This paper is devoted to a class of reaction-diffusion equations with nonlinearities depending on time modeling a cancerous process with chemotherapy. We begin by considering nonlinearities periodic in time. For these functions, we investigate equilibrium states, and we deduce the large time behavior of the solutions, spreading properties and the existence of pulsating fronts. Next, we study nonlinearities asymptotically periodic in time with perturbation. We show that the large time behavior and the spreading properties can still be determined in this case.
Citation: Benjamin Contri. 2018: Fisher-KPP equations and applications to a model in medical sciences, Networks and Heterogeneous Media, 13(1): 119-153. doi: 10.3934/nhm.2018006
[1] | Benjamin Contri . Fisher-KPP equations and applications to a model in medical sciences. Networks and Heterogeneous Media, 2018, 13(1): 119-153. doi: 10.3934/nhm.2018006 |
[2] | François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275 |
[3] | James Nolen . A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 2011, 6(2): 167-194. doi: 10.3934/nhm.2011.6.167 |
[4] | Henri Berestycki, Guillemette Chapuisat . Traveling fronts guided by the environment for reaction-diffusion equations. Networks and Heterogeneous Media, 2013, 8(1): 79-114. doi: 10.3934/nhm.2013.8.79 |
[5] | Matthieu Alfaro, Thomas Giletti . Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11(3): 369-393. doi: 10.3934/nhm.2016001 |
[6] | John R. King . Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity. Networks and Heterogeneous Media, 2013, 8(1): 343-378. doi: 10.3934/nhm.2013.8.343 |
[7] | Gary Bunting, Yihong Du, Krzysztof Krakowski . Spreading speed revisited: Analysis of a free boundary model. Networks and Heterogeneous Media, 2012, 7(4): 583-603. doi: 10.3934/nhm.2012.7.583 |
[8] | Mingming Fan, Jianwen Sun . Positive solutions for the periodic-parabolic problem with large diffusion. Networks and Heterogeneous Media, 2024, 19(3): 1116-1132. doi: 10.3934/nhm.2024049 |
[9] | Don A. Jones, Hal L. Smith, Horst R. Thieme . Spread of viral infection of immobilized bacteria. Networks and Heterogeneous Media, 2013, 8(1): 327-342. doi: 10.3934/nhm.2013.8.327 |
[10] | Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10(4): 897-948. doi: 10.3934/nhm.2015.10.897 |
This paper is devoted to a class of reaction-diffusion equations with nonlinearities depending on time modeling a cancerous process with chemotherapy. We begin by considering nonlinearities periodic in time. For these functions, we investigate equilibrium states, and we deduce the large time behavior of the solutions, spreading properties and the existence of pulsating fronts. Next, we study nonlinearities asymptotically periodic in time with perturbation. We show that the large time behavior and the spreading properties can still be determined in this case.
We investigate equations of the form
$ u_t-u_{xx} = f^T(t,u),~~~~t \in \mathbb{R},~x\in \mathbb{R}, $ | (1) |
where
$ f^T(t,u) = g(u)-m^T(t)u, $ | (2) |
and
$ g > 0~\text{on}~(0,1),~~g(0) = g(1) = 0,~~g'(0) > 0,~~g'(1) < 0, $ | (3) |
and
$ u\mapsto\frac{g(u)}{u}~\text{decreasing on}~(0,+\infty). $ | (4) |
The previous hypotheses imply in particular that
$ g(u) \leq g'(0)u,~~\forall u\in[0,+\infty), $ | (5) |
and that
$ g < 0~\text{on}~(1,+\infty). $ | (6) |
In Sections 2 and 4, the function
$ f^T(t,u) < 0,~~\forall (t,u)\in\mathbb{R} \times (1,+\infty). $ | (7) |
In Section 3, the function
Equations of the type
$ u_t-u_{xx} = g(u)-m^T(t)u,~~~~t \in \mathbb{R},~x\in \mathbb{R}, $ | (8) |
are proposed to model the spatial evolution over time of a cancerous tumor in the presence of chemotherapy. The quantity
$
{mT=φ on [0,1),mT=0 on [1,T).
$
|
(9) |
In the absence of treatment, cancer cells reproduce and spread in space. This reproduction is modeled by the reaction term of KPP type
$ g'(0)-\int_0^1\varphi (t)dt < 0. $ | (10) |
This inequality is not really restricting. Indeed, we shall see after that this hypothesis is in fact a condition so that the patient is cured in the case where there is no rest period in the cycles of chemotherapy (that is
We now refine the previous modelling. In fact, the concentration of drug in the patient's body is not a datum. We only know the concentration of drug injected to the patient. We denote
$
D^T(t) = {1, ∀t∈[0,1],0, ∀t∈(1,T).
$
|
(11) |
The concentration of drug
$
{m′(t)=DT(t)−m(t)τ, ∀t∈R+,m(0)=m0≥0.
$
|
(12) |
The real number
$u_t-u_{xx} = g(u)-m(t)u+\varepsilon p(t,u),~~~~t \in \mathbb{R},~x\in \mathbb{R},$ |
where
The mathematical study of reaction-diffusion equations began in the 1930's. Fisher [12] and Kolmogorov, Petrovsky and Piskunov [17] were interested in wave propagation in population genetics modeled by the homogeneous equation
$ u_t-u_{xx} = f(u),~~~~t \in \mathbb{R},~x\in \mathbb{R}. $ | (13) |
In the
Freidlin and Gärtner in [13] were the first to study heterogeneous equations. More precisely, they generalized spreading properties for KPP type equations with periodic in space coefficients. Since this work, numerous papers have been devoted to the study of heterogeneous equations with KPP or other reaction terms. We can cite e.g. [2,3,4,5,6,8,10,16,19,27,28,29] in the case of periodic in space environment, [14,18,19,24,25] in the case of periodic in time environment and [21,22,23] in the case of periodic in time and in space environment. The works of Nadin [21,22] and Liang and Zhao [19] are the closest of our paper. We will compare later the contributions of our work with these references. We now give the main results of the paper.
When the nonlinearity is not homogeneous, there are no planar front solutions of (8) anymore. For equations with coefficients depending periodically on the space variable, Shigesada, Kawasaki and Teramoto [26] defined in 1986 a notion more general than the planar fronts, namely the pulsating fronts. This notion can be extended for time dependent periodic equations as follows.
Definition 1.1. For equation (1), assume that
$
{u(t,x)=U(t,x−ct), ∀t∈R, ∀x∈R,U(⋅,−∞)=θ, U(⋅,+∞)=0, uniformly on R,U(t+T,x)=U(t,x), ∀t∈R, ∀x∈R.
$
|
So, a pulsating front connecting
$
\label{travel}
{Ut−cUξ−Uξξ−fT(t,U)=0, ∀(t,ξ)∈R×R,U(⋅,−∞)=θ, U(⋅,+∞)=0, uniformly on R,U(t+T,ξ)=U(t,ξ), ∀(t,ξ)∈R×R.
$
|
In this definition, by standard parabolic estimates, the limiting state
$
{y′=fT(t,y) on R,y(0)=y(T),
$
|
(14) |
whose solutions are called equilibrium states of the equation (1).
If
$
{(Φθ,fT)′=(fTu(t,θ)+λθ,fT)Φθ,fT on R,Φθ,fT>0 on R,Φθ,fT is T−periodic.
$
|
(15) |
These quantities are called respectively principal eigenvalue and principal eigenfunction associated with
$\lambda_{\theta,f^T} = -\frac{1}{T} \int_0^T f^T_u(s,\theta(s)) ds.$ |
We now recall the definition of the Poincaré map
$
{y′=fT(t,y) on R,y(0)=α.
$
|
(16) |
Definition 1.2. The
$P^T(\alpha) = y_\alpha(T).$ |
We conclude, with the fact that each nonnegative solution of (14) is associated with a fixed point of
$ (P^T)'(\alpha^T) = e^{-T{\lambda_{y_{\alpha^T},f^T}}}. $ | (17) |
We can find these results concerning the notions of principal eigenvalue and Poincaré map in [7], [9], [15] and [20].
