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Abstract. We adapt (ray-based) geometrical optics approaches to encompass

the formal asymptotic analysis of front propagation in a Fisher-KPP equation
with slowly varying spatial inhomogeneities. The wavespeed is shown to be

selected by two distinct (and fully constructive) mechanisms, depending on

whether the source term is an increasing or decreasing function of the spa-
tial variable. Canonical inner problems, analogous to those arising in the

geometrical theory of diffraction, are formulated to give refined expressions

for the wavefront location. Additional phenomena, notably the initiation of
new fronts and the transitions that occur when the source term is a non-

monotonic function of space, are shown to be amenable to the same asymptotic

approaches.

1. Introduction. A key question in characterising wave propagation over an un-
stable state is associated with determining the speed at which such propagation
occurs. A very well-studied (and comparatively simple) representative example is
provided by the Fisher-KPP equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u), −∞ < x < +∞, (1)

whereby a localised perturbation (compactly supported, say) with u > 0 to the
unstable uniform state u ≡ 0 generates waves of asymptotic (i.e. large-time) speed
c = 2 propagating in both directions, between which the stable state u = 1 is
established. That the speed can be expected to be given by c = 2 can be established
heuristically either from the phase plane for the associated travelling-wave ordinary
differential equation (see (11) below), as the minimum speed for which a non-
negative heteroclinic connection between u = 1 and u = 0 exists, or by linearising
the PDE about u = 0 to obtain

u ∼ M

2
√
πt

et−x
2/4t

for some constant M as the intermediate asymptotic behaviour, from which it is
readily observed that the condition for the linearisation to be applicable as t→∞
can be expressed as |x|/t > 2. That c = 2 applies here has long been established
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rigorously, with many refinements of the result also in place1. A motivation for the
current work was, nevertheless, to gain more intuitive understanding of why each
of these heuristic arguments gives the same answer and, indeed, why that answer
is the correct one. In doing this, it proves instructive to consider a direct spatially
heterogeneous generalisation of (1), namely (2) below; with this generalisation, we
find that arguments analogous to the two above in general give different answers,
having complementary and all-encompassing regimes of applicability. Thus we
identify two distinct mechanisms for wavespeed selection that we term the repeated-
root mechanism and the Hamilton-Jacobi mechanism and which we believe are of
much broader applicability; while each is based on linear arguments (associated
with linearisation either of the travelling-wave reduction or of the PDE itself), each
gives a fully constructive method for determining the wavespeed of the associated
nonlinear problem within its regime of applicability: the repeated-root condition
involves identification of the minimum speed within the travelling-wave phase plane
by determining the condition for a degenerate node, while the Hamilton-Jacobi
case involves (in its simplest guise) the construction of the expansion-fan solution
of the relevant eikonal equation. To exemplify the lessons that we claim can
be learnt from such an analysis, we highlight straightaway the implications that
conclusions arising from a phase-plane analysis (or from the linearisation of the
PDE) alone must be treated with considerable caution, despite the intuitive appeal
of such a simplification, and that ray methods of the type pioneered in linear
problems (geometrical optics in particular2) have a considerable amount to say
about nonlinear ones of the type we address here and whose broader application,
given that they have been underexploited in such contexts, we advocate.

The current paper thus concerns the Cauchy problem for the heterogeneous
monostable reaction-diffusion equation (we refer to [11] for a review of past studies
of such systems, while noting that there are also many more recent investigations)

ε
∂u

∂t
= ε2 ∂

2u

∂x2
+ Ψ(x)u (1− u/Φ(x)) for−∞ < x < +∞, (2)

for u(x, t) with initial conditions

at t = 0 u = uI(x; ε),

wherein Ψ,Φ > 0 and uI ≥ 0 for all x. We are concerned here with the regime
0 < ε � 1, so taking Ψ and Φ to be independent of ε amounts to an assumption
that the heterogeneity in the source term is spatially slowly varying. We remark that
the nonlinearity in the source term could readily be generalised but that we shall
focus on the above (Fisher-like) form in order to avoid issues of nonlinear selection
(pushed fronts3) that would be a distraction in the current context – we refer to [2]
for the relevant background and references and for analysis that is complementary
to what follows here4; directly relevant earlier work of which we were unaware

1With apologies, we forego here any attempt to give a proper account of the very extensive

relevant literature; a valuable way in is provided by [10].
2See [5], for example, for background on linear waves, including on associated terminology

adopted below.
3For nonlinearities for which a pushed front arises, the travelling-wave solution with c = 2 has

u passing through zero before tending back to zero from below, so that the minimal admissible

wavespeed has c > 2 and its calculation requires global rather than local phase-plane analysis.
4[2] focusses on detailed analysis of cases involving power-law Ψ(x); our investigations here

will be less concrete but more general. In the interests of making the current discussion relatively
self-contained we shall, however, revisit some of the results of [2].
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while writing [2] includes that of Freidlin, e.g. [6], Evans and Souganidis [4] and
Méndez et al. [9]; in particular, Example 2 of [6] is very close to one of those
discussed in [2]. As already implied, in the interests of brevity we shall not include
a detailed literature review here nor shall we discuss natural generalisations of (2)
that can fairly readily be analysed by the methods outlined below, including the
multidimensional case (see Section 7 of [2], however) and cases

ε
∂u

∂t
= ε2 ∂

∂x

(
D(x)

∂u

∂x

)
+ S(u, x)

in which the diffusivity is also non-uniform.
For ease of exposition we shall take

Ψ(0) = Φ(0) = 1 (3)

and, where relevant, assume

lim
x→+∞

Ψ(x) = Ψ∞, (4)

for some positive constant Ψ∞. We shall require uI(x; ε) to decay sufficiently rapidly
to zero at |x| → ∞ that the minimum wavespeed is realised (and in particular to
be exponentially small in ε for |x| � ε; we make more precise statements in due
course), on obvious symmetry grounds discuss the behaviour in x > 0 only and

focus primarily on Ψ being monotonic in x, the cases Ψ
′
> 0 and Ψ

′
< 0 exhibiting

significantly different behaviour. Importantly for what follows, the linearised version
of (2) (linearised about u = 0) is of course independent of Φ(x).

Our main goal here is to determine the propagation speed associated with (2),
which could be defined as the location x = s(t; ε) at which

u (s(t; ε), t) =
1

2
Φ (s(t; ε), t) , (5)

say, whereby as t→ +∞
u (x, t)→ Φ(x) as ε→ 0 for 0 < x/s < 1,

u(x, t)→ 0 for x/s > 1,
(6)

for each fixed x/s. For practical reasons, our subsequent working definition of s will
differ somewhat from (5), but (6) will remain valid.

Approaches based on geometric optics are relatively rarely applied to parabolic
problems, but will be essential to the formal methods described here: we highlight
the pioneering work of Cohen and Lewis [1] on applications to linear parabolic
equations, as well as that of Freidlin and coworkers (e.g. [6]) on approaches based on
large-deviation theory, and also mention [7], [8] as earlier examples of the application
of the current formal techniques in determining the tail behaviour of nonlinear
problems. In many places our analysis will need to go beyond geometrical optics,
however, by formulating and analysing canonical inner problems analogous to those
arising in the geometrical theory of diffraction: these analyses will enable us to
establish formally a number of results that we believe to warrant subsequent rigorous
treatment.

The remainder of the paper is organised as follows (note that the same notation is
often used with different meanings in different sections); for the most part we limit
ourselves to discussion of monotonic Ψ(x). In Section 2 we study the two early
timescales t = O(ε) and t = O(ε1/3) that are required to provide a comprehensive
asymptotic description of (2) in the limit ε→ 0 and which provide valuable insight
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into the analysis of the main timescale t = O(1) in Sections 3 (mechanisms for
wavespeed selection), 4 (initiation of additional wavefronts) and 5 (other related
matters). Section 6 provides discussion, while Appendix 1 identifies a distinguished
limit in which Ψ is almost uniform that captures the transition between the distinct
wavespeed-selection mechanisms. Appendix 2 analyses a perceptive example from
[6] in which Ψ is piecewise constant, making the problem particularly susceptible
to detailed calculation; Appendix 3 outlines a canonical inner problem associated
with Appendix 2.

2. The early time behaviour.

2.1. t = O(ε). For the purposes of this section we take

Ψ(x) ∼ 1 + λx+ µx2 as x→ 0. (7)

The only non-generic case we shall consider here is Ψ(x) ≡ 1 and we could otherwise

without loss of generality take |λ| = 1 in (7), with λ = 1 corresponding to Ψ
′
(x) > 0

and λ = −1 to Ψ
′
(x) < 0. We also take

uI (x; ε) = UI(X)

with x = εX and where UI will be taken to decay much more rapidly than exp(−X)
as X → +∞ in order to ensure that the minimum wavespeed is realised.

The first timescale has t = εT , whereby at leading order in ε we have the classical
(Fisher) problem

∂u0

∂T
=
∂2u0

∂X2
+ u0(1− u0), (8)

at T = 0 u0 = UI(X),

where we have used (3). The large-time behaviour of (8) in X > 0 takes the familiar
form

u0 ∼ φ(z; 2) as T → +∞ with z = O(1) (9)

where

z = X − 2T +
3

2
lnT + z0 (10)

for some constant z0 (that depends on UI) and φ(z; c) is the travelling-wave solution

d2φ

dz2
+ c

dφ

dz
+ φ(1− φ) = 0, (11)

as z → −∞ φ→ 1, as z → +∞ φ→ 0.

