Modeling contact inhibition of growth: Traveling waves

  • Received: 01 January 2012 Revised: 01 October 2012
  • Primary: 35R35; Secondary: 35Q92, 92C15, 92C17.

  • We consider a simplified 1-dimensional PDE-model describing the effect of contact inhibition in growth processes of normal and abnormal cells. Varying the value of a significant parameter, numerical tests suggest two different types of contact inhibition between the cell populations: the two populations move with constant velocity and exhibit spatial segregation, or they stop to move and regions of coexistence are formed. In order to understand the different mechanisms, we prove that there exists a segregated traveling wave solution for a unique wave speed, and we present numerical results on the ``stability" of the segregated waves. We conjecture the existence of a non-segregated standing wave for certain parameter values.

    Citation: Michiel Bertsch, Masayasu Mimura, Tohru Wakasa. Modeling contact inhibition of growth: Traveling waves[J]. Networks and Heterogeneous Media, 2013, 8(1): 131-147. doi: 10.3934/nhm.2013.8.131

    Related Papers:

  • We consider a simplified 1-dimensional PDE-model describing the effect of contact inhibition in growth processes of normal and abnormal cells. Varying the value of a significant parameter, numerical tests suggest two different types of contact inhibition between the cell populations: the two populations move with constant velocity and exhibit spatial segregation, or they stop to move and regions of coexistence are formed. In order to understand the different mechanisms, we prove that there exists a segregated traveling wave solution for a unique wave speed, and we present numerical results on the ``stability" of the segregated waves. We conjecture the existence of a non-segregated standing wave for certain parameter values.


    加载中
    [1] D. G. Aronson, Density-dependent interaction systems, in "Dynamics and Modelling of Reactive Systems" (eds. W. H. Steward, W. R .Ray and C. C Conley), Academic Press, New York-London, (1980), 161-176.
    [2] M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplified tumour growth model of contact inhibition, Interfaces and Free Boundaries, 12 (2010), 235-250. doi: 10.4171/IFB/233
    [3] M. Bertsch, D. Hilhorst, H. Izuhara and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Differ. Equ. Appl., 4 (2012), 137-157. doi: 10.7153/dea-04-09
    [4] M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Singular limit problem of a nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, in preparation (2013). doi: 10.7153/dea-04-09
    [5] M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura and T. Wakasa, Traveling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth, in preparation (2013).
    [6] M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, in preparation (2013).
    [7] Z. Biró, Stability of traveling waves for degenerate reaction-diffusion equations of KPP-type, Adv. Nonlinear Stud., 2 (2002), 357-371.
    [8] M. A. J. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour deveropment, Math. Med. Bio., 23 (2006), 197-229. doi: 10.1093/imammb/dql009
    [9] E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, New York-Toronto-London, 1955.
    [10] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 335-369. doi: 10.1111/j.1469-1809.1937.tb02153.x
    [11] G. Garcia-Ramos, F. Sanches-Garduño and P. K. Maini, Dispersal can sharpen parapatric boundaries on a spatially varying environment, Ecology, 81 (2000), 749-760.
    [12] R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Res., 56 (1996), 5745-5753.
    [13] B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction," Birkhäuser Verlag, Basel, 2004. doi: 10.1007/978-3-0348-7964-4
    [14] D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion, J. Differential Equations, 244 (2008), 2870-2889. doi: 10.1016/j.jde.2008.02.018
    [15] S. Kamin and P. Rosenau, Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Ser. 9 Mat. Appl., 15 (2004), 271-280.
    [16] N. S. Kolmogorov, N. Petrovsky and I. G. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière e son application a un problème biologique, (Russian), Bull. Univ. État Moscou, Série internationale A, 1 (1937), 1-26.
    [17] G. S. Medvedev, K. Ono and P. Holmes, Traveling wave solutions of the degenerate Kolmogorov-Petrovsky-Piskunov equation, European J. Appl. Math., 14 (2003), 343-367. doi: 10.1017/S0956792503005102
    [18] J. A. Sherratt, Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations, Proc. R. Soc. Lond. A, 456 (2000), 2365-2386. doi: 10.1098/rspa.2000.0616
    [19] F. Sanches-Garduño and P. K. Maini, Travelling wave phenomena in some degenerate reaction-diffusion equations, J. Differential Equations, 117 (1995), 281-319. doi: 10.1006/jdeq.1995.1055
    [20] Y. Tsukatani, K. Suzuki and K. Takahashi, Loss of density-dependent growth inhibition and dissociation of $\alpha$-catenin from E-cadherin, J. Cell. Physiol., 173 (1997), 54-63.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3732) PDF downloads(158) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog