φ2(F0 + r0+r1

2 ).

The integrated Euler–Lagrange equation for F0 gives

Ẽ∞(r) ' Ẽd(r) +

∞∑
i=−∞

φ1

(
F0 + ri

)
+ φ2

(
F0 + ri+ri+1

2

)
−W (F0)−

(
W ′(F0)−Σ

)
ri.

The sum of the Σ ri terms should vanish due to the boundary conditions. Since we
expect decaying solutions, we assign the ‘core’ of the defect an energy Ẽc(r), and
expand in ri outside some radius R, giving

Ẽ∞(r) ' Ẽc(r) + 1
2

∑
|i|≥R

φ′′1(F0)r2
i + φ′′2(F0)

( ri+ri+1

2

)2
.

For a minimiser of this energy, the ri should approximately satisfy
1
2φ
′′
2(F0)(ri−1 + ri) + φ′′1(F0)ri + 1

2φ
′′
2(F0)(ri + ri+1) = 0.

Making the usual ansatz ri = aλi, a solution must satisfy
1
2φ
′′
2(F0) +W ′′(F0)λ+ 1

2φ
′′
2(F0)λ2 = 0.

If φ1 and W are convex and φ2 is concave at F0, as is the case in Lennard-Jones
type pair potentials, then a straightforward analysis of the roots of this equation
implies that there are two positive real roots which multiply to give 1. These
two roots correspond to an exponentially decaying solution and an exponentially
growing solution.

Rigorous versions of these formal results will be the subject of this paper, and
motivate the assumptions we make about the potentials and external force in the
following section.

1.5. Confined Lennard-Jones model. Motivated by the formal analysis carried
out in the previous section, this section details the assumptions that we make about
the pair potentials and external force field.

We will assume that all potentials φi and ψi are C2 on the interval (0,∞).
Additionally, we assume the potentials and external forces satisfy the following
conditions.

1. The nearest neighbour potentials are infinite for negative bond lengths and
blow up as bond lengths approach zero, i.e.

φ1(t), ψ1(t) = +∞ for t ≤ 0,

lim
t↘0

φ1(t) = +∞ and lim
t↘0

ψ1(t) = +∞.

2. The nearest neighbour potentials are l-convex, i.e. for any t > 0,

φ′′1(t), ψ′′1 (t) ≥ l > 0.

3. The second neighbour potentials φ2 and ψ2 are concave.
4. The second neighbour potentials φ2 and ψ2 are ‘dominated’ by the nearest

neighbour potentials φ1 and ψ1, i.e. there exist constants α ∈ (0, 1) and
C ∈ R such that

φ2(t) ≥ −αφ1(t) + C, φ2(t) ≥ −αψ1(t) + C,

ψ2(t) ≥ −αφ1(t) + C, ψ2(t) ≥ −αψ1(t) + C.
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Figure 3. Possible choices of φ1 and φ2 with the assumptions
prescribed which approximate a Lennard-Jones potential, φLJ.

5. The ‘pure’ potentials are such that the resulting continuum elastic potential
is l-convex, i.e. defining W as in (1), for any t > 0,

W ′′(t) = φ′′1(t) + φ′′2(t) ≥ l.

6. We assume fi = f(xi) where f ∈ C2(Ω).

Remark 1. Assumption (1) prevents atoms from exchanging positions with respect
to the reference configuration, and ensures that we prevent plastic deformation.

Assumptions (2) and (3) are made to simulate the behaviour of a Lennard-Jones
type potential, which is convex for short bond lengths, and then concave after for
any bond length past some critical length; see for example Figure 3. When under
strains in the elastic regime, the nearest neighbours lie in the convex part of the
potential, and all other atoms lie in the concave part.

Assumption (4) enforces the elastic behaviour of the material and prevents frac-
ture from being favourable.

Assumption (5) prevents any form of microstructure from forming, but since the
decay of Lennard-Jones potentials used in applications is always relatively rapid,
this assumption is reasonable, and for the sake of clarity we avoid significant com-
plications to our analysis.

These assumptions imply the following facts which we will use frequently through-
out this paper. The fact that φ2 is concave implies that

1
2φ1(a) + 1

2φ1(b) + φ2

(
a+b

2

)
≥ 1

2W (a) + 1
2W (b). (2)

By using the concavity of the second neighbour potentials again, we have

1
2φ1(a) + ψ2(a+b

2 ) + ψ1(b) + φ2( b+c2 ) + ψ1(c) + ψ2( c+d2 ) + 1
2φ1(d)

≥ 1
2

(
φ1(a) + ψ2(a)

)
+
(
ψ1(b) + 1

2φ2(b) + 1
2ψ2(b)

)
+
(
ψ1(c) + 1

2ψ2(c) + 1
2φ2(c)

)
+ 1

2

(
φ1(d) + ψ2(d)

)
.
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Assumption (4), that the behaviour of nearest neighbour potentials dominates, im-
plies that

1
2φ1(a) + ψ2(a+b

2 ) + ψ1(b) + φ2( b+c2 ) + ψ1(c) + ψ2( c+d2 ) + 1
2φ1(d)

≥ (1− α)
(

1
2φ1(a) + ψ1(b) + ψ1(c) + 1

2φ1(d)
)

+ 3C,

≥ 1
2 l
(

1
2a

2 + b2 + c2 + 1
2d

2
)

+ 3C, (3)

where on the last line we have adjusted the definition of l to keep estimates con-
cise throughout this paper. This estimate will allow us to prove coercivity results
which ensure that sequences of deformations with uniformly bounded energies are
compact.

1.6. Function spaces and topologies. In this section we define the topologies
with respect to which we will carry out our analysis.

Throughout this paper, we use the usual notation for Lebesgue and Sobolev
spaces, and use ‖ · ‖p and ‖ · ‖1,p to denote the usual norms on Lp(Ω) and W1,p(Ω).
We write yε → y in Lp or yε → y in W1,p (or H1) to mean

‖yε − y‖p → 0 or ‖yε − y‖1,p → 0

respectively. We will also refer to convergence in the weak topology on H1(Ω); we
say yε ⇀ y or yε converges weakly to y in H1 if for any f ∈ H−1(Ω),

〈f, yε〉 → 〈f, y〉,
where 〈 · , · 〉 is the usual inner product on H1(Ω).

Since we wish to find the Γ-limit of the sequence of energy functionals εEε

defined above, we need to ensure they are defined over the same space. Following
Braides, Dal Maso and Garroni in [6], we associate any discrete deformation yε with
a piecewise linear interpolant defined everywhere on Ω,

yε(x) := yεi +D1y
ε
i (x− xi) for any x ∈ (xi, xi+1).

For each choice of ε, these linear interpolants lie in the spaces

P1
ε(Ω) :=

{
y ∈W1,∞(Ω) : y is linear on (xi, xi+1), xi, xi+1 ∈ Ωε

}
.

The admissible deformations Aε(L) are defined to be the set of such interpolants
with the correct boundary conditions:

Aε(L) :=
{
y ∈ P1

ε(Ω) : y(− 1
2 ) = 0, y( 1

2 ) = L
}
.

For any ε,

Aε(L) ⊆ A(L) :=
{
y ∈ H1(Ω) : y(− 1

2 ) = 0, y( 1
2 ) = L

}
;

in fact, in the weak topology on H1(Ω), it is well-known that the sequential closure

∞⋃
N=1

Aε(L) = A(L).

In §2.1, we will show that this topology arises from the assumptions made in §1.5.
Since the H1(Ω) embeds into C0(Ω), we define the projection operator T ε :

A(L)→ Aε(L) as being(
T εy

)
(x) := yi +D1yi(x− xi) for any x ∈ (xi, xi+1),

where yi = y(xi) as before.
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We are now in a position to suitably extend the functionals εEε so that we can
take a Γ-limit. Guided by other work for similar models (amongst others, see those
used in [5, 6, 7]) we define Fε : A(L)→ R to be

Fε(y) :=

{
εEε(y) y ∈ Aε(L)

+∞ otherwise.

2. The 0th-order Γ-limit. Our first result gives the first term in the Γ-expansion
of Fε.
Theorem 2.1 (0th-order Γ-limit). With respect to convergence in L2,

Γ– lim
ε→0

Fε(y) = F0(y) :=

∫
Ω

W (Dy) + f
(
y − L(x+ 1

2 )
)

dx.

The Γ-convergence of the internal energy in this result is already covered by
Theorem 3.2 in [5], but we present a complete proof here in order to demonstrate
the special structure of the Confined Lennard-Jones model described in §1.5. By
exploiting the convexity and concavity of the potentials, we do not have to resort
to a homogenisation formula to prove the liminf inequality.

As with any Γ-convergence result, we need to prove the relevant liminf and limsup
inequalities. We present the proofs of these inequalities in turn.

2.1. The liminf inequality. The liminf inequality is the following statement:

Proposition 1. If yε → y in L2 then

lim inf
ε→0

Fε(yε) ≥ F0(y).

To prove this, we use the fact that if

sup
ε>0
Fε(yε) < +∞ and yε → y in L2,

then yε ⇀ y. This equicoercivity result is encoded in Lemma 2.2. We then prove
that Fε(yε) is approximately bounded below by F0(yε) for any given deformation
yε ∈ Aε(L), and finally we can use the fact that F0 is lower semicontinuous with
respect to weak convergence in H1 to obtain the inequality required.

Lemma 2.2 (Weak H1 coercivity). If yε → y in L2 and Fε(yε) is uniformly bounded
for all ε > 0, then yε ⇀ y in H1.

The proof of this result relies upon the growth assumptions and estimates made
in §1.5, and is inspired by the argument used in the proof of Theorem 4.5 in [4].

Proof. First, we estimate the energy below away from the defect. For ease of read-
ing, let

Pε := {−N, . . . , N − 1} \ {−2,−1, 0},
i.e. the set of indices which have only pure interactions with their two neighbours
on the right. We now use the inequalities from the end of §1.5. The estimate made
in (2), and the l-convexity of W imply that for any y ∈ Aε(L)

ε
∑
i∈Pε

1
2φ1(D1yi) + φ2(D2yi) + 1

2φ1(D1yi+1) ≥ ε
∑
i∈Pε

1
2W (D1yi) + 1

2W (D1yi+1),

≥ ε
∑
i∈Pε

1
4 l
(∣∣D1yi

∣∣2 +
∣∣D1yi+1

∣∣2)+ C.

(4)
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The estimate made in (3) then allows us to bound the energy coming from bonds
near the defect below.

1
2φ1(D1y−2) + ψ2(D2y−2) + ψ1(D1y−1) + φ2(D2y−1) + ψ1(D1y0)

+ ψ2(D2y0) + 1
2φ1(D1y1) ≥

0∑
i=−2

1
4 l
(
|D1yi|2 + |D1yi+1|2

)
+ C. (5)

Combining these estimates, we have that

εEεp(yε) + εEd(yε) ≥ ε
N−1∑
i=−N

(
1
2 l
∣∣D1y

ε
i

∣∣2 + C
)

= 1
2 l ‖Dy

ε‖22 + C. (6)

Finally, Lemma 5.3 in [6] implies that

εEεf (yε)→
∫

Ω

f
(
y − L(x+ 1

2 )
)

dx,

so it follows that εEεf (yε) is uniformly bounded. Combining this fact with estimate
(6), the uniform bound on Fε implies

sup
ε>0
‖Dyε‖2 < +∞.

The argument is now concluded via the standard result that yε ⇀ y in H1 if and
only if ‖yε‖1,2 is uniformly bounded and yε → y in L2(Ω).

Remark 2. Lemma 2.2 can be interpreted as saying that if the mean energy
is bounded along some sequence of atomistic deformations, then the interatomic
strains do not get too large, since they are compact in the weak topology on H1(Ω).
This reinforces the notion that we are in an elastic regime.

Lemma 2.2 permits us to use the fact that as W is l-convex, the map

y 7−→
∫

Ω

W (Dy) dx (7)

is lower semicontinuous with respect to weak convergence in H1(Ω) (see for example
Corollary 2.31 in [4]). Fix δ > 0. The estimates made in (4) and (5) imply that

εEεp(yε) + εEd(yε) ≥
∫

Ω\(−δ,δ)
W (Dyε) dx+ C δ.

Using Lemma 2.2 and the weak lower semicontinuity of (7), we have that

lim inf
ε→0

(
εEεp(yε) + εEd(yε)

)
≥ lim inf

ε→0

∫
Ω\(−δ,δ)

W (Dyε) dx+ C δ,

≥
∫

Ω\(−δ,δ)
W (Dy) dx+ C δ.

Since δ was arbitrary, we let δ → 0, giving

lim inf
ε→0

(
εEεp(yε) + εEd(yε)

)
≥
∫

Ω

W (Dy) dx. (8)
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Finally, convergence of the external force term is a consequence of Lemma 5.3 in
[6]. This result implies that if yε → y in L2(Ω) and ‖Dyε‖2 is uniformly bounded,
then we have that

εEεf (yε)→
∫

Ω

f
(
y − L(x+ 1

2 )
)

dx, (9)

and combining (8) and (9) proves Proposition 1.

2.2. The limsup inequality. Now we have obtained the liminf inequality, we need
to prove the limsup inequality to complete the proof of Theorem 2.1.

Proposition 2. For any y ∈ A(L), there exists a sequence of yε ∈ Aε(L) such that
yε → y in L2 and

lim sup
ε→0

Fε(yε) ≤ F0(y).

The construction of the sequence yε requires a diagonal argument which is similar
in flavour to that employed in the proof of Theorem 4.5 in [4]. This argument
proceeds in two steps. In the first step, the convexity of W is exploited to show
that a naive approximation of y ∈ A(L) by T εy works for the ‘pure’ part of the
energy. By linearising deformations near the defect, and therefore controlling the
behaviour of the energy there, we can take a diagonal sequence to arrive at the
correct inequality. Note that the inequality is trivial if F0(y) = +∞, so we only
need consider y ∈ A(L) such that F0(y) < +∞.

Fix y ∈ A(L), and define the integrand

Wε(x) :=

N−1∑
i=−N

(
1
2φ2(D2yi−1) + φ1(D1yi) + 1

2φ2(D2yi)
)
· χi(x),

where χi(x) is the indicator function for the interval (xi, xi+1). Note that by con-
struction, ∫

Ω

Wε(x) dx = εEεp(y).

We will apply Fatou’s lemma to the functions Wε.

Almost everywhere convergence of Wε. For any x ∈ Ω, define the sequence iε :=
bNxc ∈ Z. Then

xε := εiε → x

as ε→ 0, and applying Lebesgue’s Differentiation Theorem (see for example Corol-
lary 2 in §1.7 of [12]) gives that for almost every x ∈ Ω,

Djyiε = −
∫ xε+jε

xε

Dy(t) dt→ Dy(x)

as ε→ 0. An immediate consequence of this and the continuity of the potentials φi
is that

Wε(x)→W
(
Dy(x)

)
for almost every x ∈ Ω.
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Pointwise upper bound on Wε. Fix a point x ∈ Ω and the sequence iε as above.
Dropping the subscript, we estimate

Wε(x) ≤ 1
2φ2(D2yi−1) + 1

2φ1(D2yi−1) + φ1(D1yi) + 1
2φ1(D2yi) + 1

2φ2(D2yi) + C,

= 1
2W (D2yi−1) + φ1(D1yi) + 1

2W (D2yi) + C,

where −C ∈ R is a lower bound for φ1. Next, Assumption (4) in §1.5 implies that
for some C ∈ R,

1
1−αW (t) + C ≥ φ1(t).

Hence, letting A := max{ 1
2 ,

1
1−α},

Wε(x) ≤ A
(
W (D2yi−1) +W (D1yi) +W (D2yi)

)
+ C,

≤ A
(
−
∫ xi+1

xi−1

W (Dy) dx+−
∫ xi+1

xi

W (Dy) dx+−
∫ xi+2

xi

W (Dy) dx

)
+ C

by using Jensen’s inequality. Since W is bounded below, we can extend the domain
of integration for each integral, possibly changing the constant C, to reach the upper
bound

Wε(x) ≤ gε(x) := 3A−
∫ x+2ε

x−2ε

W (Dy) dt+ C.

Convergence of gε. As F0(y) is bounded, W (Dy) is integrable and so Lebesgue’s
Differentiation theorem implies that

gε(x)→ g(x) := 3AW (Dy(x)) + C

almost everywhere as ε→ 0. Furthermore, gε is in fact the convolution

gε = g ? ρε,

where ρε is an approximation to a Dirac mass given by

ρε(x) :=
1

4ε
ρ

(
x

4ε

)
, where ρ(x) = χΩ(x).

The functions gε are in L1(Ω) because g ∈ L1(Ω) and ρε ∈ L∞(Ω), and by standard
arguments ∫

Ω

gε(x) dx→
∫

Ω

g(x) dx

as ε→ 0. We can now apply Fatou’s Lemma to gε−Wε, which is positive, measur-
able, and converges almost everywhere:∫

Ω

g dx− lim sup
ε→0

∫
Ω

Wε dx = lim inf
ε→0

∫
Ω

gε −Wε dx ≥
∫

Ω

g −W (Dy) dx.

A rearrangement of this inequality allows us to conclude that

lim sup
N→∞

εEεp(yε) = lim sup
N→∞

∫
Ω

Wε dx ≤
∫

Ω

W (Dy) dx. (10)
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Controlling the energy near the defect. For any y ∈ A(L) and η > 0, let yη be a
linearisation close to 0 of y ∈ A(L) given by

yη(x) :=

{
y(−η) + y(η)−y(−η)

2η (x+ η) when |x| < η,

y(x) otherwise.

Let F η := Dyη(0). For ε sufficiently small, the defect energy for T εyη is:

εEd(T εyη) = 2ε
(
ψ2(F η)− φ2(F η) + ψ1(F η)− φ1(F η)

)
≤ C(η)ε (11)

with η fixed. To control εEεf , we can once again employ the estimate that was
proven in (9), since the argument used was for a more general sequence than that
chosen here. Therefore, combining (9), (10) and (11), we deduce that

lim sup
ε→0

Fε(T εyη) ≤ F0(yη).

Since yη → y in L2 as η → 0, we would like to show that F0(yη)→ F0(y) as η → 0
in order to use a diagonalisation argument. This follows from the observation that

2η · C ≤
∫ η

−η
W (Dyη) dx ≤

∫ η

−η
W (Dy) dx,

since W is bounded below and convex. Both sides tend to 0 as η → 0, so we can
deduce that

F0(yη) =

∫
Ω

W (Dyη) + f
(
yη − L(x+ 1

2 )
)

dx,

≤
∫

Ω\(−η,η)

W (Dy) dx+

∫ η

−η
W (Dyη) +

∫
Ω

f u dx+ ‖f‖2‖yη − y‖2,

→ F0(y)

as η → 0, writing u = y − L(x+ 1
2 ).

Conclusion of the argument. Finally, by taking a diagonal sequence from the col-
lection of T εyη, there exists T εyηε → y in L2, along which

lim sup
ε→0

Fε(T εyηε) ≤ F0(y),

proving Proposition 2, and therefore concluding the proof of Theorem 2.1.

Remark 3. The defect does not introduce a perturbation to the Γ-limit at this
order – see Theorem 3.2 in [5] for the Γ-limit of this problem without a defect. This
is to be expected, since the ‘defect set’ is null in the limit as ε→ 0, and it therefore
becomes reasonable to ask whether there is a higher order change in the energy,
which is the subject of the subsequent analysis.

3. Properties of F0. The functional F0 is of a well-studied form, and the analysis
of the minimum problem is classical. The following theorem collects relevant results
regarding the functional and its minimisers which we will invoke in the following
sections.

Proposition 3 (Properties of 0th-order limit). The problem

argminy∈A(L)F0(y)

has a unique solution ȳ, which has the following properties:

1. ȳ satisfies the Euler–Lagrange Equations for this problem,
2. ȳ ∈ C2(Ω).
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Proof. The existence part of this proof is completely classical, and can be found in
[9] for example. If we suppose for the moment that minimisers are in W1,∞(Ω) and
satisfy the condition

Dȳ(x) ≥ δ > 0

for almost every x ∈ Ω, it is also easy to show that they satisfy∫
Ω

[
W ′
(
Dȳ
)
− σ

]
Dv dx = 0 ∀ v ∈W1,∞

0 (Ω), (12)

where σ(x) :=
∫ x

0
f(t) dt. Since W is l-convex, W ′ : R+ → R is strictly increas-

ing and is a C1 diffeomorphism. If (W ′)−1 is the inverse of W ′, it is possible to
‘explicitly’ define a solution of the Euler–Lagrange equations

ȳ(x) :=

∫ x

− 1
2

(W ′)−1
(
σ(t) + Σ

)
dt,

where Σ is the solution of the following implicit equation:∫
Ω

(W ′)−1
(
σ(t) + Σ

)
dt = L.

