Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity

  • Received: 01 March 2012 Revised: 01 February 2013
  • Primary: 35K57; Secondary: 35C20.

  • We adapt (ray-based) geometrical optics approaches to encompass the formal asymptotic analysis of front propagation in a Fisher-KPP equation with slowly varying spatial inhomogeneities. The wavespeed is shown to be selected by two distinct (and fully constructive) mechanisms, depending on whether the source term is an increasing or decreasing function of the spatial variable. Canonical inner problems, analogous to those arising in the geometrical theory of diffraction, are formulated to give refined expressions for the wavefront location. Additional phenomena, notably the initiation of new fronts and the transitions that occur when the source term is a non-monotonic function of space, are shown to be amenable to the same asymptotic approaches.

    Citation: John R. King. Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity[J]. Networks and Heterogeneous Media, 2013, 8(1): 343-378. doi: 10.3934/nhm.2013.8.343

    Related Papers:

  • We adapt (ray-based) geometrical optics approaches to encompass the formal asymptotic analysis of front propagation in a Fisher-KPP equation with slowly varying spatial inhomogeneities. The wavespeed is shown to be selected by two distinct (and fully constructive) mechanisms, depending on whether the source term is an increasing or decreasing function of the spatial variable. Canonical inner problems, analogous to those arising in the geometrical theory of diffraction, are formulated to give refined expressions for the wavefront location. Additional phenomena, notably the initiation of new fronts and the transitions that occur when the source term is a non-monotonic function of space, are shown to be amenable to the same asymptotic approaches.


    加载中
    [1] J. K. Cohen and R. M. Lewis, A ray method for the asymptotic solution of the diffusion equation, IMA J. Appl. Math., 3 (1967), 266-290. doi: 10.1093/imamat/3.3.266
    [2] C. M. Cuesta and J. R. King, Front propagation a heterogeneous Fisher equation: The homogeneous case is non-generic, Q. J. Mech. Appl. Math., 63 (2010), 521-571. doi: 10.1093/qjmam/hbq017
    [3] U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Physica D, 146 (2000), 1-99. doi: 10.1016/S0167-2789(00)00068-3
    [4] L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Uni. Math. J., 38 (1989), 141-172. doi: 10.1512/iumj.1989.38.38007
    [5] J. Smoller, "Linear Elastic Waves," Cambridge University Press, 2001. doi: 10.1017/CBO9780511755415
    [6] M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, Ann. Prob., 13 (1985), 639-675. doi: 10.1214/aop/1176992901
    [7] John King, "Mathematical Aspects of Semiconductor Process Modelling," DPhil Thesis, University of Oxford. 1986.
    [8] J. R. King, High concentration arsenic diffusion in crystalline silicon: An asymptotic analysis, IMA J. Appl. Math., 38 (1987), 87-95. doi: 10.1093/imamat/38.2.87
    [9] V. Méndez, J. Fort, H. G. Rotstein and S. Fedotov, Speed of reaction-diffusion fronts in spatially heterogeneous media, Phys. Rev. E, 68 (2003), 041105. doi: 10.1103/PhysRevE.68.041105
    [10] A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," American Mathematical Society, 1994.
    [11] J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230. doi: 10.1137/S0036144599364296
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4508) PDF downloads(126) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog