Citation: John R. King. Wavespeed selection in the heterogeneous Fisher equation: Slowly varying inhomogeneity[J]. Networks and Heterogeneous Media, 2013, 8(1): 343-378. doi: 10.3934/nhm.2013.8.343
[1] | J. K. Cohen and R. M. Lewis, A ray method for the asymptotic solution of the diffusion equation, IMA J. Appl. Math., 3 (1967), 266-290. doi: 10.1093/imamat/3.3.266 |
[2] | C. M. Cuesta and J. R. King, Front propagation a heterogeneous Fisher equation: The homogeneous case is non-generic, Q. J. Mech. Appl. Math., 63 (2010), 521-571. doi: 10.1093/qjmam/hbq017 |
[3] | U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Physica D, 146 (2000), 1-99. doi: 10.1016/S0167-2789(00)00068-3 |
[4] | L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Uni. Math. J., 38 (1989), 141-172. doi: 10.1512/iumj.1989.38.38007 |
[5] | J. Smoller, "Linear Elastic Waves," Cambridge University Press, 2001. doi: 10.1017/CBO9780511755415 |
[6] | M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, Ann. Prob., 13 (1985), 639-675. doi: 10.1214/aop/1176992901 |
[7] | John King, "Mathematical Aspects of Semiconductor Process Modelling," DPhil Thesis, University of Oxford. 1986. |
[8] | J. R. King, High concentration arsenic diffusion in crystalline silicon: An asymptotic analysis, IMA J. Appl. Math., 38 (1987), 87-95. doi: 10.1093/imamat/38.2.87 |
[9] | V. Méndez, J. Fort, H. G. Rotstein and S. Fedotov, Speed of reaction-diffusion fronts in spatially heterogeneous media, Phys. Rev. E, 68 (2003), 041105. doi: 10.1103/PhysRevE.68.041105 |
[10] | A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," American Mathematical Society, 1994. |
[11] | J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230. doi: 10.1137/S0036144599364296 |