We can show that this equation has a solution by regarding the left hand side as a
function of Σ, showing it is C1, has a strictly positive derivative, and tends to 0 as
Σ→ −∞, so attains all possible values L > 0 only once. It is now simple to verify
that ȳ is C2 and satisfies the pointwise Euler–Lagrange equation, that is

d
dxW

′(Dȳ(x)
)

= f(x) ⇒ W ′
(
Dȳ(x)

)
= σ(x) + Σ, (13)

so all that remains to do is show that this is in fact the minimiser. Suppose that
ỹ ∈ A(L) minimises F0 and is not equal to ȳ; then

0 ≥
∫

Ω

W (Dỹ)−W (Dȳ) + f(ỹ − ȳ) dx,

=

∫
Ω

W (Dỹ)−W (Dȳ)− σ
(
Dỹ −Dȳ

)
dx,

≥
∫

Ω

[
W ′(Dȳ)− σ

]
·
(
Dỹ −Dȳ

)
dx+ 1

2 l‖Dỹ −Dȳ‖
2
2,

where we have integrated by parts on the second line, and used the fact that W is
l-convex on the last line. Since ȳ has been constructed to solve the pointwise Euler–
Lagrange equation (13), the integrand vanishes, and hence ỹ = ȳ. This argument
clearly also implies uniqueness of solutions.

4. The 1st-order Γ-limit. The approach taken in §2.2 gives a strong indication of
the scaling of the next term in an asymptotic expansion of the energy: (11) suggests
that the extra energy from the defect is only coming from a set near the defect that
is of size O(ε). §3 shows that we have a very clear understanding of the properties
of ȳ, and thus we can reasonably hope to derive a good characterisation of the next
order limit, as in [5, 14].

For this purpose, we define some additional notation. Recalling from Section 3
that

ȳ = argminy∈A(L)F0(y),

the functional from which we obtain the first-order limit is

Fε1 (y) :=
Fε(y)−F0(ȳ)

ε
.
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To make the notation used in this section concise, we let F0 := Dȳ(0) as in §1.4,
and define potentials

Φ1(t) := φ1(F0 + t)− φ1(F0)− φ′1(F0) · t,
Φ2(t) := φ2(F0 + t)− φ2(F0)− φ′2(F0) · t.

We also analogously introduce

Ψ1(t) := ψ1(F0 + t)− φ1(F0)− φ′1(F0) · t,
Ψ2(t) := ψ2(F0 + t)− φ2(F0)− φ′2(F0) · t,

although these functions will be used exclusively to write the Euler–Lagrange equa-
tions for Ẽ∞ (28) in a compact form.

We will show that the first-order Γ-limit can be written in terms of the infinite
cell problem

inf
r∈`2(Z)

Ẽ∞(r),

where Ẽ∞ : `2(Z)→ R ∪ {+∞} is defined to be

Ẽ∞(r) :=


∞∑

i=−∞
Φ1(ri) + Φ2( ri+1+ri

2

)
+ Ẽd(r), F0 + ri > 0 for all i ∈ N,

+∞ otherwise,

and we have set

Ẽd(r) := ψ2

(
F0 + r−2+r−1

2

)
− φ2

(
F0 + r−2+r−1

2

)
+ ψ1

(
F0 + r−1

)
− φ1

(
F0 + r−1

)
+ ψ1

(
F0 + r0

)
− φ1

(
F0 + r0

)
+ ψ2

(
F0 + r0+r1

2

)
− φ2

(
F0 + r0+r1

2

)
.

We briefly show that Ẽ∞ is well-defined. It is straightforward to check that Φ2 is
concave because φ2 is concave, hence

Ẽ∞(r) ≥
∞∑

i=−∞
Φ1(ri) + Φ2(ri) + Ẽd(r).

Furthermore, the fact that W is l-convex implies

Φ1(t) + Φ2(t) = W (F0 + t)−W (F0)−W ′(F0)t ≥ 1
2 l t

2, (14)

and for i ∈ {−2,−1, 0, 1}, as in (5), there exists some constant C ∈ R such that

1∑
i=−2

(
1
2Φ1(ri) + 1

2Φ1(ri+1) + Φ2

( ri+ri+1

2

))
+ Ẽd(r) ≥

1∑
i=−2

1
2 l |ri|

2 + C.

Hence we have that

Ẽ∞(r) ≥ 1
2 l‖r‖

2
`2(Z) + C, (15)

and Ẽ∞ is well-defined as a function mapping `2(Z) into R ∪ {+∞}.
The second main result of this paper is the following theorem.

Theorem 4.1 (1st-order Γ-limit). With respect to convergence in L2, we have that

Γ– lim
ε→0

Fε1 (y) = F1(y) :=

 inf
r∈`2(Z)

Ẽ∞(r) y = ȳ,

+∞ y 6= ȳ.
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In contrast to the results of [5, 14], we emphasise that we have an explicit repre-
sentation of the 1st-order limit in terms of a minimisation problem in an infinite cell.
Once more, the proof of this result divides into two parts, the liminf and limsup
inequalities, which we prove in the next two sections.

4.1. The liminf inequality. The liminf inequality is the following statement.

Proposition 4. If yε → y in L2, then

lim inf
ε→0

Fε1 (yε) ≥ F1(y).

As in the proof of Proposition 1, we use a coercivity result which says uniform
boundedness of Fε1 (yε) implies a form of compactness for the sequence yε. In this
proof, there are two such results, which are employed at crucial steps in the main
argument. The first of these results, Lemma 4.2, states that if Fε1 (yε) is uniformly
bounded then the weak convergence of yε in H1 proven in Lemma 2.2 improves
to strong convergence in H1. The second, Lemma 4.4, describes coercivity in a
topology which we use to describe perturbations to the minimiser of F0 close to the
defect. Once these results have been obtained, the main argument will follow by
applying Fatou’s Lemma to a suitable reinterpretation of Fε1 (yε).

We remark at the outset that to simplify the notation, we write u, uε and ū in
place of y − L(x+ 1

2 ), yε − L(x+ 1
2 ) and ȳ − L(x+ 1

2 ) respectively.
The first key step before proving the coercivity results is to rewrite Fε1 (yε) and

F0(ȳ) by using integration by parts on the external force terms. We have that∫
Ω

fūdx = −
∫

Ω

σDūdx,

using the boundary conditions, where σ(x) :=
∫ x
−1/2

f(t) dt as in §1.4. Analogously,

recursively define3

σε−N := − 1
2εf−N ,

σεi := σεi−1 + εfi−1.

This leads to the representation

N−1∑
i=−N

fi ui =

N−1∑
i=−N

σεi+1 − σεi
ε

ui = −
N−1∑
i=−N

σεi+1D1ui.

We define the step function σε : Ω→ R

σε(x) :=

N−1∑
i=−N

σεi+1 χ(xi,xi+1)(x),

so that if y ∈ Aε(L),

εEεf (y) = −
∫

Ω

σεDudx.

