Citation: Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes[J]. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
[1] | A. Aftalion, E. Sandier and S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, J. Math. Pures Appl. (9), 80 (2001), 339-372. doi: 10.1016/S0021-7824(00)01180-6 |
[2] | S. Alama and L. Bronsard, Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions, J. Math. Phys., 46 (2005), 39 pp. doi: 10.1063/1.2010354 |
[3] | S. Alama and L. Bronsard, Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains, Comm. Pure Appl. Math., 59 (2006), 36-70. doi: 10.1002/cpa.20086 |
[4] | H. Aydi and A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II, Commun. Pure Appl. Anal., 8 (2009), 977-998. doi: 10.3934/cpaa.2009.8.977 |
[5] | E. J. Balder, "Lectures on Young Measures," Cah. de Ceremade, 1995. |
[6] | G. R. Berdiyorov, M. V. Milosević and F. M. Peeters, Novel commensurability effects in superconducting films with antidot arrays, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.207001 |
[7] | M. Dos Santos and O. Misiats, Ginzburg-Landau model with small pinning domains, Netw. Heterog. Media, 6 (2011), 715-753. doi: 10.3934/nhm.2011.6.715 |
[8] | M. Dos Santos, P. Mironescu and O. Misiats, The Ginzburg-Landau functional with a discontinuous and rapidly oscillating pinning term. Part I : The zero degree case, Comm. Contemp. Math., 13 (2011), 885-914. doi: 10.1142/S021919971100449X |
[9] | preprint. |
[10] | I. Ekeland and R. Temam, "Analyse Convexe et Problemes Variationnels," (French) Collection Etudes Mathematiques. Dunod; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974. |
[11] | A. Kachmar, Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint, ESAIM Control Optim. Calc. Var., 16 (2010), 545-580. doi: 10.1051/cocv/2009009 |
[12] | L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint, J. Anal. Math., 77 (1999), 1-26. doi: 10.1007/BF02791255 |
[13] | P. Pedregal, "Parametrized Measures and Variational Principles," Birkhauser, 1997. doi: 10.1007/978-3-0348-8886-8 |
[14] | E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse Non Linéaire, 17 (2000), 119-145. doi: 10.1016/S0294-1449(99)00106-7 |
[15] | M. Valadier, Young measures, Methods of Nonconvex Analysis, Lecture Notes Math., Springer, (1990), 152-188. doi: 10.1007/BFb0084935 |