Let
$
\lambda_{0,f^T}
{>0 if T<T∗,<0 if T>T∗,=0 if T=T∗.
$
|
(18) |
This is indeed the case if
$\lambda_{0,f^T} = -g'(0)+\frac{1}{T}\int_0^T m^T(s)ds = -g'(0)+\frac{1}{T}\int_0^1 \varphi (s)ds .$ |
Furthermore, for this type of functions, hypothesis (10) implies that
Proposition 1. We consider the real number
(Ⅰ) If
(Ⅱ) If
(i) For any
$\frac{1}{T}\int_0^Tf_u^T(s,w^T(s))ds\leq0.$ |
(ii) If
(iii) If
(iv) If
$\lim\limits_{T\to+\infty}\frac{1}{T}\int_0^Tw^T(t)dt = 1.$ |
The same result of existence and uniqueness (result of the type
Let us now summarize a result in [22], which deals with the evolution of
Proposition 2. [22] Let
$
{ut−uxx=fT(t,u) on (0,+∞)×R,u(0,⋅)=u0 on R.
$
|
(19) |
If
$ 0\leq u(t,x) \leq M\Phi_{0,f^T}(t)e^{-\lambda_{0,f^T} t},~~\forall (t,x)\in \mathbb{R}^+ \times \mathbb{R}. $ | (20) |
If
$\sup\limits_{x\in \mathbb{R}}|u(t,x)|\xrightarrow{t\to+\infty}0.$ |
If
$\sup\limits_{x\in K}|u(t,x)-w^T(t)|\xrightarrow{t\to+\infty}0.$ |
A similar result was proved for KPP nonlinearities depending periodically on space by Berestycki, Hamel and Roques in [5].
In the biological context with
We now study in more detail the case where the treatment is not effective, that is, the case where
Theorem 1.3. [18], [21] Let
(Ⅱ) We denote
${ut−uxx=fT(t,u) on (0,+∞)×R,u(0,⋅)=u0 on R. $
|
If
$\forall c\in(0,c_T^*),~~~~\lim\limits_{t\to+\infty} \sup\limits_{|x| < ct}\big|u(t,x)-w^T(t)\big| = 0.$ |
If
$\forall c > c_T^*,~~~~\lim\limits_{t\to+\infty} \sup\limits_{|x| > ct}u(t,x) = 0.$ |
In his paper [21], Nadin considers in the first assertion of the spreading properties in Theorem 1.3 initial conditions which are more general. He assumes that
We can now characterize the critical speed
Proposition 3. For every
$ c_T^* = 2\sqrt{-\lambda_{0,f^T}}. $ | (21) |
Hence, if
$\lim\limits_{T\to(T^*)^+} c_T^* = 0,$ |
and, if
$\lim\limits_{T\to+\infty} c_T^* = 2\sqrt{g'(0)}.$ |
In the case where the treatment is not effective, the invasion of space by the equilibrium state
We end this section by stating the existence of pulsating fronts in the case of nonlinearities which are not of KPP type (that is hypotheses (4) and (5) are not necessarily verified, but we still assume (3), (6) and (18)). For these nonlinearities, there is still a positive solution to problem (14), but it may not be unique. According to Cauchy-Lipschitz theorem, solutions of (14) are ordered on
Proposition 4. Let
We are interested in the case of nonlinearities which are no more periodic in time, but which are the sum of a function which converges as
$ u_t-u_{xx} = g(u)-m(t)u+\varepsilon p(t,u),~~~~t \in \mathbb{R},~x\in \mathbb{R}, $ | (22) |
where
$ \big| \frac{p(t,u)}{u}\big|\leq C,~~\forall (t,u)\in\mathbb{R}^+\times (0,+\infty). $ | (23) |
The function
$ \lim\limits_{t\to+\infty}|m(t)-m_\infty^T(t)| = 0. $ | (24) |
Indeed, an elementary calculation implies that for any
$m(t) = {τ[1+((e1τ−1)(enTτ−1)eTτ−1+m0T−enTτ)e−tτ], ∀t∈[nT,nT+1),τ[(e1τ−1)(e(n+1)Tτ−1)eTτ−1+m0T]e−tτ, ∀t∈[nT+1,(n+1)T). $
|
Consequently, if we define the positive
$m_\infty^T(t) = {τ[1+(e1τ−1eTτ−1−1)e−tτ], ∀ t∈[0,1],τe1τ−1eTτ−1eT−tτ, ∀ t∈[1,T), $
|
then the convergence result (24) holds. Furthermore, we have
$f(t,u) = g(u)-m(t)u,~~\text{and}~~f_\varepsilon (t,u) = f(t,u)+\varepsilon p(t,u).$ |
According to (24), we have
$ \label{convfonct} \sup\limits_{u \in (0,+\infty)}{\left| \frac{f(t,u)-f^T(t,u)}{u}\right|}\xrightarrow{t\to+\infty}0. $ | (25) |
The function
The aim of this section is to show that Proposition 2 and the spreading results of Theorem 1.3 hold true when we replace
Theorem 1.4. Let
$
{ut−uxx=fε(t,u) on (0,+∞)×R,u(0,⋅)=u0 on R.
$
|
(26) |
If
$\lim\limits_{t\to+\infty} \sup\limits_{x\in \mathbb{R}}|u_\varepsilon (t,x)| = 0.$ |
If
$\limsup\limits_{t\to+\infty}~ \sup\limits_{x\in K}{|u_\varepsilon (t,x)-w^T(t)|}\leq M_T\varepsilon .$ |
We saw in Proposition 1 that
$F(x) = -\frac{1}{T}\int_0^T\frac{f^T(s,xw^T(s))}{w^T(s)}ds,$ |
then we have
Let us give a sketch of the proof. For
Note that the case
Proposition 5. Let
(Ⅰ) If
(Ⅱ) If
(i) If
(ii) If
Concerning the spreading results of Theorem 1.3, they remain true if we replace
Theorem 1.5. Let
${ut−uxx=fε(t,u) on (0,+∞)×R,u(0,⋅)=u0 on R. $
|
If
$\limsup\limits_{t\to+\infty} \sup\limits_{|x| < ct}\big|u_\varepsilon (t,x)-w^T(t)\big|\leq M_T\varepsilon ,$ |
where
If
$\lim\limits_{t\to+\infty} \sup\limits_{|x| > ct}u_\varepsilon (t,x) = 0.$ |
The proof of this theorem uses the same ideas as the proof of Theorem 1.4. For
As in Section 1.1, we consider a
$
{mT=φ on [0,1),mT=0 on [1,T),
$
|
where
$ \label{eqavecT} u_t-u_{xx} = g(u)-m^T_\tau (t)u,~~~~t \in \mathbb{R},~x\in \mathbb{R}, $ | (27) |
where
${mTτ(t)=1Tφ(tT), ∀t∈[0,τ),mTτ(t)=0, ∀t∈[τ,T), $
|
where the function
$ \int_0^T m^T_\tau (t)~dt = \frac{1}T\int_0^\tau \varphi \big(\frac{t}T\big)dt = \int_0^1\varphi (t)dt. $ | (28) |
So, it is clear that the quantity of drug administered during a cycle of chemotherapy is independent of the treatment duration
$f^T(t,u) = g(u)-m^T(t)u~~\text{and}~~f^T_\tau (t,u) = g(u)-m^T_\tau (t)u.$ |
The first proposition deals with the principal eigenvalue associated with
Proposition 6. Let
$\lambda_{0,f^T_\tau } = \lambda_{0,f^T} = -g'(0)+\frac{\int_0^1\varphi (s) ds}{T}.$ |
Consequently, if
$
\label{eqstatetau}
{y′=fTτ(t,y) on R,y(0)=y(T).
$
|
(29) |
The same proof as in Proposition 1 implies that for any
Let us now study the case where the treatment is not efficient, that is,
Finally, we are interested in the influence of the parameter
Proposition 7. Let
${(0,T)→(0,+∞)τ↦wTτ(0) $
|
is continuous and decreasing.