3Initially, the definition of σε
−N can be left free; however, the particular choice of σε

−N given

here will be used to obtain (21), a pointwise estimate on σ − σε during the proof of Lemma 4.2.
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Using these definitions, we perform careful estimates of Fε1 (yε) by splitting the
domain of integration over the intervals (xi, xi+2). For yε ∈ Aε(L), define

sεi := φ2(D2y
ε
i ) + 1

2φ1(D1y
ε
i ) + 1

2φ1(D1y
ε
i+1)− 1

2σ
ε
i+1D1u

ε
i − 1

2σ
ε
i+2D1u

ε
i+1

−−
∫ xi+2

xi

W (Dȳ)− σDū+ Σ
(
Dyε −Dȳ

)
dx. (16)

if i ∈ {−N, . . . , N − 1}, and set sεi := 0 otherwise. Then it is easy to check that

Fε1 (yε) =

∞∑
i=−∞

sεi + Ed(yε). (17)

We are now in a position to prove the coercivity results.

Lemma 4.2 (Strong H1 coercivity). If yε → y in L2, and Fε1 (yε) is uniformly
bounded for all ε > 0, then yε → ȳ in H1.

Proof. Since Fε1 (yε) is uniformly bounded, we know that for some C ∈ R,∣∣Fε(yε)−F0(ȳ)
∣∣ ≤ Cε,

which immediately implies that Fε(yε) → F0(ȳ) as ε → 0. Consequently, Lemma
2.2 applies and so ‖Dyε‖2 is uniformly bounded. Let i ∈ {−N, . . . , N − 1}. We
estimate sεi below:

sεi ≥ −
∫ xi+2

xi

(
W (Dyε)−W (Dȳ)− σεDuε + σDū− Σ

(
Dyε −Dȳ

))
dx,

≥ −
∫ xi+2

xi

(
W ′(Dȳ)

(
Dyε −Dȳ

)
+ 1

2 l |Dy
ε −Dȳ|2

− σεDuε + σDū− Σ
(
Dyε −Dȳ

))
dx,

using the concavity of φ2 on the first line, and the l-convexity of W on the second.
Next, as ȳ satisfies the pointwise Euler–Lagrange equation (13),

sεi ≥ −
∫ xi+2

xi

(
σ
(
Dyε −Dȳ

)
+ 1

2 l |Dy
ε −Dȳ|2 − σεDuε + σDū

)
dx,

≥ −
∫ xi+2

xi

((
σ − σε

)
Duε + 1

2 l |Dy
ε −Dȳ|2

)
dx. (18)

The latter term in the above integral is of the form we are looking for, so it now
remains to show that the other term vanishes in the limit. Once this is done, we
then show that the defect energy is also suitably bounded below.

Pointwise estimate on σ−σε. Noting that Duε is constant on the intervals (xi, xi+1)
and using the definitions of σ and σε, we rewrite

−
∫ xi+1

xi

(
σ − σε

)
dx = −

∫ xi+1

xi

(∫ x

−1/2

f(t) dt− ε
i−1∑
j=−N

1
2

(
fj + fj+1

)
− 1

2εfi

)
dx,

=

∫ xi

−1/2

(
f(t)−

(
T εf

)
(t)
)

dt+−
∫ xi+1

xi

(∫ x

xi

f(t) dt− 1
2εfi

)
dx.
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Since we know that f ∈ C2, standard results about interpolation error (see for
example [16]) imply that∣∣∣∣ ∫ xi

−1/2

(
f(t)−

(
T εf

)
(t)
)

dt

∣∣∣∣ ≤ 1
12ε

2‖f ′′‖∞. (19)

For the other term, we Taylor expand f(t) at xi, then evaluate integrals to show
that ∣∣∣∣−∫ xi+1

xi

∫ x

xi

f(t) dt− 1
2εfi dx

∣∣∣∣ ≤ 1
6ε

2‖f ′‖∞. (20)

Combining (19) and (20), we have∣∣∣∣−∫ xi+2

xi

(σ − σε)Duε dx

∣∣∣∣ ≤ ( 1
12ε

2‖f ′′‖∞ + 1
6ε

2‖f ′‖∞
) |D1u

ε
i |+ |D1u

ε
i+1|

2
,

≤ Cε2
(
|D1u

ε
i |2 + |D1u

ε
i+1|2

)1/2

,

≤ Cε3/2‖Duε‖2, (21)

where on the second line we used Jensen’s inequality, and on the third line we used
ε1/2 and added further positive terms inside the brackets to get the estimate. This
can be used in (18) to give

sεi ≥ −Cε3/2‖Duε‖2 + 1
2 l−
∫ xi+2

xi

|Dyε −Dȳ|2 dx. (22)

Lower bound on defect energy. Using (5), the fact that W (Dȳ)−(σ+Σ)Dū is finite
and estimate (21),

0∑
i=−2

sεi + Ed(yε) ≥
0∑

i=−2

1
4 l
(∣∣D1y

ε
i

∣∣2 +
∣∣D1y

ε
i+1

∣∣2)+ C

−−
∫ xi+2

xi

(
σεDuε + ΣDuε

)
dx,

=

0∑
i=−2

−
∫ xi+2

xi

(
1
2 l |Dy

ε|2 − σDuε

− (σε − σ)Duε − ΣDuε
)

dx+ C,

≥
0∑

i=−2

−
∫ xi+2

xi

(
1
2 l |Dy

ε|2 − ‖σ + Σ‖∞|Duε|+ C
)

dx

− Cε3/2‖Dyε‖2.

Since Dȳ is bounded above and below, by adjusting constants suitably we have that

0∑
i=−2

sεi + Ed(yε) ≥
0∑

i=−2

−
∫ xi+2

xi

1
2 l |Dy

ε −Dȳ|2 dx+ C − Cε3/2‖Dyε‖2. (23)

Conclusion of the argument. By summing over i in (22), combining with (23), and
using the fact that ‖Dyε‖2 is uniformly bounded, we have shown that

Fε1 (yε) ≥ −Cε1/2 + 1
2 l

N−1∑
i=−N

−
∫ xi+1

xi

|Dyε −Dȳ|2 dx+ C.
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Multiplying this inequality by ε and using the assumption that Fε1 (yε) is uniformly
bounded, we have

Cε ≥ 1
2 l‖Dy

ε −Dȳ‖22, (24)

which proves the result.

To prove the second coercivity result, we define the sequence of operators Pε :
Aε(L)→ `2(Z) by

(
Pεy

)
i

:=

{
D1yi −D1ȳi i ∈ {−N, . . . , N − 1}
0 otherwise.

Clearly Pεy is well-defined since this sequence is non-zero only on a finite set.

Lemma 4.3 (Weak `2(Z) coercivity). If Fε1 (yε) is uniformly bounded, then there
exists a subsequence of Pεyε which converges weakly in `2(Z).

Proof. By dividing (24) by ε and using Jensen’s inequality, we have

C ≥ 1
2 l

N−1∑
i=−N

−
∫ xi+1

xi

|Dyε−Dȳ|2 dx ≥ 1
2 l

N−1∑
i=−N

∣∣∣∣−∫ xi+1

xi

Dyε−Dȳ dx

∣∣∣∣2 = 1
2 l‖Pεy

ε‖2`2(Z).

We have shown that the sequence Pεyε is uniformly bounded in `2(Z), so in partic-
ular, it must have a weakly convergent subsequence.

To conclude the argument which will prove the liminf inequality, we will use the
following characterisation of weak convergence in `2(Z) which follows easily from
the Riesz Representation Theorem.