In view of the z-translation invariance of (11), it is convenient to specify φ uniquely
via

φ(z; c) ∼ 1− exp

(
1

2
(
√
c2 + 4− c)z

)
as z → −∞, (12)

since (11) can then be solved as an initial-value problem from z = −∞, the condition
as z → +∞ being automatically satisfied for c > 0; (11) can readily be, and is
traditionally, analysed by phase-plane methods. The appearance of the arbitrary
constant z0 in (10), which depends on the initial data, arises from this translation
invariance. For c = 2 we have

φ(z; 2) ∼ Kze−z as z → +∞, (13)
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corresponding to a degenerate node in the phase plane, where the positive constant
K is determined by (11)-(12); for c > 2 we instead have

φ(z; c) ∼ k(c) exp(−1

2
(c−

√
c2 − 4)z) as z → +∞, (14)

where k(c) is also determined by (11)-(12), so that

k(c) ∼ K

2(c− 2)
1
2

as c→ 2+.

The IVP-character of (11)-(12) motivates us henceforth to adopt

u(s(t; ε), t) = φ(0; ṡ/Ψ
1
2 (s))Φ(s) (15)

as our definition of s in place of (5); the reason for setting c = ṡ/Ψ
1
2 (s) here will

become apparent in Section 3.2.
For the purposes of the subsequent analysis, it is valuable to revisit the reasons

for the appearance of the lnT term in (10). The travelling wave (9) describes the
behaviour of (8) as T → +∞ with z = O(1), but there are two further regions ahead
of the wavefront. For X = O(T ) we apply the Liouville-Green (JWKB) method
(which will be a key ingredient of the analysis throughout this paper) in the form

u0 ∼ A(X,T ) e−f(X,T ) (16)

to obtain (since u0 is exponentially small for X/T > 2)

∂f

∂T
+

(
∂f

∂X

)2

+ 1 = 0,
∂A

∂T
+ 2

∂f

∂X

∂A

∂X
= − ∂

2f

∂X2
A (17)

with f = TF (η), η = X/T , so that F (η) satisfies the Clairaut equation

F − η dF
dη

+

(
dF

dη

)2

+ 1 = 0 (18)

and hence (since the envelope solution to (18) is the one that we require for fast-
decaying initial data)

f =
X2

4T
− T, A =

1

T
1
2

a

(
X

T

)
(19)

where a is an arbitrary function that depends on the initial data. The characteristic
projections to (17) associated with (19) (i.e. the solutions to the ray equations for
(17) in the special case of (17) in which the solutions take the form (19)) each have
η constant, i.e. they comprise the expansion fan whereby

X/T = constant (20)

holds on each ray. We note that if the initial data are not compactly supported
(but decay much more rapidly that exp(−X) as X → +∞) there may be a further
contribution to the large-time behaviour of the type (16) associated with the initial
data but that (19) will be the largest exponential contribution sufficiently close to
the wavefront (an example of the exchange of dominance between such contributions
is described in [2]). The second additional region is more important (determining
as it does the lnT term in (10) in the current context) and is given by X = S(T ) +
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O(T
1
2 ), where S(T ) ∼ 2T as T → +∞. In this region we in the first instance set5

X = S(T ) + z, u0 = e−zv,

with z � 1, to give

∂v

∂T
∼ ∂2v

∂z2
+ (Ṡ − 2)

∂v

∂z
− (Ṡ − 2)v (21)

with the matching condition

v ∼ Kz for 1� z � T
1
2 (22)

following from (13). We then set

v = e
1
2 (Ṡ−2)z e−(S−2T )w (23)

to give

∂w

∂T
− 1

2
S̈zw ∼ ∂2w

∂z2
+

1

4
(Ṡ − 2)2w. (24)

As will follow from (26) below, and as has already in effect been postulated in

(10), the second and fourth terms in (24) scale respectively as w/T
3
2 and w/T 2 as

T → +∞ with z = O(T
1
2 ), so prove negligible. Thus we require the large-time

solution to

∂w

∂T
=
∂2w

∂z2
,

at z = 0 w = 0,
(25)

where the boundary condition follows from the matching condition (22) on the

understanding that (25) pertains to z = O(T
1
2 ). Thus (again for fast decay as

z → +∞) we have the usual dipole solution

w ∼ I1
z

T
3
2

e−z
2/4T as T → +∞ with z = O(T

1
2 ),

where the positive constant I1 depends on the initial data, and hence from (22),
(23)

K ∼ e−(S−2T )I1 /T
3
2 ,

so that

S(T ) ∼ 2T − 3

2
lnT + ln(I1/K) as T → +∞. (26)

We therefore recover (10) with z0 = ln(K/I1) and can deduce that a(η) ∼ I1(η− 2)
as η → 2+.

5The procedure we adopt here is not in fact the most transparent one in the current context
but is expedient in setting up the framework appropriate to the more involved problems discussed

later.
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2.2. t = O(ε
1
3 ). The second timescale provides the main rationale for the cur-

rent section: on this timescale two types of universal (parameter-free) large-time
behaviours arise, depending on whether λ is positive or negative – these provide
concise representations of the distinct types of behaviour that occur for Ψ

′
(x) > 0

and Ψ
′
(x) < 0 and contain many of the essential ingredients of the more general

analysis that applies for t = O(1). It is convenient to introduce δ = ε1/3 and the
relevant scalings then read

t = δτ, x = δξ, s(t; ε) = δσ(τ ; δ). (27)

We require

σ ∼ 2τ + δσ1(τ) + δ2 ln(1/δ)σ2(τ) + δ2σ3(τ) as δ → 0. (28)

with

σ1 → 0, σ2 → −3, σ3 ∼ −
3

2
ln τ − z0 as τ → 0+ (29)

in order to match with (26). Further, we set

ξ = σ(τ ; δ) + δζ, u =
e−ζ/δ

δ
v (30)

to give for ζ > 0 (so that u is exponentially small) on using (7) that

δ2 ∂v

∂τ
∼ δ2 ∂

2v

∂ζ2
+ δ(σ̇ − 2)

∂v

∂ζ
− (σ̇ − 2− δλσ − δ2µσ2 − δ2λζ)v (31)

(cf. (21)). Using (28), we immediately obtain from (31) that

σ̇1 = 2λτ, σ̇2 = 0

at O(δ) and O(δ2 ln(1/δ)) respectively, so, in view of (29),

σ1 = λτ2, σ2 = −3. (32)

At O(δ2) we then obtain from (31) the initial-boundary-value problem

∂v0

∂τ
=
∂2v0

∂ζ2
+ 2λτ

∂v0

∂ζ
+
(
(λ2 + 4µ)τ2 − σ̇3 + λζ

)
v0,

at ζ → 0+ v0 ∼ Kζ,

as τ → 0+ v0 ∼ Kζ e−ζ
2/4τ for ζ = O(τ1/2);

(33)

because a ‘known’ constant K appears in the boundary data, (33) serves to deter-
mine σ3(τ) as well as v0(ζ, τ). The formulation (33) can be simplified somewhat by
setting

v0 = exp(−λτζ +
4

3
µτ3 − σ3(τ))w

to give6

∂w

∂τ
=
∂2w

∂ζ2
+ 2λζw,

at ζ = 0 w = 0,

as τ → 0+ w ∼ I1

τ
3
2

ζe−ζ
2/4τ ,

(34)

6While the PDE in (34) can readily be mapped to the heat equation (see below), the IBVP is
then no longer posed on a fixed domain, so we do not implement the further change of variables

here.
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with σ3(τ) then being given in terms of the solution to (34) by

σ3 =
4

3
µτ3 + ln

(
∂w

∂ζ
(0, τ)/K

)
. (35)

The full IBVP (34) governs the wavefront behaviour for τ = O(1) and we restrict
ourselves to determining its large-τ behaviour. The Liouville-Green approach is
particularly instructive here: setting

w ∼ A(ζ, τ)e−f(ζ,τ)

gives

∂f

∂τ
+

(
∂f

∂ζ

)2

+ 2λζ = 0; (36)

this, on introducing p ≡ ∂f/∂ζ, q ≡ ∂f/∂τ , implies the ray (Charpit) equations

dζ

dτ
= 2p,

dp

dτ
= −2λ,

df

dτ
= q + 2p2,

dq

dτ
= 0 (37)

(as usual, the ray approach reduces the PDE, here (36), to ODEs, here (37), that
govern each of the rays, explicitly reflecting the information flow associated with the
first-order (and hence hyperbolic) PDE; the notation in (37) thereby corresponds
to expressing the solution to (36) in the form

ζ = ζ(τ ; p0), f = f(τ ; p0), p = p(τ ; p0), q = q(τ ; p0),

where p0 in (38) distinguishes distinct rays (i.e. is constant on each ray) and τ
parametrises each ray, as described by (37)) subject to the expansion-fan initial
data

at τ = 0 ζ = 0, f = 0, p = p0, q = −p2
0 (38)

for arbitrary p0 ≥ 0 (i.e. we require the solution to (36) associated entirely with
rays that start at ζ = 0, τ = 0 (in effect because we are interested in the large-time
behaviour for localised initial data); similar comments apply for (57)-(58) below).
On eliminating p0, the resulting solution is thus

f =
ζ2

4τ
− λζτ − 1

3
λ2τ3, (39)

the characteristic projections being given by

ζ = 2(p0τ − λτ2), p0 ≥ 0. (40)

For λ = 0 the initial data in (34) of course describe the solution for all τ and,
correspondingly, (39)-(40) reduce to

f =
ζ2

4τ
, ζ = 2p0τ

(cf. (19)-(20)): this represents a borderline case and the behaviour for λ 6= 0 is
strongly dependent on the sign of λ, as follows.

For λ > 0 it follows from (40) that the rays turn back on themselves but occupy
the whole of ζ ≥ 0 for all τ ; f is minimal at

p0 = 2λτ, ζ = 2λτ2, where f = −4λ2τ3/3,

and, more importantly, ζ = 0 corresponds to p0 = λτ and f = −λ2τ3/3 so by (35)
we at once obtain

σ3 ∼
1

3
(4µ+ λ2)τ3 as τ → +∞. (41)
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For λ < 0, however, the expansion-fan rays (40) occupy only the region ζ ≥
−2λτ2 and a further family of rays, emanating from ζ = 0 for τ > 0, is required to
complete the picture: to characterise these we must first analyse (34) for large τ in
the boundary layer ζ = O(1) (as will be clear from (39), the scaling on which the
Liouville-Green solution applies is ζ = O(τ2)); here we set

w ∼ e−ντW (ζ) as τ → +∞, (42)

where ν will be determined as an eigenvalue (and (42) can be viewed as being
associated with a ντ contribution to f), so that

d2W

dζ2
+ (2λζ + ν)W = 0,

at ζ = 0 W = 0,

as ζ → +∞ lnW ∼ −2

3
(−2λ)1/2ζ3/2,

(43)

requiring λ < 0. Thus the solution can be expressed in terms of the Airy function
Ai by

W = C Ai

(
(−2λ)

1
3 ζ − ν

(−2λ)
2
3

)
, (44)

where C is a positive constant that can be expressed in terms of I1 using the
conservation law

d

dτ

∫ ∞
0

eντAi

(
(−2λ)

1
3 ζ − ν

(−2λ)
2
3

)
w(ζ, τ)dζ = 0

and ν is given by

ν = −(−2λ)
2
3 a0 (45)

where a0 < 0 is the first zero of the Airy function,

Ai(a0) = 0. (46)

In view of (35), we have

σ3 ∼
4

3
µτ3 + (−2λ)

2
3 a0τ as τ → +∞ (47)

for λ < 0 (contrast (41)). It follows from matching to (42) that the aforementioned
additional ray family for (37) satisfies

at τ = τ0 ζ = 0, f = 0, p = 0, q = 0 (48)

for arbitrary τ0 > 0 (more precisely, for τ0 � 1 since we are concerned with the
large-time behaviour) – in formulating (48), it needs to be observed that the ντ
contribution to f implicit in (42) is negligible compared to the solution (49) below
that results from (48) on the relevant length scale ζ = O(τ2). Hence

f =
2

3
(−2λ)

1
2 ζ

3
2 (49)

and the rays are given by
ζ = (−2λ)(τ − τ0)2. (50)

In consequence, (39) holds in ζ > (−2λ)τ2 and (49) in 0 < ζ < (−2λ)τ2 and each
satisfies f = 2(−2λ)2τ3/3, p = (−2λ)τ on ζ = (−2λ)τ2. The transition between
the two can be characterised in more detail by setting

ζ = (−2λ)τ2 + ζ̂, w = exp

(
−2

3
(−2λ)2τ3 − (−2λ)ζ̂τ

)
ŵ
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Figure 1. Characteristic projections for the eikonal equation (36): (a) λ = 0,

(b) λ > 0, (c) λ < 0. The small-τ behaviour of (b) and (c) is as shown in

(a), corresponding to the analysis for τ = O(1). Solid lines: expansion-fan
solutions. Dashed lines: rays (50) for τ0 > 0.

to give from (34) the heat equation

∂ŵ

∂τ
=
∂2ŵ

∂ζ̂2
,

so that as τ → +∞ with ζ̂ = O(τ) we have

ŵ ∼ 1

τ1/2
Ω(
ζ̂

τ
) e−ζ̂

2/4τ

where Ω is an arbitrary function that depends on the initial data but whose far-field

behaviour as ζ̂/τ → ±∞ could in principle be determined from the solutions to the
amplitude equation that correspond to (39) and (49).

Important lessons for the analysis that follows can be drawn from the above
results. Specifically, for λ > 0 the front location (as determined from σ3 in (41))
follows directly from the expansion-fan solution to the Hamilton-Jacobi equation
(36) (cf. Section 3.3), whereas a simple manifestation of the differences in behaviour
that occur λ < 0 is that the leading-order contribution in (47) is independent of λ,
for reasons clarified in Section 3.2. This distinction results from the very different
ray pictures for the large-τ behaviour of (34) shown schematically in Figure 1; note
that the dashed rays all emerge tangentially from the τ axis.

3. Analysis for t = O(1).

3.1. Preamble. The current section provides the core results of the paper. We
start in Sections 3.2 and Sections 3.3 by setting up two plausible mechanisms by
which the wavespeed could be selected, both of which give the correct result for
pulled fronts when Ψ(x) ≡ 1, but which more generally yield distinct results. In
the subsequent sub-sections we seek to clarify the reasons why the first is applicable
when Ψ

′
< 0 and the second when Ψ

′
> 0. Both approaches rely on linearisation,

the first of the travelling-wave ODE and the second of the time-dependent PDE.

3.2. The repeated-root selection mechanism. This mechanism is that which
arises on requiring the leading-order wavefront location s0(t) to be that for which
the linearisation about u = 0 (i.e. as z → +∞) of the resulting travelling-wave ODE
(11) leads to a repeated-root condition on the auxiliary equation for the associated
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exponentials, as in (13) (i.e. to a degenerate node in the phase plane). We transform
to a travelling-wave frame of reference by setting

x = s(t; ε) + εΨ−1/2(s(t; ε))z, u = Φ(s(t; ε))φ̃(z, t) (51)

to give

ε

Φ(s)

(
∂φ̃

∂t
+ ṡ

(
1

2

Ψ
′
(s)

Ψ(s)
z
∂φ̃

∂z
+

Φ
′
(s)

Φ(s)
φ̃

))

=
∂2φ̃

∂z2
+ c̃

∂φ̃

∂z
+

Ψ(s+ εΨ−1/2(s)z)

Ψ(s)
φ̃

(
1− Φ(s+ εΨ−1/2(s)z)

Φ(s)
φ̃

)
where c̃(t; ε) ≡ ṡ/Ψ1/2(s). Thus setting φ̃ ∼ φ(z; c), c̃ ∼ c as ε → 0 we recover
(11)-(12) at leading order7. Linearising (11) about φ = 0 leads to solutions of the
form

exp

(
−1

2
(c±

√
c2 − 4)z

)
(52)

so the repeated-root (critical-damping/fastest-decay/degenerate-node) condition on
solutions to the travelling-wave ODE is simply c = 2, i.e.

ṡ0 = 2Ψ
1
2 (s0), (53)

where s0(t) = s(t; 0); moreover, existence of a non-negative wave profile demands
(on the basis of the usual phase-plane analysis of (11)) that

ṡ0 ≥ 2Ψ
1
2 (s0).

The result (53) represents one of the two selection mechanisms that can pertain
and we explore in Section 3.4 the circumstances under which it does in fact apply.
Here we simply characterise the behaviour as t → 0+, with s0(0) = 0 being the
leading-order matching condition arising from the previous section. Hence with (7)
it is straightforward to obtain the small-time expansion

s0(t) ∼ 2t+ λt2 +
4

3
µt3 as t→ 0+, (54)

matching successfully with (28) and (32) when (47) holds, but not when (41) does,
i.e. (54) is consistent with the results of Section 2 for λ < 0 but not for λ > 0.

3.3. The Hamilton-Jacobi selection mechanism. Applying the Liouville-Green
approach

lnu ∼ −f(x, t)/ε (55)

to the linearisation of the PDE (2) yields the eikonal equation

∂f

∂t
+

(
∂f

∂x

)2

+ Ψ(x) = 0 (56)

7In many formal treatments of slowly varying heterogeneities in other contexts such an analysis
(whereby the heterogeneities are in effect frozen at the current front location x = s) would suffice

to determine the solution. A crucial feature of the current problem is that (11) has a continuum
of non-negative solutions (for c ≥ 2), so the required solution is not yet specified.
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with the characteristic equations8 (involving p ≡ ∂f/dx, q ≡ ∂f/∂t)
dx

dt
= 2p,

dp

dt
= −Ψ

′
(x),

df

dt
= q + 2p2,

dq

dt
= 0, (57)

for which we are again most interested in the expansion-fan solution, whereby

at t = 0 x = 0, p = p0, f = 0, q = −p2
0 − 1 (58)

for arbitrary p0 ≥ 0. Thus

p2 = p2
0 + 1−Ψ(x) (59)

holds on rays and, assuming p > 0, the solution can be written parametrically in
terms of p0 in the form∫ x

0

dx
′

(p2
0 + 1−Ψ(x′))

1
2

= 2t, f =
1

2

∫ x

0

p2
0 + 1− 2Ψ(x

′
)

(p2
0 + 1−Ψ(x′))

1
2

dx
′
. (60)

Our second putative selection mechanism identifies s0(t) with the level set f(s0(t),
t) = 0 of (56), since this locates the transition between the regimes x > s0(t) in
which u as given by (55) is exponentially small and x < s0(t) in which u = O(1)
and linearisation about u = 0 is accordingly inapplicable. Under this scenario s0(t)
is given by the pair of equations∫ s0(t)

0

dx
′

(P 2
0 (t) + 1−Ψ(x′))

1
2

= 2t,

∫ s0(t)

0

P 2
0 (t) + 1− 2Ψ(x

′
)

(P 2
0 (t) + 1−Ψ(x′))

1
2

dx
′

= 0 (61)

for s0(t) and P0(t), the latter variable corresponding to the value of p0 that instan-
taneously holds at x = s0(t) at time t.

The most striking immediate contrast between our two selection criteria (53)
and (61) (which we emphasise give different results for s0(t)) is that the former
can be viewed as local, while the latter is non-local, in effect requiring the solution
of the Hamilton-Jacobi equation (56) for all (x, t). The expressions in (61) can be
combined to yield∫ s0(t)

0

(
P 2

0 (t) + 1−Ψ(x
′
)
) 1

2

dx
′

=
(
P 2

0 (t) + 1
)
t (62)

the time derivative of which yields (on further application of the first of (61))(
P 2

0 (t) + 1−Ψ(s0)
) 1

2 ṡ0 = P 2
0 (t) + 1

i.e.

P (t)ṡ0 = P 2(t) + Ψ(s0) (63)

where p = P (t) at x = s0(t); the result (63) also follows immediately by applying
(56) to the time derivative of f(s0(t), t) = 0. Hence

P (t) =
1

2

(
ṡ0(t)−

(
ṡ2

0(t)− 4Ψ(s0)
) 1

2

)
; (64)

the negative square root is needed here since then

dx

dt
= ṡ0 −

(
ṡ2

0 − 4Ψ(s0)
) 1

2 < ṡ0 at x = s0

8It is instructive to compare (57) with the characteristic equations for the inhomogeneous
Helmholtz equation, say: considerable insight into the current problem follows by technology

transfer from classical treatments of linear-wave propagation; we emphasise, though, that the
results here have direct implications for genuinely nonlinear phenomena.
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i.e. the ray is moving at a slower speed than the front x = s0(t) and hence enters,
rather than emerging from, it; this choice of square root is also needed to match
back into the leading edge of the travelling wave (cf. (14)). It can at once again be
inferred that

ṡ0 ≥ 2Ψ
1
2 (s0) (65)

(compare the result (53) that applies for the other selection mechanism), with
equality holding only in exceptional circumstances whenever the Hamilton-Jacobi
mechanism applies (see below).

The (non-generic) case Ψ(x) ≡ 1 is instructive here: (60)-(61) imply

f =
x2

4t
− t, s0(t) = 2t, P0(t) = 1, (66)

so that both (53) and (61) give the same result; because P0 is constant in (66) the
level set f = 0 is in this case also a ray of (56) and, exceptionally, can be tracked
independently of the solution on the other rays (see [2] for further discussion of such
matters).

The small-t behaviour can fairly readily be constructed from the first of (61) and
(62), say, giving

s0(t) ∼ 2t+λt2+
1

3
(4µ+λ2)t3, P0(t) ∼ 1+λt+

1

6
(8µ+λ2)t2, P (t) ∼ 1+

1

6
(λ2−4µ)t2

(67)
at t→ 0+, so that

ṡ2
0 − 4Ψ(s0) ∼ 4λ2t2, ṡ0/Ψ

1
2 (s0) ∼ 2 + λ2t2 as t→ 0+. (68)

The first of (67) is consistent with (41) but not with (47), already hinting at our key
conclusion, namely that the repeated-root and Hamilton-Jacobi mechanisms apply
respectively to the cases Ψ

′
(x) < 0 and Ψ

′
(x) > 0, with the classical case Ψ(x) ≡ 1

corresponding to a non-generic borderline regime in which both simultaneously
apply.

3.4. Applicability of the repeated-root mechanism. The eikonal equation
(56) will be crucial throughout what follows. In this subsection we discuss the
behaviour of rays that enter or depart the level set

f (s0(t), t) = 0 (69)

when s0 is given by (53). An important criterion here is that, on a given ray, the
solution to (57) is not acceptable at time t if

f(x, t
′
) < 0 at any time t

′
∈ [t0, t] (70)

where t0 ≥ 0 is the time at which the ray first emerges: (70) corresponds to expo-
nentially large u, so that the PDE linearisation that leads to (56) is inapplicable.
In other words, the nonlinearity serves as a ‘self-generating’ obstacle through which
it is not admissible to propagate the rays.

The relevant ray families satisfy (using (64) with (53))

at t = t0, x = s0(t0), p = Ψ
1
2 (s0), f = 0, q = −2Ψ(s0) (71)

with s0(t) given by (53) and where t > t0 holds on rays departing the front and
t < t0 on those entering it. Of most significance here is the behaviour close to
t = t0; we have from (57) and (71) that

dx

dt
= 2Ψ

1
2 (s0) at t = t0 (72)



356 JOHN R. KING

(we retain the notation d/dt in place of · in such expressions as a reminder that the
derivative is to be taken along a ray) so that the ray is tangential to the front (see
(53)), while (53) and (57) imply respectively that

s̈0 = 2Ψ
′
(s0),

d2x

dt2
= −2Ψ

′
(x). (73)

Thus if Ψ
′
> 0 the front would be accelerating and the ray decelerating, and

conversely for Ψ
′
< 0; moreover,

df

dt
= 0,

d2f

dt2
= −4Ψ

1
2 (s0)Ψ

′
(s0) at t = t0 (74)

so for Ψ
′
> 0 such a ray lies in x < s(t0) and has f < 0 for t 6= t0: it is thus

inadmissible by (70). By contrast, for Ψ
′
< 0 the ray lies in x < s0(t) and has

f > 0 for t 6= t0.
As we shall see, various different ray families associated with different f(x, t) are

typically present. The one of most significance at any given t is the admissible one
that has f(x, t) = 0 for the largest value of x (thereby determining s0(t)). The
immediate conclusions9 of the preceding analysis are the following.
(Ia) (53) cannot hold for Ψ

′
(x) > 0 since no admissible f(x, t) is then present

immediately ahead of the wavefront. Since (11)-(12) has a non-negative solution
only for c ≥ 2, an immediate implication is that

ṡ0 > 2Ψ
1
2 (s0) (75)

must generically hold for Ψ
′
(x) > 0.

(IIa) For Ψ
′
(x) < 0, however, the result (53) cannot be excluded (and we shall

conclude later that it indeed holds). For a ray satisfying (71), the part of the
ray having t < t0 is not in general of interest, the initial data having to be of a
very specific form to generate such a ray (cf. [2]), but the part with t > t0 (i.e.
that emanating from, rather than entering, the front) plays an important role in
establishing the complete picture.

3.5. Applicability of the Hamilton-Jacobi mechanism. Here we need to re-
visit the expansion-fan problem (57)-(58), the rays for which all have t0 = 0, and
pay particular attention to the rays having p0 in the neighbourhood of p0 = 1,
since the leading-order solution for small t is that which applies for all time when
Ψ(x) ≡ 1, i.e.

f ∼ (p2
0 − 1)t, x ∼ 2p0t as t→ 0+; (76)

in view of (70), p0 ≥ 1 is thus a necessary condition for a ray to be admissible.
Now (57)-(58) imply, using (59), that

df

dt
= 2p2 − p2

0 − 1 = p2
0 + 1− 2Ψ(x),

d2f

dt2
= −4Ψ

′
(x)p, (77)

and for Ψ
′
(x) < 0 we have that p increases monotonically on rays (with x(t)

accelerating: see (73)): in consequence all rays having p0 ≥ 1 remain admissible for
all t but all have f(x, t) > 0 for t > 0 so cannot play a role in determining s0(t).

However, for Ψ
′
(x) > 0 with p2

0 < Ψ∞ − 1, where Ψ∞ is defined by (4), it follows
that p will change sign, with p = 0 at t = t∗(p0), say, such that

ẋ = 2
(
p2

0 + 1−Ψ(x)
) 1

2 , 0 < t < t∗, ẋ = −2
(
p2

0 + 1−Ψ(x)
) 1

2 , t > t∗.

9See the next subsection for the ‘partner’ conclusions (Ib) and (IIb).
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Such expansion-fan rays cannot cross while p > 0 since for given x their speed
increases with p0; once p drops below zero, however, they can do so (associated in
the usual way with shock formation in (99) below), the resulting multivaluedness
requiring consideration to be given to which carries the dominant contribution to
u. Writing x = x∗(p0) at t = t∗, it follows that x∗ is given by

Ψ(x∗) = p2
0 + 1; (78)

moreover,
x(t) = x(2t∗ − t), p(t) = −p(2t∗ − t) (79)

hold on each of these rays. On rays with p2
0 > Ψ∞ − 1 we have

p ∼ (p2
0 + 1−Ψ∞)

1
2 , x ∼ 2(p2

0 + 1−Ψ∞)
1
2 t, f ∼ (p2

0 + 1− 2Ψ∞)t as t→ +∞
(80)

and on those with p2
0 < 2Ψ∞ − 1 it follows that f(x, t) will first increase and then

decrease through zero; on rays with p2
0 > 2Ψ∞ − 1 we instead have that f, ḟ > 0

for all t. There are now two subcases to treat when Ψ
′
(x) > 0, as follows.

(A) 1 < Ψ∞ ≤ 2. Here t∗ exists only for rays with p2
0 < Ψ∞ − 1 < 1, and these

(for reasons already noted) are all inadmissible. This is the simplest such case, s0(t)
being determined via (69) through the rays with 1 < p2

0 < 2Ψ∞−1, on which f > 0
for x > s0(t) and f < 0 for x < s0(t) (see (76) for the small-t behaviour, giving

s0 ∼ 2t, and (80) for the large-t, whereby s0 ∼ 2Ψ
1
2∞t). Further insight into the

significance of the value Ψ∞ = 2 is provided by the example in Appendix 2.
(B) Ψ∞ > 2. Here the prescription described in (A) will give the behaviour of

s0(t) for sufficiently large t ((80) applying for p2
0 > Ψ∞− 1). However, for smaller t

(and for all t if Ψ∞ is unbounded) the wavefront is determined by the rays having
1 < p2

0 < Ψ∞−1: on these rays, p changes sign as described above, with f decreasing
while x > x†, where x† < x∗ and

Ψ(x†) = (p2
0 + 1)/2 = Ψ(x∗)/2 (81)

determines x†(p0); f then increases once x drops below x† again: on such a ray,
f(t) can be written in the form

f(t) = F (t)− F (0) where F (t) = −F (2t∗ − t). (82)

Since F (t∗) = 0, this is equivalent to

f(t) = F (t) + f(t∗),

so that

F (t) = −1

2

∫ x∗

x

p2
0 + 1− 2Ψ(x

′
)

(p2
0 + 1−Ψ(x′))

1
2

dx
′

for t < t∗, (83)

wherein x(t) is given by the first of (60).
It is straightforward to see that P (t) > 0 holds for rays with p2

0 just greater than
1 or (for finite Ψ∞) just less than Ψ∞− 1; indeed, corresponding to former case we
have P0 ∼ P ∼ 1 as t→ 0+. However, for p2

0 ∈ (1,Ψ∞−1) but away from these two
limits P need not be positive; for the rest of this section we shall, however, assume
that it is and return to the matter in Section 4. Under this assumption, tracking
the level set f = 0 leads to (61) determining s0(t) with no further complications.

The main conclusions are now:
(Ib) for Ψ

′
(x) < 0 the admissible expansion-fan rays all have f > 0 for t > 0 and

hence cannot determine the front location;
(IIb) for Ψ

′
(x) > 0, the level set f(x, t) = 0 of the expansion-fan solution provides
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Figure 2. Expansion fans for (a) Ψ
′
(x) < 0 and (b) Ψ

′
(x) > 0. Solid lines:

rays. Dotted line: level set f = 0. Note that the rays in (a) enter f = 0 from

the inadmissible region f < 0.

a plausible front location x = s0(t) (and does indeed determine it under suitable
constraints, described below).

Schematics of the expansion-fan rays clarifying the above remarks are shown
in Figure 2. The level set f = 0 in Figure 2(a) moves faster than the minimum
wavespeed as determined by the repeated-root condition: that the latter applies
for Ψ

′
< 0 is associated with the decrease in the net birth rate with increasing u

expressed in the nonlinearity in (2) – i.e. the nonlinearity results in a self-limiting
wave; thus while the repeated-root condition follows from a linear analysis, the
resulting selection mechanism is not intrinsically linear in quite the same way as
the Hamilton-Jacobi one. We note that the criteria identified in (Ia)-(Ib) and (IIa)-
(IIb) are complementary, i.e. distinct putative mechanisms have now been identified

for Ψ
′
(x) < 0 and Ψ

′
(x) > 0; we adduce below further evidence for the validity of

this identification.

3.6. Correction terms. Given the interest that the logarithmic correction term
has garnered in the classical case Ψ(x) ≡ 1, i.e. (under the current scalings) the
second and third terms in the expansion

s(t; ε) ∼ 2t− 3

2
ε ln(1/ε)− 3

2
ε ln t, (84)

we here pursue the corresponding analyses for variable Ψ(x).

(I) Ψ
′
(x) < 0. Taking (53) to hold, the analysis closely follows that of Section 2.

We set10

s(t; ε) ∼ s0(t) + ε
2
3 s1(t), x = s(t; ε) + ε

2
3 ζ (85)

and

u =
e−Ψ

1
2 (s0)ζ/ε

1
3

ε
1
3

v,

10It is noteworthy that even the scaling with respect to ε of the correction term in the first of
(85) differs from those in (84).
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wherein the decay rate of the exponential is that associated with a repeated root,
to give

∂2v0

∂ζ2
+
(

2Ψ
′
(s0)ζ + Ψ

′
(s0)s1 −Ψ

1
2 (s0)ṡ1

)
v0 = 0, (86)

as ζ → 0+ v0 ∼ Kζ,
as ζ → +∞ v0 → 0.

Hence

v0 = K

Ai

((
−2Ψ

′
(s0)

) 1
3

ζ + a0

)
(−2Ψ′(s0))

1
3 Ai′(a0)

(87)

with s1(t) being determined by

Ψ
1
2 (s0)ṡ1 −Ψ

′
(s0)s1 =

(
−2Ψ

′
(s0)

) 2
3

a0, (88)

the complementary function of which has s1 ∝ ṡ0, as is to be expected in view of
the t-translation invariance of the problem. From (88) we have

s1 ∼ (−2λ)
2
3 a0t as t→ 0+,

thereby matching with (45). The appearance of an Airy function in (87) should
be no surprise: since the rays depart a repeated-root front (53) tangentially, the
latter corresponds to a caustic (cf. a creeping field in the geometrical theory of
diffraction).

(II) Ψ
′
(x) > 0. Since the Hamilton-Jacobi mechanism applies in this case, we need

to consider the amplitude equation for A(x, t) in the Liouville-Green ansatz

u ∼ ε 1
2A(x, t)e−f(x,t)/ε (89)

wherein f is given as above and A satisfies

∂A

∂t
+ 2

∂f

∂x

∂A

∂x
= −∂

2f

∂x2
A (90)

(cf. (17)) so writing

A2 =
∂E

∂x
(91)

gives
∂E

∂t
+ 2

∂f

∂x

∂E

∂x
= 0

without loss of generality, so that E is constant on rays of (56), and in view of
(57) we may set E = E(q), where E is an arbitrary function. Reconstructing A

from (91) and matching with (19), this matching requiring the ε
1
2 prefactor in (89),

implies

A(x, t) =

(
− ∂2f
∂x∂t

) 1
2

(
−∂f∂t − 1

) 1
4

a

(
2

(
−∂f
∂t
− 1

) 1
2

)
, (92)

where a is the same function as in (19), being determined as the large-time far-field
of the nonlinear problem (8), so that it depends on the initial data UI(X) in a
manner that is presumably not susceptible to analytical characterisation.
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By taking derivatives of (56) with respect to t and x and the first and second
derivatives of f(s0(t), t) = 0 with respect to t, we find using (63) that

∂f

∂t
= −ṡ0P,

∂2f

∂x∂t
=

2s̈0P
2 − ṡ2

0Ψ′(s0)

ṡ2
0 − 4Ψ(s0)

at x = s0(t),

where s0(t) is given by (61) and P (t) by (64); equivalent statements that make the
signs of these quantities more explicit are

∂f

∂t
= −P 2

0 − 1,
∂2f

∂x∂t
= − 2P0Ṗ0

(ṡ2
0 − 4Ψ(s0))

1
2

at x = s0(t), (93)

the latter following on using the first derivatives of (63) and of

p2(t) = p2
0(t) + 1−Ψ(s0).

In (93), Ṗ0 > 0 follows either by consideration of the relevant rays or by differenti-
ating the first of (61) to give

P0Ṗ0

∫ s0

0

dx′

(P 2
0 + 1−Ψ(x′))

3
2

=

(
ṡ2

0 − 4Ψ(s0)
) 1

2

P

and further such manipulations are possible using the identities (see (63))

P 2
0 + 1 = P 2 + Ψ(s0) = ṡ0P.

We then find on matching to (14) using (51) that the correction terms to the front
location are given by

s(t; ε) ∼ s0(t)− ε ln(1/ε)
1

2P (t)
+ ε

1

P (t)
ln

(
A(s0, t)

k(ṡ0/Ψ
1
2 (s0))

)
as ε→ 0. (94)

Since by (93)

A(s0, t) =

(
2Ṗ0

(ṡ2
0 − 4Ψ(s0))

1
2

) 1
2

a(2P0),

we have by (67) and (68) that

A(s0, t) ∼ 2λI1t
1
2 as t→ 0+,

while (68) implies that

k(ṡ0/Ψ
1
2 (s0)) ∼ K/2λt as t→ 0+.

Hence s(t; ε) contains a term 3ε ln t/2 as t → 0+ (we emphasise that this has the
opposite sign from that in (84)), implying consistent matching of (94) for τ =

O(1), t = O(ε
1
3 ) with the −3δ2 ln(1/δ) term in (28).

As is implicit in the above analysis, in this case the correction terms to the front
location, as expressed by (94), are in effect determined solely by the ray solution,
in contrast to (I) above in which a narrow region ahead of the wavefront plays a
crucial role.
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4. Initiation of additional fronts for Ψ′(x) > 0. Here we investigate an effect
identified by [6] whereby two (or indeed more) additional fronts (one in each pair
moving to the right and the other to the left) can be initiated ahead of the orig-
inal front (and for which analogies can be drawn with quantum tunneling); this
behaviour arises when P drops below zero (cf. comments near the end of Section
3.5). In consequence, the position of the leading front appears to be discontinu-
ous, jumping forward to the initiation point of the new fronts; nevertheless, the
individual fronts each behave in a continuous fashion.

Two scenarios are possible. In the first, the Hamilton-Jacobi selection mechanism
applies throughout the life-times of all three fronts. The new fronts are initiated
when there exists an x∗ as in (78) for which f = 0 as well as p = 0 at x = x∗ i.e.
(by (60) and using (78)) an x∗ satisfying∫ x∗

0

Ψ(x∗)− 2Ψ(x)

(Ψ(x∗)−Ψ(x))
1
2

dx = 0. (95)

For Ψ′(x) > 0 the left-hand side of (95) is negative for both large and small x∗,
so if there is a solution x∗ to (95) then there are generically at least two, and (as
is already implicit) we focus on the case in which there are exactly two, which we
denote by x∗ = x1 and x∗ = x2 with x1 > x2, and we write

p2
1 + 1 = Ψ(x1), p2

2 + 1 = Ψ(x2) (96)

(see (78)) and, by (60),

t1 =
1

2

∫ x1

0

dx

(Ψ(x1)−Ψ(x))
1
2

, t2 =
1

2

∫ x2

0

dx

(Ψ(x2)−Ψ(x))
1
2

(97)

with p1 > p2, t2 > t1; the latter inequality is implied by the following argument:
(95), (97) yield

t1 =
1

Ψ(x1)

∫ x1

0

(Ψ(x1)−Ψ(x))
1
2 dx, t2 =

1

Ψ(x2)

∫ x2

0

(Ψ(x2)−Ψ(x))
1
2 dx, (98)

while ∫ x

0

Ψ(x)− 2Ψ(x′)

(Ψ(x)−Ψ(x′))
1
2

dx′ > 0 for x2 < x < x1;

hence

d

dx

1

Ψ(x)

∫ x

0

(Ψ(x)−Ψ(x′))
1
2 dx′ = − Ψ′(x)

2Ψ2(x)

∫ x

0

Ψ(x)− 2Ψ(x′)

(Ψ(x)−Ψ(x′))
1
2

dx′ < 0

for x2 < x < x1, so t1 < t2 by (98).
Further insight can obtained by tracking the curves on which p = 0, so that x is

given in terms of p0 by (78) but x∗ does not in general satisfy (95). Denoting such
a curve by x = σ(t), it follows from

∂p

∂t
+ 2p

∂p

∂x
+ Ψ′(x) = 0 (99)

that

σ̇ = Ψ′(σ)/
∂p

∂x
(σ, t), (100)

so that at a minimum with respect to x of f (corresponding to a maximum of u)
we have σ̇ > 0, while σ̇ < 0 holds at a maximum with respect to x of f . For the
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Figure 3. The solid curve denotes x = s0(t) and the dashed one x = σ(t) (p >
0 holds below the dashed curve and p < 0 above it), the rays crossing the latter

vertically; ∂p/∂x is positive on x = σ(t) for 0 < x < x6 and for x > x5 and

is negative in x6 < x < x5. The borderline case corresponding to (95), (102)
has x1 = x2 = x5, with s0(t) monotically increasing but with ṡ0 unbounded

at t = t1 = t2.

record, the ray solution given in Section 3.3 can be manipulated to express ∂p/∂x
in the form

∂p

∂x
(x, t) =

1

p
∫ x

0
dx′

(p20+1−Ψ(x′))
3
2

(
1

p0
− 1

2

∫ x

0

Ψ′(x)−Ψ′(x′)

(p2
0 + 1−Ψ(x′))

3
2

dx

)

so that

∂p

∂x
(σ, t) =

Ψ′(σ)

2

(
1

(Ψ(σ)− 1)
1
2

− 1

2

∫ σ

0

Ψ′(σ)−Ψ′(x)

(Ψ(σ)−Ψ(x))
3
2

dx

)
. (101)

The borderline case for Ψ(x) in terms of whether or not new fronts are initiated
arises when (95) has a repeated root: the resulting condition can be deduced (on
taking careful account of the singularity in the integrand at x = x∗) in the form∫ x∗

0

Ψ′(x∗)−Ψ′(x)

(Ψ(x∗)−Ψ(x))
3
2

dx =
2

(Ψ(x∗)− 1)
1
2

; (102)

from (101) we see that this corresponds to f having an inflection point at x = x∗,
as is to be expected. It is readily seen that (101) is positive for both small and large
σ and the overall behaviour of x = σ(t) and x = s0(t) in the current regime (in
which s0(t) is multivalued for t1 ≤ t ≤ t2) is illustrated schematically in Figure 3.

Near the point (x1, t1) at which the new fronts are initiated, we have

f ∼ 1

2

∂p

∂x
(x1, t1)(x− x1)2 −Ψ(x1)(t− t1),
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in which ∂p/∂x is given by (101), so that

s0(t) ∼ x1 ±

(
2Ψ(x1)
∂p
∂x (x1, t1)

) 1
2

(t− t1)
1
2 as t→ t+1 ,

i.e. both start with unbounded velocity; similarly

s0(t) ∼ x2 ±

(
2Ψ(x2)

− ∂p
∂x (x2, t2)

) 1
2

(t2 − t)
1
2 as t→ t−2 ,

illustrating how then new leftward moving front collides with the original rightward
moving one at t = t2, leading to their mutual annihilation (associated with which
there will be a short timescale (as there is for t close to t1) in which a different
balance pertains in (2) – we shall not discuss such matters here). The ray solution
in Section 3.3 treats the case in which only the positive square root is required
when extracting p from (58); here we also need the negative one in determining the
location of the leftward moving front with x2 < s0(t) < x1 (both rightward moving
ones are given by (61)). The symmetry results of Section 3.5 readily provide the
relevant prescription in the form∫ s0(t)

0

dx
′

(P 2
0 (t) + 1−Ψ(x′))

1
2

+ 2

∫ Σ(t)

s0(t)

dx
′

(P 2
0 (t) + 1−Ψ(x′))

1
2

= 2t,

∫ s0(t)

0

P 2
0 (t) + 1− 2Ψ(x

′
)

(P 2
0 (t) + 1−Ψ(x′))

1
2

dx
′
+ 2

∫ Σ(t)

s0(t)

P 2
0 (t) + 1− 2Ψ(x

′
)

(P 2
0 (t) + 1−Ψ(x′))

1
2

dx
′

= 0,

(103)

which, along with Ψ(Σ) = P 2
0 + 1, determine s0(t), P0(t) and Σ(t), x = Σ giving the

location at which the ray having the associated value of P0 changes direction. P (t)
takes the opposite sign from before, i.e. (63)-(64) become

− P (t)ṡ0 = P 2(t) + Ψ(s0), P (t) = −1

2

(
ṡ0(t)−

(
ṡ2

0(t)− 4Ψ(s0)
) 1

2

)
. (104)

The above assumes that the level set f(s0(t), t) = 0 spans the full range x2 < x <
x1, but this need not be the case, the second scenario alluded to above occurring
when f fails to drop below zero on some of the relevant rays; roughly speaking, the
sequence followed as Ψ(x) increases over narrower and narrower regions is that of
Section 3, then the first scenario above and finally the one that we now address.
On rays with p2

0 < Ψ∞ − 1 we have that x increases to x = x∗ (as in (78)) and
then decreases again, as described by (79). The locations x1 and x2 are defined as
above, but there are now additional points (x3, t3), (x4, t4) with x1 > x3 > x4 >
x2, t1 < t3 < t4 < t2 that require consideration: at x3 and x4, p0 is related to x by
(81), so that df/dt is zero there, and t3 and t4 denote the second time that the ray
in question has visited x3 and x4, respectively; these points are identified by the
criterion that f = 0 also holds there, this being the minimum value of f attained
on the corresponding rays. While the ray solution (60) holds only for t < t∗, the
symmetry conditions such as (82) enable us to determine x3 and x4 as solutions x†

to ∫ x†

0

Ψ(x†)−Ψ(x)

(2Ψ(x†)−Ψ(x))
1
2

dx+ 2

∫ x∗

x†

Ψ(x†)−Ψ(x)

(2Ψ(x†)−Ψ(x))
1
2

dx = 0, (105)
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wherein x∗ is given by Ψ(x∗) = 2Ψ(x†); the first integral in (105) is positive and
the second negative.

Since P 2
0 + 1 = 2Ψ(s0), P = −Ψ

1
2 (s0) at x = x3, x4 we have by (104) that

ṡ0 = −2Ψ
1
2 (s0) (106)

at t = t3, t4 and the ray is tangential to the front, providing the clue that the
leftward moving front initially propagates for t > t3 according to the repeated-root
condition (no Hamilton-Jacobi selection mechanism being available), i.e. according
to (106) (since x is decreasing, it is propagating in the direction of decreasing
Ψ, so this scenario is consistent with the analysis of Section 3). The remaining
question concerns where and how the Hamilton-Jacobi mechanism reasserts itself
as s0 decreases. To investigate this, it is convenient to introduce x = ω(t) as the
zero level set of df/dt on rays, since this passes through both (x3, t3) and (x3, t4).
The ray solution yields that ω(t) is given by

2

∫ σ

0

dx

(Ψ(σ)−Ψ(x))
1
2

−
∫ ω

0

dx

(Ψ(σ)−Ψ(x))
1
2

= 2t,

where Ψ(σ) = 2Ψ(ω) = p2
0 + 1, i.e. σ(t) is defined in the same way as above and,

since

Ψ′(σ)σ̇ = 2Ψ′(ω)ω̇

and we are concerned with the range in which ∂p/∂x < 0 (cf. Figure 3), it follows

from (100) that ω̇ < 0. Since p = −Ψ
1
2 (ω), q = −2Ψ(ω) on the relevant part of

x = ω we have
d

dt
f(ω(t), t) = −2Ψ(ω)−Ψ

1
2 (ω)ω̇ (107)

so that, using the definitions f(x3, t3) = f(x4, t4) = 0, f(ω(t), t) > 0 for t3 < t < t4,
we obtain∫ Σ

x3

dx

2Ψ
1
2 (x)

+ t− t3 = −f(ω, t)

2Ψ(ω)
− 1

2

∫ t

t3

f(ω(t′), t′)Ψ′(ω(t′))ω̇(t′)

Ψ2(ω(t′))
dt′,

and hence ∫ x4

x3

dx

2Ψ′(x)
+ t4 − t3 = −1

2

∫ t4

t3

f(ω(t′), t′)Ψ′(ω(t′))ω̇(t′)

Ψ2(ω(t′))
dt′. (108)

Since ∫ s0(t)

x3

dx

2Ψ
1
2 (x)

+ t− t3 = 0 (109)

it follows from (108)-(109), wherein f,Ψ′ > 0 and ω̇ < 0, that s0(t4) < x4 and
the front behaviour is as indicated in Figure 4; there will again be a fast transient
timescale over which two of the fronts annihilate, which will occur at some point x7

with x7 < x4 but where x2 − x7 can presumably take either sign.
It is clear the above behaviour can be repeated arbitrarily often (for example by

considering Ψ(x) that see rapid growth about a number of highly disparate values
of x), with a sequence new fronts arising and being annihilated. It is possible,
however, for such potential additional fronts to be overrun before they get the
chance to form. Determining the correction terms for the locations of new fronts
would be awkward. For the power-law case discussed in [2], a related phenomenon
occurs for n ≥ 2 whereby a new front is initiated at x = +∞.
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Figure 4. Solid curve: s0(t) as determined by the Hamilton-Jacobi mecha-

nism. Dashed curve: s0(t) as determined by the repeated-root mechanism.
The solid curve in x7 < x < x4 plays no role, being superceded by the self-

sustaining repeated-root front. Dotted curve: x = ω(t) in x3 < x < x4; note

from (107) that ω̇ < −2Ψ
1
2 (ω) holds close to x3.

5. Loose ends. We wish to touch on a number of further issues here without
exploring all their ramifications. We shall omit any discussion of traditional pushed
fronts (whereby the wavespeed that is realised in greater than that accessible by
linear methods), referring to [2] for a discussion of some of the issues, and of the
higher-dimensional case even though many of the results carry over rather directly.

Firstly, we revisit the pulled front/pushed front concepts frequently adopted in
the case of homogenous PDEs (see references in [2], including [3]). The current
analysis suggests a somewhat different such classification, based very explicitly
on the nature of the dominant rays: wavefronts selected by the Hamilton-Jacobi
mechanisms are associated with rays that enter the front having passed through a
region in which u is exponentially small – this information flow into the front is
in keeping with the intuition behind a pulled front, namely the rate at which it is
dragged forward is determined by the linearised response ahead of it. Conversely,
in the repeated-root mechanism the rays that dominate the solution immediately
ahead of the front emerge from the front itself (carrying information out from,
rather than in to, the front) and have no analog for the linearised PDE, reflecting the
nonlinear phenomenon of a self-sustaining propagating wave (albeit one whose speed
can be determined by linearisation of the travelling-wave ODE) – such behaviour is
more in keeping with the concepts conventionally associated with a pushed front.
This distinction is thus very clean-cut and can be concisely expressed (Hamilton-
Jacobi selection: dominant rays enter the front; repeated-root selection: dominant
rays depart the front); the homogenous case is exceptional in that the rays neither
enter nor leave the wavefront (i.e. the wavefront is itself a ray), complicating any
such classification.

A number of ray families is present: we have described in detail the roles of the
expansion-fan family and of the rays emerging from and outrunning a repeated-root
front. Others are as follows. (i) For initial data of the form

lnu ∼ −f0(x)/ε as ε→ 0 (110)
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for sufficient large x, the solution to (56) subject to f = f0(x) > 0 at t = 0 is needed
and may for the usual reasons (for sufficiently slowly decaying initial data) drive the
front faster than the preceding calculations imply (one simply determines whether
the f = 0 level set associated with (110) outruns the wavefront associated with the
results of Section 3); (ii) rays propagating out of the wavefront – as we have seen,
for repeated root fronts these emerge tangentially, whereas for the Hamilton-Jacobi
mechanism they are associated with the positive square root in (52) i.e. with the
fast-decaying exponential in the tail of the travelling wave, having from (57) that
on rays

dx

dt
= ṡ+ (ṡ2 − 4Ψ(s))

1
2 as x = s(t),

i.e. the rays emerge moving faster than the wavefront (in contrast to the negative
square root discussed above for which the rays enter the wavefront; revisiting the
viewpoint whereby the nonlinearity acts as an obstacle, the former are analogous to
reflections of the latter); these rays initially have u exponentially small but could in
principle determine the location of a wavefront if f subsequently drops below zero, a
possibility that we have not explored in any detail; (iii) reflected rays associated with
exponentially small contributions (due to the Stokes phenomenon and associated in
the usual way with reflection from waves propagating into a spatially slowly varying
medium) will be present, but seem unlikely to play any role in wavefront selection;
(iv) complex rays (again associated with exponentially small contributions) can
occur, notably those lying beyond the caustic when a ray envelop is present. A
comprehensive procedure would seem likely to require computing the solutions to
(56) associated with each of the possible ray families, rejecting at each time t any
that satisfy (70) and determining which of the remainder has f = 0 at the largest
value of x, which is then identified with s0(t); in view of (ii), additional families
then need to be considered if the mechanism by which x = s0(t) is selected switches.

While we have chosen to focus here on monotonic Ψ(x), it is relevant to make
a number of comments about more general Ψ, not least because leftward moving
additional fronts that can arise when Ψ′ > 0 (see Section 4) have features in common
with the non-monotonic case. Periodic Ψ(x) is the most widely studied example
and in this regard we limit ourselves to commenting that the interplay between the
two limits (i.e. ε → 0 and t → +∞) then leads to issues that we shall not pursue
here, associated in particular with the additional rays that emanate from the front.
Our remaining comments concern what happens when Ψ′ changes sign. Firstly,
if Ψ′ starts negative and then switches to positive (at xc = s0(tc), say) then the
repeated-root condition that holds for t < tc necessarily ceases to be valid as soon
as t passes through tc (contrast the second case below). The transition is described
by the following canonical inner problem: the appropriate scalings are

x = s(T, ε) + ε
3
5Z, t = tc + ε

1
5T, u =

1

ε
2
5

e
− Z

2ε3/5
ds
dT ,

and, taking

Ψ ∼ Ψc + µc(x− xc)2 + νc(x− xc)3 + κc(x− xc)4 as x→ xc,

with µc > 0 (it is noteworthy how many terms must be accounted for in this
expansion), we find that

s(T, ε) ∼ xc + 2ε
1
5 Ψ

1
2
c T +

4

3
ε

3
5µcΨ

1
2
c T

3 + 2ε
4
5 νcΨcT

4 + εS(T ),
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wherein the first four terms on the right-hand side coincide with those arising from
the repeated-root condition (53). These scalings yield the leading-order problem

∂v0

∂T
=
∂2v0

∂Z2
+

(
8µcΨ

1
2
c ZT +

(
4

3
µ2
cΨc + 16κcΨ

2
c

)
−Ψ

1
2
c
dS

dT

)
v0. (111)

The T → −∞ behaviour of (111), which represents the first of the two canonical
PDEs that we record in the section, is given by (86); the most significant feature
of (111) is the switch in sign of the Zv0 term as T passes through zero. The
associated ray picture as T → +∞ involves rays that depart tangentially from the
repeated-root front when t < tc reentering the front with t > tc, with these (rather
than expansion-fan rays) mediating the Hamilton-Jacobi selection mechanism there;
these rays cannot cross each other while p > 0: given (71) we have

ẋ = 2 (2Ψ(s0(t0))−Ψ(x))
1
2

for the ray departing the front at t = t0 < tc, the ray velocity for given x decreasing
as t0 increases.

Secondly, if Ψ′ starts positive and then becomes negative at x = xc the Hamilton-
Jacobi selection mechanism remains valid for x−xc positive but sufficiently small; if
a switch to the repeated-root mechanism occurs it does so at the point x = xs > xc
at which the relevant expansion-fan ray touches s0(t) tangentially (it is only at
such an exceptional point that equality in (65) can arise for the Hamilton-Jacobi
mechanism). Taking

Ψ ∼ Ψs − µs(x− xs) + νs(x− xs)2 as x→ xs

with µs > 0, we find from (56) that

f ∼ Ψ
1
2
s (x− xs)− 2Ψs(t− ts) + µs(x− xs −Ψ

1
2
s (t− ts))(t− ts)

+
1

2

∂p

∂x
(xs, ts)(x− xs − 2Ψ

1
2
s (t− ts))2

as t→ t−s with xs − x = O(ts − t) where xs = s0(ts), so that

s0(t) ∼ xs − 2Ψ
1
2
s (ts − t)− µs(ts − t)2 as t→ t−s .

The inner scalings that apply in this case are

x = s(T ; ε) + ε2/3Z, t = ts + ε1/3T, u =
1

ε1/3
e
− Z

2ε2/3
ds
dT v,

and we find that

s ∼ xs + 2ε
1
3 Ψ

1
2
s T − ε

2
3µsT

2 + εS(T ),

and obtain the second of the canonical PDEs here in the form

∂v0

∂T
=
∂2v0

∂Z2
+

(
−2µsZT + 4νsΨsT

2 −Ψ
1
2
s
dS

dT

)
v0, (112)

now consistent with (86) as T → +∞, in which limit the rays emerge tangentially
from the front.