Consequently, in the case where the treatment is not efficient, the shorter the duration of the chemotherapy cycle, the larger the value of the equilibrium state
Outline. Section 2 is devoted to the proof of Propositions 1, 3 and 4. Section 3 gathers the proof of Theorem 1.4, Proposition 5 and Theorem 1.5. Finally, we prove in Section 4 Propositions 6 and 7.
We first investigate solutions of (14), showing Proposition 1. We begin with the case where
$\frac{(w^*)'(t)}{w^*(t)} = \frac{g(w^*(t))}{w^*(t)}- m^{T}(t),~~\forall t\in[0,T].$ |
We integrate this equation between
$ \int_0^T \Big(\frac{g(w^*(s))}{w^*(s)}- m^{T}(s)\Big) ds = 0. $ | (30) |
Yet, as
$\frac{1}{T}\int_0^T \Big(\frac{g(w^*(s))}{w^*(s)}- m^{T}(s)\Big)ds < -\lambda_{0,f^T}\leq 0,$ |
which contradicts (30).
We now consider the case where
Lemma 2.1. There exists
Proof. Indeed, according to the fact that
Lemma 2.2. For all
Proof. Let
Lemma 2.1 and Lemma 2.2 imply that there exists
$\rho^* = \inf\big\{\rho\geq1~|~w_1(t)\leq\rho w_2(t),~~\forall t\in[0,T]\big\}.$ |
We have
$ w_1(t)\leq\rho^*w_2(t),~~\forall t \in [0,T]. $ | (31) |
Moreover there exists
$ w_1(t^*) = \rho^*w_2(t^*). $ | (32) |
We are going to show that
$ w_1'(t) = f^T(t,w_1(t)),~~\forall t \in [0,T]. $ | (33) |
Furthermore
$ (\rho^*w_2)'(t) > f^T(t,\rho^*w_2(t)),~~\forall t \in [0,T]. $ | (34) |
Indeed, for all
$(ρ∗w2)′(t)=ρ∗w′2(t)=ρ∗w2(t)(g(w2(t))w2(t)−mT(t))>ρ∗w2(t)(g(ρ∗w2(t))ρ∗w2(t)−mT(t)) (according to (4) since ρ∗>1)=fT(t,ρ∗w2(t)). $
|
According to (31), (32), (33), (34) and the
$w_1(t) = \rho^*w_2(t),~~\forall t \in [0,T].$ |
It is a contradiction because
We denote
We now study the function
$P^{T_i}(\alpha) = y^{T_i}_\alpha(T_i),~~\forall \alpha\geq0,$ |
where
$
{y′=fTi(t,y) on R,y(0)=α.
$
|
(35) |
We saw in (Ⅱ) that the function
$y' = f^{T_1}(t,y).$ |
Consequently, since
$y^{T_1}_\alpha\equiv y^{T_2}_\alpha~~\text{on}~[0,T_1].$ |
Furthermore, from (3), (7) and the fact that
$0 < y^{T_1}_\alpha(T_1) = y^{T_2}_\alpha(T_1) < 1.$ |
On
$y^{T_1}_\alpha(T_1) = y^{T_2}_\alpha(T_1) < y^{T_2}_\alpha(T_2).$ |
In other terms
$P^{T_1}(\alpha) < P^{T_2}(\alpha).$ |
Finally, we have necessarily
We show now the continuity property. Let
$ T^* < T^- < T_n < T^+,~~\forall n\geq n^-. $ | (36) |
We will demonstrate that
${wTn(t)=wTn(0)+∫t0fTn(s,wTn(s))ds, ∀t∈[0,T+],wTn(0)=wTn(Tn). $
|
Passing to the limit as
${˜w(t)=˜w(0)+∫t0f˜T(s,˜w(s))ds, ∀t∈[0,˜T]⊂[0,T+],˜w(0)=˜w(˜T). $
|
The function
${˜w′=f˜T(t,˜w) on [0,˜T],˜w(0)=˜w(˜T), $
|
and
$\frac{(w^{T_n})'(t)}{w^{T_n}(t)} = \frac{f^{T_n}(t,w^{T_n}(t))}{w^{T_n}(t)},~~\forall t\in[0,T_n].$ |
We integrate the previous equation over
We study now the behavior of the equilibrium state
${wTn(t)=wτn(0)+∫t0fTn(s,wTn(s))ds, ∀t∈[0,T+],wTn(0)=wTn(Tn). $
|
Passing to the limit as
${w∗(t)=w∗(0)+∫t0fT∗(s,w∗(s))ds, ∀t∈[0,T∗]⊂[0,T+],w∗(0)=w∗(T∗). $
|
The function
${(w∗)′=fT∗(t,w∗) on [0,T∗],w∗(0)=w∗(T∗), $
|
and
$\sup\limits_\mathbb{R}|w_{T_n}| = \sup\limits_{[0,T_n]}|w_{T_n}|\leq \sup\limits_{[0,T^+]}|w_{T_n}|\xrightarrow{n\to+\infty}0,$ |
which completes the proof of this point.
We study now the case where
Lemma 2.3. Under assumptions (9) and (10), the real number
$\delta : = \inf\big\{w^T(1)~|~T \geq T^*+1\big\}$ |
is positive. Furthermore,
Proof. We argue by way of contradiction. Let us suppose there exists a sequence
$ 0 < w^{T^+}(0) < w^{T_n}(0),~~\forall n\geq n^+. $ |
Up to extraction of a subsequence,
$ 0 < w^{T^+}(0)\leq w^*(0). $ | (37) |
The same reasoning as previously implies that the function
${(w∗)′=g(w∗)−φ(t)w∗ on [0,1],w∗(1)=0. $
|
By uniqueness, we have necessarily
We return to the proof of the last point of Proposition 1. We consider
${y′=g(y) on (1,+∞),y(1)=δ, $
|
where
${y′=g(y) on (1,T),y(1)=wT(1). $
|
Since
$1-\frac{\varepsilon }{2}\leq w^T(t) < 1,~~\forall t\in (l_\varepsilon ,T).$ |
Furthermore
$|\frac{1}{T}\int_0^Tw^T(t)dt-1|\leq \frac{1}{T}\Big(\int_0^{l_\varepsilon }|w^T(t)-1|dt+\int_{l_\varepsilon }^T|w^T(t)-1|dt\Big).$ |
Yet,
$\frac{1}{T}\int_0^{l_\varepsilon }|w^T(t)-1|dt\leq\frac{2l_\varepsilon }{T}\leq\frac{2l_\varepsilon }{T_\varepsilon } = \frac{\varepsilon }{2}.$ |
and
$\frac{1}{T}\int_{l_\varepsilon }^T|w^T(t)-1|dt\leq\frac{T-l_\varepsilon }{T}\frac{\varepsilon }{2} \leq \frac{\varepsilon }{2}.$ |
So
We begin by showing the characterization of
$(\Phi_\mu)_t = \big(\mu^2+f_u^T(t,0)+\lambda_\mu\big)\Phi_\mu~~~\text{on}~\mathbb{R}.$ |
We divide the previous equation by
$c^*_T = \inf \big\{ c\in\mathbb{R}~|~\text{there exists}~\mu > 0~\text{such that}~\lambda_\mu+\mu c = 0\big\}.$ |
Consequently, we have
$c^*_T = \inf \big\{ c\in\mathbb{R}~|~\text{there exists}~\mu > 0~\text{such that}~\mu^2-\mu c-\lambda_{0,f^T} = 0\big\}.$ |
We thus look for the smallest real number
$c^*_T = 2\sqrt{g'(0)-\frac{1}{T}\int_0^T m^T(t)dt}.$ |
Hence the function
$\lim\limits_{T\to+\infty} c_T^* = 2\sqrt{g'(0)}~~\text{if}~\frac{1}{T}\int_0^T m^T(t)dt\xrightarrow{T\to+\infty}0,~~\text{and}~~\lim\limits_{T\to(T^*)^+} c_T^* = 0,$ |
which concludes the proof of Proposition 3.