Lemma 4.4. A sequence (rε) ⊆ `2(Z) converges weakly to r ∈ `2(Z) as ε → 0 if
and only if the following two conditions hold:

1. ‖rε‖`2 is uniformly bounded,
2. rε → r pointwise (almost everywhere in the counting measure) as ε→ 0.

As indicated at the beginning of this section, we apply Fatou’s Lemma to the sum
(17). Suppose that Fε1 (yε) is uniformly bounded and yε → y. Take a subsequence
yεk such that

lim
k→∞

Fεk1 (yεk) = lim inf
ε→0

Fε1 (yε),

and then using Lemma 4.3, a further subsequence (which we do not relabel) such
that Pεkyεk weakly converges to r in `2(Z). Since ȳ ∈ C2(Ω), we have that

D1ȳi = −
∫ xi+1

xi

Dȳ dx→ F0 := Dȳ(0)

as ε→ 0. Fixing an index i ∈ Z, Lemma 4.4 implies that(
Pεkyεk

)
i

= D1y
εk
i −D1ȳi,

→ F0 + ri − F0

as k →∞, so that we may view r as a perturbation to the deformation gradient in
an ‘infinitesimal’ neighbourhood of the defect. The ‘pointwise’ estimate (22) implies
that for i ∈ {−N, . . . , N − 1}

sεi + Cε3/2 ≥ 0,
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so that

lim inf
k→∞

Nk−1∑
i=−Nk

sεki + Cε
3/2
k ≥

∞∑
i=−∞

lim inf
k→∞

(
sεki + Cε

3/2
k

)
. (25)

Since the potentials φi are continuous and σεi → σ(0) as ε→ 0 with i fixed, we have
that

lim inf
k→∞

(
sεki + ε

3/2
k

)
= φ2(F0 + ri+ri+1

2 ) + 1
2φ1(F0 + ri) + 1

2φ1(F0 + ri+1)−W (F0)

− σ(0)(F0 + ri+ri+1

2 ) + σ(0)F0 − Σ ri+ri+1

2 .

Recalling that ȳ satisfies the Euler–Lagrange equation pointwise, (13), we have that

σ(0) = W ′(F0)− Σ,

so that

lim inf
k→∞

(
sεki + ε

3/2
k

)
= Φ2(ri + ri+1) + 1

2Φ1(ri) + 1
2Φ1(ri+1). (26)

Note that

lim
k→∞

Nk−1∑
i=−Nk

Cε
3/2
k = lim

k→∞
Cε

1/2
k = 0, (27)

so then combining (25), (26) and (27), we have that

lim inf
k→∞

∞∑
i=−∞

sεki ≥
∞∑

i=−∞
Φ2

( ri+ri+1

2

)
+ 1

2Φ1(ri) + 1
2Φ1(ri+1).

Finally, by possibly taking further subsequences, we can assume that
(
Pεkyεk

)
i

converges uniformly for i ∈ {−2,−1, 0, 1}, and then we have

lim inf
ε→0

Fε1 (yε) = lim inf
k→∞

( ∞∑
i=−∞

sεki + Ẽd(Pεyεk)

)
,

≥ Ẽ∞(r),

≥ inf
r∈`2(Z)

Ẽ∞(r),

proving Proposition 4.

Remark 4. By definition, we have

N−1∑
i=−N

(
Pεyε

)
i

= 0

for any yε ∈ Aε(L). If Pεyε ⇀ r in `1(Z), we could conclude that

∞∑
i=−∞

ri = 0;

however, since we have convergence only in `2(Z), this is false in general. It is
therefore clear that the set of compactly supported mean zero sequences is dense in
the weak topology on `2(Z).
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4.2. The limsup inequality. The limsup inequality is the following statement.

Proposition 5. For every y ∈ A(L), there exists a sequence yε → y in L2 such
that

lim sup
ε→0

Fε1 (yε) ≤ F1(y).

This statement is trivial in the case where y 6= ȳ, so we only need to construct
the sequence for y = ȳ. In order to construct the limsup sequence, we will show
that there exists a minimiser of Ẽ∞, and then combine a suitable truncation of this
minimiser with T εȳ to get the result.

Proposition 6 (Properties of 1st-order limit). Let Ẽ∞ : `2(Z) → R ∪ {+∞} be

defined as in §4. Then there exist minimisers of Ẽ∞ which satisfy an infinite system
of nonlinear algebraic Euler–Lagrange equations, given in (28).

Proof. Since Ẽ∞(r) < +∞ for the constant sequence r = 0, the infimum is less
than +∞. Recall from (15) that

Ẽ∞(r) ≥ 1
2 l ‖r‖

2
`2(Z) + C.

This bound implies that Ẽ∞ is coercive, and applying Fatou’s lemma as above with
the pointwise lower bound (14) implies that Ẽ∞ is weakly lower semicontinuous. A
standard application of the Direct Method of the Calculus of Variations now yields
existence.

To obtain the Euler–Lagrange equations, suppose r is a minimiser of Ẽ∞. Let
ei ∈ `2(Z) be the sequence which has

eij =

{
1 j = i,

0 otherwise.

Let i /∈ {−2,−1, 0, 1}; for small enough t > 0, Ẽ∞(r + tei) < +∞, and

0 ≤ Ẽ∞(r + tei)− Ẽ∞(r)

t
,

=

∫ 1

0

1
2Φ′2

( ri−1+ri+st
2

)
+ Φ′1(ri + st) + 1

2Φ′2
( ri+st+ri+1

2

)
ds.

Applying the Dominated Convergence Theorem and repeating the argument for
t < 0 now implies that

1
2Φ′2( ri−1+ri

2 ) + Φ′1(ri) + 1
2Φ′2( ri+ri+1

2 ) = 0. (28a)

By the same argument, we also have that

1
2Φ′2

( r−3+r−2

2

)
+ Φ′1(r−2) + 1

2Ψ′2
( r−2+r−1

2

)
= 0, (28b)

1
2Ψ′2

( r−2+r−1

2

)
+ Ψ′1(r−1) + 1

2Φ′2
( r−1+r0

2

)
= 0, (28c)

1
2Φ′2

( r−1+r0
2

)
+ Ψ′1(r0) + 1

2Ψ′2
(
r0+r1

2

)
= 0, (28d)

1
2Ψ′2

(
r0+r1

2

)
+ Φ′1(r1) + 1

2Φ′2
(
r1+r2

2

)
= 0, (28e)

completing the proof.

In order to complete the proof of the limsup inequality, we will require a bet-
ter understanding of minimisers of Ẽ∞, and so we prove the following sequence
of results, which amount to regularity results for solutions of the Euler–Lagrange
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equations (28). From now on, we fix r ∈ `2(Z) as being one particular minimiser of

Ẽ∞.

Lemma 4.5. Suppose that r ∈ `2(N) solves (28a) for all i ≥ 2. Then

r1 ≥ 0 ⇒ r1 = max
j∈N
{rj};

r1 ≤ 0 ⇒ r1 = min
j∈N
{rj}.

Proof. We prove only the first conclusion, the proof of the second being similar.
Suppose for contradiction that r ∈ `2(N) solves (28a) and r1 6= maxj∈N{rj}. Since
rj → 0 as j →∞, it follows that r must have an interior maximum, i.e. there exists
rM with M > 1 such that

rM = max
j∈N
{rj} > r1 ≥ 0.

Then because Φ2 is concave, we have that Φ′2 is monotone decreasing, and hence

0 = 1
2Φ′2( rM−1+rM

2 ) + Φ′1(rM ) + 1
2Φ′2( rM+rM+1

2 ),

≥ Φ′2(rM ) + Φ′1(rM ),

= W ′(F0 + rM )−W ′(F0),

=

∫ rM

0

W ′′(F0 + s) ds,

≥ l rM , (29)

in contradiction to the statement that rM > 0.

Corollary 1. Suppose that r ∈ `2(N) solves (28a) for all i ≥ 2. Then

r1 ≥ 0 ⇒ ri ≥ ri+1 ≥ 0 for all i ∈ N;

r1 ≤ 0 ⇒ ri ≤ ri+1 ≤ 0 for all i ∈ N.

Proof. Estimate (29) states that if

ri = max{ri−1, ri, ri+1}, then ri ≤ 0.

Similarly, it is possible to show that if

ri = min{ri−1, ri, ri+1}, then ri ≥ 0.

Suppose that r has a local maximum rM < 0 with M > 1. Then rM+1 ≤ rM < 0.
Since local minima can only occur when ri ≥ 0, rM+1 cannot be a local minimum,
and so rM+2 ≤ rM+1 < 0. Proceeding by induction, ri ≤ rM < 0 for all i ≥ M ,
which contradicts the fact that r ∈ `2(N). A similar argument prevents the existence
of local minima rM with rM > 0.

Next suppose that rM = 0 is a local maximum for M > 1. If rM+1 < 0, then
the previous argument applies. If rM+1 = 0, then it too must be a local maximum
or minimum, depending on the sign of rM+2. If rM+2 6= 0, then we can apply the
previous arguments again to arrive at a contradiction, so by induction we have that
ri = 0 for all i ≥M .

We have therefore shown that there can be no internal maxima, unless they are
degenerate in the sense that r is identically 0 after the maximum, and by a similar
argument, we can show that there can be no internal minima except if they are
degenerate in the same sense. We can now conclude that any solution of (28a)
must be decreasing if r1 ≥ 0, or increasing if r1 ≤ 0, which concludes the proof.
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Finally, we prove that minimisers have exponentially small ‘tails’.

Proposition 7 (Exponential decay). Suppose that r ∈ `2(N) solves (28a) for all
i ≥ 2. If C ≥ 0 is a constant such that

0 ≥ Φ′′2(t) ≥ −C,

for all t ∈
[

inf rj , sup rj
]

then setting λ := C
l+C , we have that

|ri| ≤ λi−1 |r1|

for all i ≥ 2.

Proof. We will only prove the result for r1 ≥ 0, since the other case is similar.
Corollary 1 implies that sup rj = r1 and inf rj = 0. By using the definitions of Φ1

and Φ2 and the Fundamental Theorem of Calculus, we may rewrite (28a) as

0 = 1
2Φ′2

( ri−1+ri
2

)
+ Φ′1(ri) + 1

2Φ′2
( ri+ri+1

2

)
,

= 1
2φ
′
2

(
F0 + ri−1+ri

2

)
+ φ′1(F0 + ri) + 1

2φ
′
2

(
F0 + ri+ri+1

2

)
−W ′(F0),

= 1
2

(
φ′2
(
F0 + ri−1+ri

2

)
− φ′2(F0 + ri)

)
+ 1

2

(
φ′2
(
F0 + ri+ri+1

2

)
− φ′2(F0 + ri)

)
+W ′(F0 + ri)−W ′(F0),

=

∫ ri−1

ri

Φ′′2
(
ri+t

2

)
dt+

∫ ri+1

ri

Φ′′2
(
ri+t

2

)
dt+

∫ ri

0

W ′′
(
F0 + t

)
dt.

Using the conclusion of Corollary 1 once more, ri−1 ≥ ri ≥ ri+1, so we have

0 =

∫ ri−1

ri

Φ′′2
(
ri+t

2

)
dt−

∫ ri

ri+1

Φ′′2
(
ri+t

2

)
dt+

∫ ri

0

W ′′
(
F0 + t

)
dt,

≥ −
∫ ri−1

ri

C dt+

∫ ri

0

l dt,

which following from the assumed bound on the second derivative of Φ2, and the
l-convexity of W . Evaluating the integrals and rearranging gives

λ ri−1 ≥ ri,

which holds for any i ≥ 2, and the decay estimate now follows by induction.

Remark 5. It should immediately be noted that since ri converges to zero expo-
nentially as i→ ±∞, r ∈ `1(Z). This will be crucial in what follows.

We can now apply this characterisation of minimisers of Ẽ∞ to complete the
proof of Proposition 5. Let the sequence of functions yε,δ be given by

yε,δ(x) :=

∫ x

−1/2

Dyε,δ(t) dt,

where we have set

Dyε,δ(x) :=

{
D1ȳi + ri − r̄δ x ∈ (xi, xi+1), i ∈ {−K, . . . ,K − 1},
D1ȳi x ∈ (xi, xi+1), i /∈ {−K, . . . ,K − 1},

r̄δ := δ

K−1∑
i=−K

ri,
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and δ := 1/(2K). We will prove estimates for yε,δ, and then set δ as a function of
ε in order to obtain the recovery sequence. Since r ∈ `1(Z), we have that

|r̄δ| ≤ δ
K−1∑
i=−K

|ri| ≤ δ‖r‖`1(Z). (30)

By construction, yε,δ ∈ Aε(L) as long as δ ≥ ε, i.e. K ≤ N .

Ensuring W (Dyε,δ) is well-defined. We now wish to check that W (D1y
ε,δ
i ) is well-

defined. Since Ẽ∞(r) < +∞, we have that for all i ∈ Z,

W (F0 + ri) < +∞ ⇒ F0 + ri > 0.

Recalling from §3 that F0 = Dȳ(0) > 0, and as r ∈ `2, ri → 0 as i→∞, it follows
that F0 + ri is uniformly bounded away from 0. Next, by using the Mean Value
Theorem and (30), we estimate for i ∈ {−K, . . . ,K − 1} that

|D1y
ε,δ
i − F0 − ri| =

∣∣∣∣−∫ xi+1

xi

Dȳ dx− r̄δ −Dȳ(0)

∣∣∣∣,
= |Dȳ(ξ)− r̄δ −Dȳ(0)|,

≤
∣∣∣∣ ∫ ξ

0

D2ȳ(x) dx

∣∣∣∣+ δ‖r‖`1(Z),

≤ |xi+1|‖D2ȳ‖∞ + δ‖r‖`1(Z),

≤ ε

2δ
‖D2ȳ‖∞ + δ‖r‖`1(Z).

On the second line, ξ is some point in (xi, xi+1), and on the final line we have used
|xi+1| ≤ Kε = ε

2δ . For fixed i, it is now clear that since W (t) is Lipschitz for t > 0,∣∣W (D1y
ε,δ
i

)
−W (F0 + ri)

∣∣ ≤ C( εδ + δ
)
,

therefore W (D1y
ε,δ
i ) is finite when ε� δ � 1. We can additionally estimate

|D1y
ε,δ
i −Dȳ(x)| =

∣∣∣∣−∫ xi+1

xi

(
Dȳ dx− r̄δ −Dȳ(x)

)
dx

∣∣∣∣,
≤ ε‖D2ȳ‖∞ + δ‖r‖`2(Z). (31)

Pointwise upper bounds on sε,δi . Next, we define sε,δi in a similar fashion to (16),

but adding and subtracting an extra φ1(D2y
ε,δ
i ) term, we have

sε,δi =

(
W (D2y

ε,δ
i )−−

∫ xi+2

xi

W (Dȳ) dx

)
+
(

1
2φ1(D1y

ε,δ
i ) + 1

2φ1(D1y
ε,δ
i+1)− φ1(D2y

ε,δ
i )
)

+−
∫ xi+2

xi

(
σDū− σεDuε,δ − Σ

(
Dyε,δ −Dȳ

))
dx,

=: T1 + T2 + T3.
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T1 can be treated using Jensen’s inequality and the convexity of W :

T1 = W (D2y
ε,δ
i )−−

∫ xi+2

xi

W (Dȳ) dx

≤ 1
2W (D1y

ε,δ
i ) + 1

2W (D1y
ε,δ
i+1)−−

∫ xi+1

xi

W (Dȳ) dx,

≤ −
∫ xi+2

xi

W (Dyε,δ)−W (Dȳ) dx,

≤ −
∫ xi+1

xi

W ′(Dyε,δ)
(
Dyε,δ −Dȳ

)
dx. (32)

The final integral term, T3, is bounded by

T3 = −
∫ xi+2

xi

σDū− σεDuε,δ − Σ
(
Duε,δ −Dū

)
dx

= −
∫ xi+2

xi

(σ + Σ)
(
Dū−Duε,δ

)
+ (σ − σε)Duε,δ dx,

≤ −
∫ xi+2

xi

W ′(Dȳ)
(
Dȳ −Dyε,δ

)
dx+ Cε3/2‖Duε,δ‖2, (33)

using the Euler–Lagrange equations and the estimate proved in (21). The remaining
part of the expression, T2, can then be estimated as follows:

T2 = 1
2φ1(D1y

ε,δ
i ) + 1

2φ1(D1y
ε,δ
i+1)− φ1

(
D2y

ε,δ
i

)
=

1

4

∫ D1y
ε,δ
i+1

D1y
ε,δ
i

∫ D1y
ε,δ
i+1

D1y
ε,δ
i

φ′′1
(
s+t
2

)
dsdt,

≤ C
∣∣D1y

ε,δ
i+1 −D1y

ε,δ
i

∣∣2,
where we have used the fact that φ′′1 is bounded on the domain of integration for
sufficiently small ε and δ, and φ1 ∈ C2. If i ∈ {−K, . . . ,K − 1}, then applying the
Mean Value Theorem with ξ ∈ (xi, xi+1) and ζ ∈ (xi+1, xi+2) gives

1
2φ1(D1y

ε,δ
i ) + 1

2φ1(D1y
ε,δ
i+1)− φ1

(
D2y

ε,δ
i

)
≤ C|Dȳ(ξ)−Dȳ(ζ) + ri+1 − ri|2,

≤ C
(
‖D2ȳ‖∞ε+ |ri|+ |ri+1|

)2

,

≤ C
(
‖D2ȳ‖2∞ε2 + |ri|2 + |ri+1|2

)
.

(34)

In the case where i /∈ {−K, . . . ,K − 1}, we obtain

1
2φ1(D1y

ε,δ
i ) + 1

2φ1(D1y
ε,δ
i+1)− φ1

(
D2y

ε,δ
i

)
≤ Cε2‖D2ȳ‖∞.
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Adding together (32), (33) and (34), for i ∈ {−K − 1, . . . ,K − 1} we have

sε,δi ≤ −
∫ xi+2

xi

(
W ′(Dyε,δ)−W ′(Dȳ)

)(
Dyε,δ −Dȳ

)
dx+ Cε3/2‖Duε,δ‖2

+ Cε2 + C
(
|ri|2 + |ri+1|2

)
,

≤ C−
∫ xi+2

xi

|Dyε,δ −Dȳ|2 dx+ C
(
ε3/2 + ε2 + |ri|2 + |ri+1|2

)
,

≤ C
((
ε+ δ

)2
+ ε3/2 + ε2 + |ri|2 + |ri+1|2

)
,

≤ C
(
δ2 + ε3/2 + ε2 + |ri|2 + |ri+1|2

)
,

using W ′ ∈ C1, estimate (31) and Jensen’s inequality. For the other indices, we
obtain

sε,δi ≤ −
∫ xi+2

xi

(
W ′(Dyε,δ)−W ′(Dȳ)

)(
Dyε,δ −Dȳ

)
dx+ Cε3/2‖Duε,δ‖2,

≤ C
(
ε2 + ε3/2

)
.

Conclusion of the argument. The two pointwise estimates just obtained imply

∞∑
i=−∞

sε,δi ≤ C
N−1∑
i=−N

ε3/2 + C

K∑
i=−K

(
|ri|2 + δ2

)
,

≤ C
(
ε1/2 + ‖r‖2`2(Z) + δ

)
.

By choosing K = b
√
Nc, we have that δ ≤ Cε1/2, and so an application of Fatou’s

Lemma with the pointwise upper bound we have just proven implies that

lim sup
ε→0

( ∞∑
i=−∞

sε,δi + Ẽd

(
Pεyε,δ

))
≤

∞∑
i=−∞

lim sup
ε→0

sε,δi + lim
ε→0

Ẽd

(
Pεyε,δ

)
,

= Ẽ∞(r).

This now proves Proposition 5, and concludes the proof of Theorem 4.1.

Remark 6. This result shows that the perturbation to the minimiser from the
continuum model is confined to an exponentially thin boundary layer. Note that
the linearisation of the functional Ẽ∞ in §1.4 yielded a similar solution structure;
this exponential decay suggests that any interaction between defects of the type
described here is likely to ‘decouple’ if one were to study a situation in which there
were multiple defects of a fixed and finite number which are well-separated in the
limit ε→ 0.

Conclusion. We have presented an analysis of a model for a point defect in a 1D
chain of atoms interacting under assumptions which attempt to replicate a Lennard-
Jones type interactions in an elastic regime. We have derived the 0th-order Γ-limit,
given in Theorem 2.1, which is identical to the limit when there is no defect.

In Theorem 4.1, we proved that the 1st-order Γ-limit exists and gave an explicit
characterisation of the limit as a discrete variational problem, the solution of which
can be seen as the corrector to the elastic field predicted by the 0th-order Γ-limit.
In so doing, we proved Propositions 6 and 7, which show that solutions r ∈ `2(Z)
exists, and have exponential decay — that is, they satisfy the bound |ri| ≤ Cλ|i|

with 0 ≤ λ < 1.
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