Let
${y′=fT(t,y) on R,y(0)=α, $
|
then we denote
$\alpha_0 = \inf\big\{ \alpha \in (0,1]~|~P^T(\alpha) = \alpha \big\}.$ |
To simplify the notations, we denote
Lemma 2.4. We have
Proof. We assume that
$\int_0^T \frac{f^T(s,y_{\alpha_n}(s))-f^T(s,0)}{y_{\alpha_n}(s)}ds = 0.$ |
Passing to the limit as
$\int_0^T f_u^T(s,0)ds = 0,$ |
which contradicts the fact that
Since
$ |f^T(t,\varepsilon \Phi_{0,f^T}(t))-\varepsilon \Phi_{0,f^T}(t)f_u^T(t,0)|\leq \frac{|\lambda_{0,f^T}|}{2}\varepsilon \Phi_{0,f^T}(t), $ | (38) |
where
$
\label{prob1}
{(U0)t−(U0)ξξ−c0(U0)ξ=fT(t,U0) on R×R,U0(⋅,⋅)=U0(⋅+T,⋅) on R×R,U0(⋅,−∞)=yT , U0(⋅,+∞)=0 uniformly on R.
$
|
(39) |
Necessarily
$ \label{decroi} \partial_\xi U_0(t,\xi) < 0,~~\forall (t,\xi)\in \mathbb{R}\times \mathbb{R}. $ |
Let
$\mathcal{C} = \{c\in\mathbb{R}~|~\text{there exists a pulsating front}~U~ \text{of speed}~c~\text{such that}~\partial_\xi U < 0~\text{on}~\mathbb{R}\times\mathbb{R}\}$ |
is closed and included in
Given
$\varepsilon _{a,r} = \min\Big\{\min\limits_{[0,T]\times[-a,a]}{\frac{U_1(\cdot,\cdot+r)}{2\Phi_{0,f^T}(\cdot)}},\varepsilon _0,\frac{y^T(0)}{\Phi_{0,f^T}(0)}\Big\}.$ |
We consider the problem
$
{Ut−Uξξ−c2Uξ=fT(t,U) on (0,T)×(−a,a),U(0,⋅)=U(T,⋅) on [−a,a].U(⋅,−a)=U1(⋅,−a+r) , U(⋅,a)=εa,rΦ0,fT on [0,T].
$
|
(40) |
We begin by showing that the previous problem has a solution.
Proposition 8. There exists a solution to problem (40).
Proof. We consider the problem
$
{Ut−Uξξ−c2Uξ=fT(t,U) on (0,+∞)×(−a,a),U(⋅,−a)=U1(⋅,−a+r) , U(⋅,a)=εa,rΦ0,fT on [0,+∞),U(0,⋅)=ψ on [−a,a],
$
|
where
$C = \{\psi\in\mathcal{C}^0([-a,a],[0,1])~|~\varepsilon _{a,r}\Phi_{0,f^T}(0)\leq\psi\leq U_1(0,\cdot+r)~~\text{on}~[-a,a] \}.$ |
Note that this set is not empty since
Lemma 2.5. Let
$ \varepsilon _{a,r}\Phi_{0,f^T}(t) < U_\psi(t,\xi) < U_1(t,\xi+r)~~\forall~(t,\xi) \in(0,+\infty) \times (-a,a). $ | (41) |
Proof. Since
$\big(U_1(\cdot+r)\big)_t-\big(U_1(\cdot+r)\big)_{\xi \xi}-c_2 \big(U_1(\cdot+r)\big)_\xi-f^T\big(t,U_1(\cdot+r)\big) = (c_1-c_2)\big(U_1(\cdot+r)\big)_\xi > 0.$ |
Moreover, since
$U_\psi(t,\xi) \leq U_1(t,\xi+r)~~\forall(t,\xi) \in[0,+\infty) \times [-a,a].$ |
In the same way, since
$ (\varepsilon _{a,r}\Phi_{0,f^T})_t-(\varepsilon _{a,r}\Phi_{0,f^T})_{\xi\xi}-c_2(\varepsilon _{a,r}\Phi_{0,f^T})_\xi-f^T(t,\varepsilon _{a,r}\Phi_{0,f^T})\\ = \varepsilon _{a,r}\Phi_{0,f^T}(\lambda_{0,f^T}+f_u^T(t,0))-f^T(t,\varepsilon _{a,r}\Phi_{0,f^T})\\ = \varepsilon _{a,r} \lambda_{0,f^T} \Phi_{0,f^T}-\big(f^T(t,\varepsilon _{a,r}\Phi_{0,f^T})-\varepsilon _{a,r}\Phi_{0,f^T}f_u^T(t,0)\big)\\ \leq \varepsilon _{a,r}\lambda_{0,f^T} \Phi_{0,f^T}-\varepsilon _{a,r}\frac{\lambda_{0,f^T}}{2}\Phi_{0,f^T} < 0. $ |
Furthermore since
$\varepsilon _{a,r}\Phi_{0,f^T}(t)\leq U_\psi(t,\xi)~~\forall~(t,\xi) \in[0,T] \times [-a,a],$ |
The fact that the inequalities in (41) are strict is a consequence of the strong maximum principle.
We return to the proof of Proposition 8. We consider
$
T:C→Cψ↦Uψ(T,⋅)
$
|
Owing to (41) and the
$(U_\psi-U_\varphi)_t-(U_\psi-U_\varphi)_{\xi\xi}-c_2(U_\psi-U_\varphi)_\xi = \beta(t,\xi)(U_\psi-U_\varphi),$ |
where
$\beta(t,\xi) = {fT(t,Uψ(t,ξ))−fT(t,Uφ(t,ξ))Uψ(t,ξ)−Uφ(t,ξ), if Uψ(t,ξ)≠Uφ(t,ξ),fTu(t,Uψ(t,ξ)),if Uψ(t,ξ)=Uφ(t,ξ).
$
|
Since
$|U_\psi(t,\xi)-U_\varphi(t,\xi)|\leq\|\psi-\varphi\|_{L^\infty([-a,a])}e^{\|f_u^T\|_{L^\infty([0,T]\times[0,1])}t }.$ |
If we take
$\|U_\psi(T,\cdot)-U_\varphi(T,\cdot)\|_{L^\infty([-a,a])}\leq e^{ \|f_u^T\|_{L^\infty([0,T]\times[0,1])}T} \|\psi-\varphi\|_{L^\infty([-a,a])}.$ |
So
We prove now that
So, according to Shauder's fixed point theorem, there exists
To simplify the notations, we denote now
$ \varepsilon _{a,r}\Phi_{0,f^T}(t) < U_{a,r}(t,\xi) < U_1(t,\xi+r)~~\forall~(t,\xi) \in[0,T] \times (-a,a). $ | (42) |
We are now going to use a sliding method and we first give a comparison lemma.
Lemma 2.6. Let
$V_h\leq U~~\text{on}~[0,T]\times [-a,a-h].$ |
Proof. We denote
$\textstyle{\varepsilon _{a,r}\Phi_{0,f^T}\leq \frac{U_1(\cdot,-a+r)}{2} < U_1(\cdot,-a+r)}~\text{on}~[0,T],$ |
it occurs that
$h^* = \inf \big\{ \underline{h}\geq0~|~\forall h\in [\underline{h},2a],~V_h\leq U~\text{on}~[0,T]\times I_h \big\}.$ |
We have
$ V_{h^*}\leq U~\text{on}~ \mathbb{R} \times I_{h^*}. $ | (43) |
Furthermore, if we define the bounded function
$\eta(t,\xi) = {fT(t,U(t,ξ))−fT(t,Vh∗(t,ξ))U(t,ξ)−Vh∗(t,ξ), if U(t,ξ)≠Vh∗(t,ξ),fTu(t,U(t,ξ)),if U(t,ξ)=Vh∗(t,ξ),
$
|
then, we have on
$ \label{mon2} (U-V_{h^*})_t-c_2(U-V_{h^*})_{\xi}-(U-V_{h^*})_{\xi\xi} = \eta(t,\xi)(U-V_{h^*}). $ | (44) |
Consequently, according to (43) and (44), if there exists
$ V_{h^*} = U~\text{on}~ \mathbb{R} \times I_{h^*}. $ | (45) |
Yet, according to (42) (which is automatically fulfilled from the arguments used in Lemma 2.5), and since
$V_{h^*}(t,-a) = V(t,-a+h^*) < U_1(t,-a+h^*+r) < U_1(t,-a+r) = U(t,-a).$ |
Consequently,
$V_{h^*}(t,a-h^*) = V(t,a) = \varepsilon _{a,r}\Phi_{0,f^T}(t) < U(t,a-h^*).$ |
So, it occurs that
$ V_{h^*} < U~\text{on}~ \mathbb{R} \times I_{h^*}. $ |
Since
Corollary 1. There exists a unique function
Proof. We apply the conclusion of Lemma 2.6 with
Corollary 2. The function
Proof. Let
$
{(U∗)t−(U∗)ξξ−c2(U∗)ξ=fT(t,U∗) on R×(−a,a),U∗(0,⋅)=U∗(T,⋅) on [−a,a],U∗(⋅,−a)=U1(⋅,−a+r∗) , U∗(⋅,a)=εa,r∗Φ0,fT on [0,T].
$
|
The uniqueness of the solution of the previous problem (Corollary 1) implies that we have
Corollary 3. For any
$\partial_{\xi}U_{a,r}(t,\xi) < 0.$ |
Proof. We apply Lemma 2.6 with
Proposition 9. There exist
Proof. There exists
$\varepsilon _{a,r} = \min\Big\{{\frac{U_1(t_{a,r},\xi_{a,r}+r)}{2\Phi_{0,f^T}(t_{a,r})}},\varepsilon _0,\frac{y^T(0)}{\Phi_{0,f^T}(0)}\Big\}$ |
Let
$\varepsilon _{a,r_n}\xrightarrow{n\to+\infty}\varepsilon _a: = \min\Big\{{\frac{y^T(t_a)}{2\Phi_{0,f^T}(t_a)}},\varepsilon _0,,\frac{y^T(0)}{\Phi_{0,f^T}(0)}\Big\}$ |
We thus have
$U_{a,{r_{n_0}}} (0,0)\geq \frac{3}{4}\varepsilon _a\Phi_{0,f^T}(0).$ |
Let now
$U_{a,\tilde{r}_{n_1}}(0,0)\leq \frac{1}{4}\varepsilon _a\Phi_{0,f^T}(0).$ |
According to Corollary 2, there exists
$U_{a,r_a}(0,0) = \frac{1}{2}\varepsilon _a\Phi_{0,f^T}(0),$ |
which completes the proof.
Proposition 10. There exists a sequence
Proof. Since
$\varepsilon _{a_n}\xrightarrow{n\to+\infty}\varepsilon ^*: = \min\Big\{{\frac{y^T(t^*)}{2\Phi_{0,f^T}(t^*)}},\varepsilon _0,,\frac{y^T(0)}{\Phi_{0,f^T}(0)}\Big\} > 0.$ |
According the standard parabolic estimates, up to extraction of a subsequence,
$
{(U2)t−(U2)ξξ−c2(U2)ξ=fT(t,U2) on [0,T]×R,U2(0,⋅)=U2(T,⋅) on R,U2(0,0)=12ε∗Φ0,fT(0),(U2)ξ≤0 on [0,T]×R.
$
|
Since
$U_2(0,0)\in\Big(0,\frac{y^T(0)}{2}\Big].$ |
The functions
Let
$\varepsilon _T = \frac{1}{C+1}\min\big\{ |\lambda_{0,f^T}|,-\frac{g(2)}{2}\big\} > 0,$ |
where
$ f^T(t,u)-(C+1)\varepsilon u\leq f_\varepsilon (t,u)\leq f^T(t,u)+(C+1)\varepsilon u. $ | (46) |
We define the
$ f_{-\varepsilon }^T(t,u) = f^T(t,u)-(C+1)\varepsilon u,~~\text{and}~~f_e^T(t,u) = f^T(t,u)+(C+1)\varepsilon u. $ | (47) |
According to (7), it occurs that
$
{fT−ε(t,u)≤0, ∀(t,u)∈R×[2,+∞),fT(t,u)≤0, ∀(t,u)∈R×[2,+∞).
$
|
(48) |
Furthermore, according to (4) and (6), for any
$ f^T_e(t,u)\leq0,~~\forall (t,u)\in \mathbb{R} \times [2,+\infty),\\ $ | (49) |
Concerning the principal eigenvalues associated with the equilibrium
$
{λ0,fTε=λ0,fT−(C+1)ε,λ0,fT−ε=λ0,fT+(C+1)ε.
$
|
(50) |
We begin by handling the case where
$ \lambda_{0,f^T_e} > 0. $ | (51) |
We consider
${(vε)t−(vε)xx=fTε(t,vε) on (0,+∞)×R,vε(0,⋅)=uε(nεT,⋅) on R. $
|
Owing to (46) and the
$\big(u_\varepsilon (\cdot+n_\varepsilon T,\cdot)\big)_t-\big(u_\varepsilon (\cdot+n_\varepsilon T,\cdot)\big)_{xx} = f_\varepsilon \big(t+n_\varepsilon T,u_\varepsilon (\cdot+n_\varepsilon T,\cdot)\big) \leq f^T_\varepsilon \big(t,u_\varepsilon (\cdot+n_\varepsilon T,\cdot)\big).$ |
So, applying a comparison principle, we obtain
$ 0\leq u_\varepsilon (t+n_\varepsilon T,x) \leq v_\varepsilon (t,x),~~\forall (t,x)\in\mathbb{R}^+\times \mathbb{R}. $ | (52) |
According to (51), Proposition 2 applied with the
$\lim\limits_{t\to+\infty} \sup\limits_{x \in \mathbb{R}}v_\varepsilon (t,x) = 0.$ |
Hence, owing to (52),
$\lim\limits_{t\to+\infty} \sup\limits_{x\in \mathbb{R}}u_\varepsilon (t,x) = 0,$ |
which concludes the proof of the first part of Theorem 1.4.
We now consider the case where
$ |u-v|\leq\mu \Rightarrow |f^T(t,v)-f^T(t,u)-f^T_u(t,u)(v-u)|\leq \frac{\lambda_{w^T,f^T}}{2}|v-u|. $ | (53) |
We define the two positive real numbers
$\tilde{M}_T = \frac{8(C+1)}{\lambda_{w^T,f^T}} \frac{\sup\limits_{[0,T]}w^T}{\inf\limits_{[0,T]}\Phi_{w^T,f^T}} > 0,$ |
and
$ \tilde \varepsilon _T = \min \big\{\varepsilon _T,\frac{\lambda_{w^T,f^T}}{4(C+1)},\frac{\inf\limits_{[0,T]}w^T}{2\tilde{M}_T\sup\limits_{[0,T]}\Phi_{w^T,f^T}},\frac{\min\{\mu_T,1\}}{\tilde{M}_T\sup\limits_{[0,T]}\Phi_{w^T,f^T}} \big\} > 0, $ | (54) |
where
$ \lambda_{0,f^T_{-\varepsilon }} < 0,~ \lambda_{0,f^T} < 0,~\text{and}~\lambda_{0,f^T_e} < 0. $ | (55) |
Owing to (48), (49) and (55), the same proof as in Proposition 1 implies that there exists a unique
Lemma 3.1. There exists
$
{supt∈[0,T]|wTε(t)−wT(t)|≤MTε,supt∈[0,T]|wT−ε(t)−wT(t)|≤MTε.
$
|
(56) |
Proof. We begin by proving the first inequality. We define the function
$\bar v_\varepsilon (t) = w^T(t)+\tilde{M}_T\varepsilon \Phi_{w^T,f^T}(t).$ |
We are interested in the problem
$
{y′=fTε(t,y) on R,y(0)=y(T).
$
|
(57) |
We will show that
$ (\bar v_\varepsilon )'(t)-f^T(t,\bar v_\varepsilon (t))-(C+1)\varepsilon \bar v_\varepsilon (t) \\ = f^T(t,w^T(t))+\tilde{M}_T\varepsilon \Phi_{w^T,f^T}(t)f^T_u(t,w^T(t))-f^T(t,\bar v_\varepsilon (t))\\ +\tilde{M}_T\varepsilon \Phi_{w^T,f^T}(t)\lambda_{w^T,f^T}-(C+1)\varepsilon \bar v_\varepsilon (t). $ |
Since
$ f^T(t,w^T(t))+\tilde{M}_T\varepsilon \Phi_{w^T,f^T}(t)f^T_u(t,w^T(t))-f^T(t,\bar v_\varepsilon (t))\geq -\frac{\lambda_{w^T,f^T}}{2}\tilde{M}_T\varepsilon \Phi_{w^T,f^T}(t).$ |
Consequently,
$(ˉvε)′(t)−fT(t,ˉvε(t))−(C+1)εˉvε(t)≥λwT,fT2˜MTεΦwT,fT(t)−(C+1)εˉvε(t)=˜MTεΦwT,fT(t)(λwT,fT2−(C+1)ε)−(C+1)εwT(t). $
|
Yet
$\frac{\lambda_{w^T,f^T}}{2}-(C+1)\varepsilon \geq \frac{\lambda_{w^T,f^T}}{4}.$ |
Hence
$(ˉvε)′(t)−fT(t,ˉvε(t))−(C+1)εˉvε(t)≥˜MTεΦwT,fT(t)λwT,fT4−(C+1)εwT(t)=ε(λwT,fT4˜MTΦwT,fT(t)−(C+1)wT(t)). $
|
Consequently, according to the definition of
$\frac{\lambda_{w^T,f^T}}{4}\tilde{M}_T\Phi_{w^T,f^T}(t)-(C+1)w^T(t) = \big(2\frac{\Phi_{w^T,f^T}(t)}{\inf\limits_{[0,T]}\Phi_{w^T,f^T}}\sup\limits_{[0,T]}w^T-w^T(t)\big)(C+1) > 0.$ |
Finally,
We now show that
$(w^T)'(t)-f^T(t,w^T(t))-(C+1)\varepsilon w^T(t) = -(C+1)\varepsilon w^T(t) < 0.$ |
According to Lemma
$ w^T(t) < \tilde{w}_\varepsilon (t) < w^T(t)+\tilde{M}_T\varepsilon \Phi_{w^T,f^T}(t),~~\forall t\in \mathbb{R}. $ | (58) |
In particular,
$\sup\limits_{t\in[0,T]}|w^T(t)-w^T_\varepsilon (t)|\leq \varepsilon M_T,$ |
where
We now give a sketch of the proof of the second inequality of Lemma 3.1. We define the function
$\underline v _\varepsilon (t) = w^T(t)-\tilde{M}_T\varepsilon \Phi_{w^T,f^T}.$ |
We are interested in the problem
$
{y′=fT−ε(t,y) on R,y(0)=y(T).
$
|
(59) |
We can show in the same way as previously that
$ \label{encprob5bis} w^T(t)-\tilde{M}_T\varepsilon \Phi_{w^T,f^T}(t) < \hat{w}_\varepsilon (t) < w^T(t),~~\forall t\in \mathbb{R}. $ | (60) |
Yet
$w^T(t)-\tilde{M}_T\varepsilon \Phi_{w^T,f^T}(t)\geq w^T(t)-\frac{1}{2}\frac{\Phi_{w^T,f^T}}{\sup\limits_{[0,T]}\Phi_{w^T,f^T}} \inf\limits_{[0,T]}w^T > 0 .$ |
Consequently
$\sup\limits_{t\in[0,T]}|w^T(t)-w^T_{-\varepsilon }(t)|\leq \varepsilon M_T,$ |
which completes the proof of Lemma 3.1.
Let us now complete the proof of Theorem Theorem 1.4. We recall that
${(˜uε)t−(˜uε)xx=fTε(t,˜uε) on (0,+∞)×R,˜uε(0,⋅)=uε(nεT,⋅) on R, $
|
and
${(˜u−ε)t−(˜u−ε)xx=fT−ε(t,˜u−ε) on (0,+∞)×R,˜u−ε(0,⋅)=uε(nεT,⋅) on R, $
|
where
${(vε)t−(vε)xx=fε(t+nεT,vε) on R+×R,vε(0,⋅)=uε(nεT,⋅) on R. $
|
Owing to (46) and the
$(v_\varepsilon )_t-(v_\varepsilon )_{xx} = f_\varepsilon (t+n_\varepsilon T,v_\varepsilon )\leq f^T_\varepsilon (t+n_\varepsilon T,v_\varepsilon ) = f^T_\varepsilon (t,v_\varepsilon )$ |
Consequently, since
$v_\varepsilon (t,x) \leq \tilde{u}_\varepsilon (t,x),~~\forall (t,x)\in \mathbb{R}^+ \times \mathbb{R}.$ |
In other words
$u_\varepsilon (t+n_\varepsilon T,x) \leq \tilde{u}_\varepsilon (t,x),~~\forall (t,x)\in \mathbb{R}^+ \times \mathbb{R}.$ |
Actually, we can show in the same way that
$\tilde{u}_{-\varepsilon }(t,x)\leq u_\varepsilon (t+n_\varepsilon T,x) \leq \tilde{u}_\varepsilon (t,x),~~\forall (t,x)\in \mathbb{R}^+ \times \mathbb{R}.$ |
According to the
$ \tilde{u}_{-\varepsilon }(t,x)-w^T(t) \leq u_\varepsilon (t+n_\varepsilon T,x)-w^T(t+n_\varepsilon T) \leq \tilde{u}_\varepsilon (t,x)-w^T(t). $ | (61) |
Therefore, for any
${˜u−ε(t,x)−wT(t)≥−supx∈K|˜u−ε(t,x)−wT−ε(t)|−supt∈[0,T]|wT−ε(t)−wT(t)|,˜uε(t,x)−wT(t)≤supx∈K|˜uε(t,x)−wTε(t)|+supt∈[0,T]|wTε(t)−wT(t)|. $
|
On the other hand, owing to Proposition 2, there exists
$ \sup\limits_{x\in K}|\tilde{u}_{-\varepsilon }(t,x)-w^T_{-\varepsilon }(t)|+\sup\limits_{x\in K}|\tilde{u}_e(t,x)-w^T_e(t)|\leq \eta. $ | (62) |
According to Lemma 3.1, (61) and (62), we thus have, for any
$|u_\varepsilon (t+n_e T,x)-w^T(t+n_e T)|\leq \eta+M_T\varepsilon .$ |
In other words, for any
$\sup\limits_{x\in K}|u_\varepsilon (t,x)-w^T(t)|\leq \eta+M_T\varepsilon ,$ |
That is
$\limsup\limits_{t\to+\infty}\sup\limits_{x\in K}|u_\varepsilon (t,x)-w^T(t)|\leq M_T\varepsilon ,$ |
which completes the proof of Theorem 1.4.
We begin by proving
$ f(t,u)\leq f^{T^*}(t,u)-\frac{g(2)}{2}u,~~\forall t\in[t_0,+\infty),\forall u\in[0,+\infty), $ | (63) |
where we recall that
$ f(t,u)\leq0,~~\forall t\in[t_0,+\infty),\forall u\in[2,+\infty),\\ $ | (64) |
We define
$M = \max\{2,\sup\limits_\mathbb{R}u_0\}.$ |
The real number
$ 0\leq u(t,x)\leq M,~~\forall t\in\mathbb{R},~\forall x\in\mathbb{R}. $ | (65) |
We denote
${v′=f(t,v) on R+,v(0)=M. $
|
Owing to (65), we have
$0\leq u(t+t_0,x)\leq v(t),~~\forall t\geq 0,~\forall x\in\mathbb{R}.$ |
Furthemore, since
$v(t)\leq M,~~\forall t\geq 0.$ |
To summarize
$ \label{03031} 0\leq u(t,+t_0,x)\leq v(t)\leq M,~~\forall t\geq 0,~\forall x\in\mathbb{R}. $ | (66) |
We will show that
$ \label{03022} v(t_n) > \delta_0,~~\forall n\in\mathbb{N}. $ |
For any
$
\label{03023}
{v′n(t)=f(t+knT∗,vn(t)) ∀t∈[−knT∗,+∞),vn(˜tn)=v(tn)>δ0.
$
|
Up to extraction of a subsequence,
$
{(v∗)′=fT∗(t,v∗) on R,v∗(t∗)≥δ0.
$
|
(67) |
Furthermore, owing to (66), we have
$ 0\leq v^*(t) \leq M,~~\forall t\in\mathbb{R}. $ | (68) |
We consider
${σ′=fT∗(t,σ) on R+,σ(0)=M. $
|
Owing to (7) and the fact that
${(σ∗)′=fT∗(t,σ∗) on [0,T∗],σ∗(0)=σ∗(T∗)=l. $
|
According to Proposition 1, we have necessarily
$v^*(-nT^*+t) \leq \sigma(t),~~\forall t\in\mathbb{R}^+,~~\forall n\in\mathbb{N}.$ |
In particular
$v^*(t^*) \leq \sigma_n(t^*),~~\forall n\in\mathbb{N}.$ |
Passing to the limit as
$v^*(t^*)\leq \sigma^*(t^*) = 0,$ |
which is a contradiction with (67). Consequently
We now prove (Ⅱ). We begin by considering the case where
$f_\varepsilon (t,u) = f^{T^*}(t,u)+\varepsilon u,~~\forall (t,u)\in\mathbb{R}\times\mathbb{R}^+.$ |
Let
$f_\varepsilon (t,u)\leq0,~~\forall t\in\mathbb{R},~\forall u \in[2,+\infty).$ |
Furthermore
$\sup\limits_{x\in K}|u_\varepsilon (t,x)-w^T_\varepsilon (t)|\xrightarrow{t\to+\infty}0.$ |
We now consider the case where
$f_\varepsilon (t,u) \leq f^{T^*}(t,u),~~\forall (t,u)\in\mathbb{R}^+\times\mathbb{R}^+.$ |
We denote
$
{ut−uxx=fT∗(t,u) on (0,+∞)×R,u(0,⋅)=u0 on R.
$
|
From the comparison principle, it occurs that
$ 0\leq u_\varepsilon (t,x) \leq u(t,x)~~\forall (t,x)\in\mathbb{R}^+\times\mathbb{R}. $ | (69) |
According to (Ⅰ), we have
Proof. Let
$c_{T,\varepsilon }^* = 2\sqrt{|\lambda_{0,f^T_\varepsilon }|} = 2\sqrt{-\lambda_{0,f^T}+(C+1)\varepsilon },$ |
and
$c_{T,-\varepsilon }^* = 2\sqrt{|\lambda_{0,f^T_{-\varepsilon }}|} = 2\sqrt{-\lambda_{0,f^T}-(C+1)\varepsilon }.$ |
In particular, since
$ c\in (0,c_{T,-\varepsilon }^*)\cap(0,c_{T,\varepsilon }^*). $ | (70) |
We define
$ \hat \varepsilon _{c,T} = \min\{ \tilde \varepsilon _T,\varepsilon _{c,T}\} > 0. $ | (71) |
We consider
$ u_\varepsilon (n_\varepsilon T,x) \geq \tilde{u}_{\varepsilon ,0},~~~~\forall x \in \mathbb{R}. $ | (72) |
Let
${(˜uε)t−(˜uε)xx=fT−ε(t,˜uε) on (0,+∞)×R,˜uε(0,⋅)=˜u0,ε on R. $
|
Owing to (46), (72) and the fact that
$ \tilde{u}_\varepsilon (t,x) \leq u_\varepsilon (t+n_\varepsilon T,x),~~~~\forall (t,x)\in\mathbb{R}^+ \times \mathbb{R}. $ | (73) |
According to (49), we have
$\tilde{C} = \max\{2,\sup\limits_\mathbb{R} u_0\},$ |
then according to the maximum principle, we have
$ u_\varepsilon (n_\varepsilon T,x)\leq \tilde{C},~~\forall x \in \mathbb{R}. $ | (74) |
Let
$
{(vε)t=fTε(t,vε) on R+,vε(0)=˜C.
$
|
(75) |
Owing to (46) and (74), we can still apply a comparison principle to get that
$ u_\varepsilon (t+n_\varepsilon T,x) \leq v_\varepsilon (t),~~~~\forall (t,x)\in\mathbb{R}^+ \times \mathbb{R}. $ | (76) |
According to (49) and the fact that
${(v∗ε)′=fTε(t,v∗ε) on [0,T],v∗ε(0)=v∗ε(T)=l. $
|
So
$ \big| f^T_\varepsilon \big(t,\kappa_\varepsilon \Phi_{0,f^T_\varepsilon }(t)\big)-(f^T_\varepsilon )_u(t,0)\kappa_\varepsilon \Phi_{0,f^T_\varepsilon }(t) \big| \leq -\frac{\lambda_{0,f^T_\varepsilon }}{2}\kappa_\varepsilon \Phi_{0,f^T_\varepsilon }(t),~~\forall t\in[0,T]. $ |
Consequently, we have on
$(κεΦ0,fTε)′−fTε(t,κεΦ0,fTε)≤κεΦ0,fTε(λ0,fTε+(fTε)u(t,0))−(κεΦ0,fTε(fTε)u(t,0)+λ0,fTε2κεΦ0,fTε)≤λ0,fTε2κεΦ0,fTε≤0. $
|
Hence, the function
$ 0 < \kappa_\varepsilon \Phi_{0,f^T_\varepsilon }(t)\leq v_\varepsilon (t),~~\forall t\in\mathbb{R}^+. $ |
Using the
$ 0 < \kappa_\varepsilon \Phi_{0,f^T_\varepsilon }(t)\leq v^*_\varepsilon (t),~~\forall t\in\mathbb{R}^+. $ |
Consequently, we have necessarily
$ n\geq n_{\eta,\varepsilon } \Rightarrow \sup\limits_{t\in [0,T]}{|v_\varepsilon (t+n T)-w_\varepsilon ^T(t)|} \leq \eta. $ | (77) |
On the other hand, according to (70), the spreading properties in periodic case (Proposition 1.3) give the existence of
$ t \geq t_{c,\eta,\varepsilon } \Rightarrow \sup\limits_{|x| < ct}|w^T_{-\varepsilon }(t)-\tilde{u}_\varepsilon (t,x)|\leq \eta. $ | (78) |
Let
$\tilde{u}_\varepsilon (t,x) \leq u_\varepsilon (t+n_\varepsilon T,x) \leq v_\varepsilon (t)$ |
The fact that
$\tilde{u}_\varepsilon (t,x)-w^T(t) \leq u_\varepsilon (t+n_\varepsilon T,x)-w^T(t+n_\varepsilon T) \leq v_\varepsilon (n_t T +\tilde{t})-w^T(\tilde{t})$ |
Hence, according to (77) and Lemma 3.1
$u_\varepsilon (t+n_\varepsilon T,x)-w^T(t+n_\varepsilon T) \leq |v_\varepsilon (n_t T +\tilde{t})-w^T_\varepsilon (\tilde{t})|+|w^T_\varepsilon (\tilde{t})-w^T(\tilde{t})| \leq \eta+M_T\varepsilon ,$ |
and on the other hand, owing to (78) and Lemma 3.1, it occurs that
$ u_\varepsilon (t+n_\varepsilon T,x)-w^T(t+n_\varepsilon T) \geq - \sup\limits_{|y| < ct}|w^T_{-\varepsilon }(t)-\tilde{u}_\varepsilon (t,y)|- \sup\limits_{[0,T]}|w^T_{-\varepsilon }-w^T| \\ \geq -\eta-M_T \varepsilon . $ |
To conclude, for any
$\sup\limits_{|x| < ct}|u_\varepsilon (t,x)-w^T(t)| \leq \eta+M_T\varepsilon ,$ |
which concludes the proof of the first assertion of Theorem 1.5.
We now show the second part of the theorem. We consider
$ c' > \min\{c_{T,-\varepsilon }^*,c_{T,\varepsilon }^*\}. $ | (79) |
Furthermore, according to (4), (23) and (25), there exists
$ f_\varepsilon (t,u)\leq D u,~~\forall t\in\mathbb{R}^+,~\forall u\in\mathbb{R}^+. $ | (80) |
We define
${Ht−Hxx=0 on (0,+∞)×R,H(0,⋅)=u0 on R. $
|
The function
$ H(t,x) = \frac{1}{2\sqrt{\pi t}} \int_{\text{Supp}(u_0)}e^{-\frac{(x-y)^2}{4t}}u_0(y) dy,~~\forall t\in(0,+\infty),\forall x\in\mathbb{R}, $ | (81) |
where
$u_\varepsilon (t,x) \leq H(t,x)e^{Dt},~~\forall t\in\mathbb{R}^+,\forall x\in\mathbb{R}.$ |
In particular, owing to (81), it occurs that
$ u_\varepsilon (n_\varepsilon T,x)\leq \frac{e^{Dn_\varepsilon T}}{2\sqrt{\pi n_\varepsilon T}} \int_{\text{Supp}(u_0)}e^{-\frac{(x-y)^2}{4n_\varepsilon T}}u_0(y) dy,~~\forall x\in \mathbb{R}. $ | (82) |
We define the real number
$\gamma_{c',\varepsilon } = \frac{c'+\sqrt{(c')^2+4\lambda_{0,f^T_e}}}{2}.$ |
Let us note that
$ u_\varepsilon (n_\varepsilon T,x)\leq M_{c',\varepsilon }\Phi_{0,f^T_e}(0)e^{-\gamma_{c',\varepsilon } x},~~\forall x\in \mathbb{R}. $ | (83) |
We also define the function
$v_{c',\varepsilon }(t,x) = M_{c',\varepsilon }\Phi_{0,f^T_e}(t)e^{-\gamma_{c',\varepsilon }(x-c't)},$ |
We have on
$(v_{c',\varepsilon })_t-(v_{c',\varepsilon })_{xx} = (-\gamma_{c',\varepsilon }^2+\gamma_{c',\varepsilon }c'+\lambda_{0,f^T_e})M_{c',\varepsilon }\Phi_{0,f^T_e}e^{-\gamma_{c',\varepsilon }(x-c't)}+(f^T_e)_u(t,0)v_{c',\varepsilon }.$ |
Hence according to (5) and the fact that
$(v_{c',\varepsilon })_t-(v_{c',\varepsilon })\geq f^T_e(t,v_{c',\varepsilon })$ |
Furthermore, owing to (46), (47) and the
$(u_\varepsilon )_t-(u_\varepsilon )_{xx} = f_\varepsilon (t+n_\varepsilon T,u_\varepsilon )\leq f^T_\varepsilon (t+n_\varepsilon T,u_\varepsilon ) = f^T_\varepsilon (t,u_\varepsilon )$ |
Consequently, since (83) implies that
$0\leq u_\varepsilon (t+n_\varepsilon T,x)\leq v_{c',\varepsilon }(t,x),~~\forall(t,x) \in \mathbb{R}^+ \times \mathbb{R}.$ |
For all
$0≤supx>ctuε(t,x)≤supx>ctvc′,ε(t,x)≤vc′,ε(t,ct)=Mc′,εΦ0,fTe(t)e−γc′,ε(c−c′)tt→+∞→0. $
|
In the same way, we can show that
$0\leq\sup\limits_{x < -ct}u_\varepsilon (t+n_\varepsilon T,x)\xrightarrow{t\to+\infty}0.$ |
To summarize
$\lim\limits_{t\to+\infty}\sup\limits_{|x| > ct}u_\varepsilon (t,x) = 0,$ |
which concludes the proof of the second assertion of Theorem 1.5.
We begin by proving Proposition 6.
Proof. Owing to (28), the principal eigenvalue associated with
$\lambda_{0,f^T_\tau } = -g'(0)+\int_0^T m^T_\tau (t)~dt = -g'(0)+\int_0^1\varphi (t)dt = \lambda_{0,f^T}.$ |
We now demonstrate Proposition 7.
Proof. Let
$P_{\tau}^T(\alpha) = y_{\tau ,\alpha}(T),$ |
where
$
{(yτ,α)′=fTT(t,yτ,α) on R+,yτ,α(0)=α.
$
|
(84) |
In the same way as in the proof of Proposition 1, we show that the function
We begin by showing the continuity property. Let
${wTτn(t)=wTτn(0)+∫t0fTτn(s,wTτn(s))ds, ∀t∈[0,T],wTτn(0)=wTτn(T). $
|
Passing to the limit as
${w∗(t)=w∗(0)+∫t0fTτ∗(s,w∗(s))ds, ∀t∈[0,T],w∗(0)=w∗(T). $
|
The function
${(w∗)′=fTτ(t,w∗) on [0,T],w∗(0)=w∗(T). $
|
Owing to Proposition 1, it follows that
$\frac{(w^T_{\tau_n})'(t)}{w^T_{\tau_n}(t)} = \frac{f^{T}(t,w^T_{\tau_n}(t))}{w^T_{\tau_n}(t)},~~\forall t\in[0,T].$ |
We integrate the previous equation over
We now study the monotonicity of this function. We consider two real numbers
$P^T_{\tau_i}(\alpha) = y_{\tau _i,\alpha}(T),$ |
where
$ z_{\tau _i,\alpha}(t) = y_{\tau _i,\alpha}(t) e^{ \int_0^t m^T_{\tau _i}(s)ds}. $ | (85) |
This function solves on
$(z_{\tau _i,\alpha})' = \frac{g\Big(z_{\tau _i,\alpha} e^{-\int_0^t m^T_{\tau _i}(s)ds}\Big)}{ e^{- \int_0^t m^T_{\tau _i}(s)ds}}$ |
For any
$ e^{-\int_0^t m^T_{\tau _1}(s)ds} \leq e^{-\int_0^t m^T_{\tau _2}(s)ds}. $ | (86) |
According to (4) and the fact that
$ \frac{g\Big(z_{\tau _1,\alpha} e^{-\int_0^t m^T_{\tau _1}(s)ds}\Big)}{ z_{\tau _1,\alpha} e^{- \int_0^t m^T_{\tau _1}(s)ds}} \geq \frac{g\Big(z_{\tau _1,\alpha} e^{-\int_0^t m^T_{\tau _2}(s)ds}\Big)}{ z_{\tau _1,\alpha} e^{- \int_0^t m^T_{\tau _2}(s)ds}}. $ | (87) |
In other terms,
$z_{\tau _1,\alpha}(t) \geq z_{\tau _2,\alpha}(t),~~~\forall t\in [0,T].$ |
Actually, the previous inequality is strict with
$y_{\tau _1,\alpha}(T) e^{ \int_0^T m^T_{\tau _1}(s)ds} > y_{\tau _2,\alpha}(T) e^{ \int_0^Tm^T_{\tau _2}(s)ds}$ |
According to (28), it occurs that
$ \int_0^T m^T_{\tau _1}(s)ds = \int_0^T m^T_{\tau _2}(s)ds = \int_0^1 \varphi (s)ds.$ |
Consequently
$y_{\tau _1,\alpha}(T) > y_{\tau _2,\alpha}(T).$ |
In other words,
1. | Khumoyun Jabbarkhanov, Durvudkhan Suragan, On Fisher's equation with the fractional p$$ p $$‐Laplacian, 2023, 0170-4214, 10.1002/mma.9219 | |
2. | Martin Burger, Patricia Friele, Jan-Frederik Pietschmann, On a Reaction-Cross-Diffusion System Modeling the Growth of Glioblastoma, 2020, 80, 0036-1399, 160, 10.1137/18M1194559 | |
3. | Ardak Kashkynbayev, Durvudkhan Suragan, Berikbol T. Torebek, Fisher–KPP equation on the Heisenberg group, 2023, 0025-584X, 10.1002/mana.202000421 | |
4. | Yash Vats, Mani Mehra, Dietmar Oelz, Abhishek Kumar Singh, A New Perspective for Scientific Modelling: Sparse Reconstruction-Based Approach for Learning Time-Space Fractional Differential Equations, 2024, 19, 1555-1415, 10.1115/1.4066330 |