A much more general remark to which we return below is the following. Many
of the concepts described here go over to cases involving higher-order systems, but
the situation can be much more complicated not just because there are typically
more ray families but, even more importantly, because the dominant rays may be
complex ones, the wavefront being associated with the level set Re(f) = 0, rather
than simply f = 0, and hence with modulated travelling waves instead of waves of
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fixed form (even more complicated possibilities can arise, of course). The Stokes
phenomenon potentially plays a significant role here also.

As a minor remark, we note that the Hamilton-Jacobi equation

∂f

∂t
+

(
∂f

∂x

)2

+ (1− θ)Ψ(x) + θ = 0

associated with the linearised equation

ε
∂U

∂t
= ε2 ∂

2U

∂x2
+ ((1− θ)Ψ(x) + θ)U

is mapped for constant θ to (56) by the equivalence transformation

f → −θt+ (1− θ) 1
2 f, t→ (1− θ)− 1

2 t̂

providing a simple relationship within a class of heterogeneities.
The front profile when the repeated-root mechanism applies is that of the min-

imum speed non-negative travelling wave; faster waves can be realised for slowly
decaying data whichever wavespeed selection mechanism applies. For the Hamilton-
Jacobi mechanism, however, the front propagates faster than the minimum wavespe-
ed no matter how rapidly the initial data decay and it is natural to consider why
more slowly moving fronts cannot be realised: this can be investigated simply
by solving (56) for decreasing t from a wavefront whose speed lies between the
Hamilton-Jacobi and repeated-root values (it is noteworthy that, in contrast to (2),
there is little difficulty in running the eikonal equation (56) backward in time):
the rays associated with (64) bend around to collide with the front at some smaller
positive t, and have an envelope below which they cease to be real; as the wavespeed
drops to the repeated-root value this envelope approaches the wavefront itself. Since
there is no information flow ahead of the envelope via these rays, were the expansion
fan (which, were it present, would enforce a faster-propagating wave) to be absent
then a zone of silence would result – in other words, while such wavefronts appear to
represent asymptotically self-consistent solutions locally, it does not seem possible
to match them forward into a meaningful tail region in which u is exponentially
small: they are thus slightly curious objects from the point of view of intermediate-
asymptotic PDE theory.

6. Discussion. It is important to emphasise that the key result of the above
analysis is not simply that the front velocity depends on Ψ (which is obvious)
but that the mechanism by which it is selected depends crucially on the sign of Ψ′.
Formal derivations of the wavespeed for Fisher’s equation differ between commu-
nities: mathematical-biology texts tend to appeal to a phase-plane analysis of the
travelling-wave ODE, whereas the physics literature often adopts a steepest-descent
approach to a Fourier-transform-based integral representation11 of the solution to a
(spatially homogeneous) linearised system, reflecting respectively the repeated-root
and Hamilton-Jacobi mechanisms; that these exceptionally give the same result for
the homogeneous PDE has led to the clear differences between these two mechanisms
often being overlooked.

We have sought to demonstrate in the above how geometrical optics, and canon-
ical inner problems of the type that arise in the geometrical theory of diffraction

11Such a non-local representation is already somewhat moot, given that the linearisation is self-
evidently inapplicable behind the wavefront; the local information flow explicit from the Hamilton-

Jacobi approach clarifies the circumstances under which the results are applicable.
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(GTD), can be crucial to the formal understanding of wave propagation in para-
bolic systems, the associated ray-based insight into information flow providing a
viewpoint that is relatively rarely exploited. Many phenomena familiar from linear
diffraction theory play a central role (refraction, total internal reflection, caustics
etc.) and the Liouville-Green approach adopted here explicitly invokes the linearised
PDE. Nevertheless, it is important also to highlight two intrinsically nonlinear
effects that are crucial in understanding the full ray picture for the linearised PDE.
Firstly, a new ray field is shed by a (self-sustaining and self-limiting) repeated-root
front (and indeed also by conventional pushed fronts): this has no analog for the
linearised PDE, the large-time behaviour of which sheds no light on the nonlinear
wavespeed (put more bluntly: for Ψ′ < 0 the large-time analysis of the linearised
PDE gives the wrong answer, as does a näıve phase-plane analysis of the travelling-
wave ODE when Ψ′ > 0 in the sense that the minimum permitted wavespeed
identified by the phase-plane analysis is not in fact realised). Secondly, the condition
(70) for the inadmissibility of rays does not arise in the linear case and can be
interpreted as expressing their annihilation on confronting the nonlinearity12 (while
related rays may reemerge in a modified form on the other side of the wavefront,
they are not relevant to the current discussion); by contrast, on the anti-Stokes lines
of linear problems (these being curves on which two exponential contributions are
equal in size) each set of rays passes through unaltered (in contrast to the Stokes
lines across which the rays associated with a (maximally) subdominant contribution
can be entirely deactivated). Such effects have implications way beyond the very
specific class of problems addressed here.

Even for this specific class, there are a number of questions that we have not
attempted to resolve here even at a formal level, of which we highlight three. Firstly,
from (73) we have that the wavefront necessarily decelerates when Ψ′ < 0; for
Ψ′ > 0, it is clear from the fact that newly initiated fronts start off with unbounded
velocity that the wavefront need not necessarily accelerate (that this is also true
even when no new fronts form follows from consideration of cases in which they
just fail to do so), but it would be worthwhile to determine what can be said

about s̈0 or related quantities (perhaps in terms of the sign of Ψ
′′
, for example).

Secondly, the analysis in Section 5 implies that when Ψ′ switches from negative
to positive, the rays shed by the repeated-root front are responsible for wavespeed
selection in the subsequent Hamilton-Jacobi front: an open question alluded to in
Section 5 concerns cataloguing the circumstances under which rays emerging from
a front (including those associated with fast-decay from a Hamilton-Jacobi front)
can govern subsequent front behaviour. Finally, a more detailed classification of
when additional fronts will arise might be instructive.

In keeping with our goal of establishing a GTD-related framework for addressing
problems of the current type, we have paid particular attention to formulating
canonical inner problems that play roles that are in some sense universal (though
we stress that we have not sought a comprehensive classification of these); it is
striking that in most cases (such as (86), (111) and (112)) these are linear.

In concluding, we emphasis the very broad applicability of the new distinct mech-
anisms identified here in characterising nonlinear waves propagating over unstable

12In other words and as already noted, the nonlinearity acts as a self-generating (rather than
externally prescribed) obstacle preventing the further propagation of the rays of the linearised

problem.
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states and susceptible to classification by linear methods13. The generalisation of
the repeated-root mechanism to higher-order systems typically involving extending
the permanent-form travelling-wave ansatz to that for modulated travelling waves
(MTWs) i.e. considering local solutions of the form

φ(z, t; c, T ) with φ(z, t+ T ; c, T ) = φ(z, t; c, T ) (113)

in some suitable local travelling-wave coordinate z, linearising the MTW PDE and
determining the two real quantities c and T and the (in general complex) decay rate
of φ from the two complex equations made up of the auxiliary equation for the decay
rate (obtained by separation of variables with the time-dependence constrained
by (113)) and the associated repeated-root condition. For the Hamilton-Jacobi
mechanism, one obtains the expansion-fan solutions to the relevant eikonal equation
and determines the level sets Re(f) = 0 as putative markers for the wavefront
location (with the value of Im(f) there implying the local periodicity in t in the case
of a MTW; the inadmissibility condition (70) for the Hamilton-Jacobi mechanism

generalises to involve Re(f(x, t
′
)) < 0): that the eikonal equation will typically have

multiple branches, and that careful account must be taken of complex rays and of
the Stokes phenomenon, illustrates the far from trivial additional steps that must
be undertaken in such cases (a related proviso applies for the repeated-root case also
since the relevant condition can be satisfied by a discrete set of wavespeeds and,
moreover, non-negativity of the wave profile cannot be used as a criterion when
there is no suitable comparison principle). In the spatially homogeneous cases that
have been most widely studied, these two mechanisms give the same wavespeed, but
this is not the case more generally: a large part of our motivation for considering
the relatively simple specific case (2) in detail was to highlight the distinctiveness
and complementarity of the two mechanisms, thereby providing insight into their
comprehensiveness and generic applicability.

7. Acknowledgments. I am grateful to Carlota Cuesta for helpful discussions and
to the Royal Society and Wolfson Foundation for funding.

Appendix 1 A distinguished limit. For obvious reasons, we have taken Ψ
above to be independent of ε. Here we instead briefly discuss the case

Ψ(x; ε) = 1 + ε
1
2ψ(x), ψ(0) = 0, (A1.1)

which is distinguished in the sense that it describes the transition between the two
cases discussed in detail above in the limit ε → 0 with t = O(1). The analysis
closely parallels that of Section 2.2.

We set (for t = O(1))

x = s(t; ε) + ε
1
2 ζ, s(t; ε) ∼ 2t+ ε

1
2 s1(t) + ε ln(1/ε)s2(t) + εs3(t), (A1.2)

and

u =
e−ζ/ε

1
2

ε1/2
v

in the linearised PDE to give (retaining terms up to O(ε
1
2 ))

ε
1
2
∂v

∂t
+(ṡ1 +ε

1
2 ln(1/ε)ṡ2 +ε

1
2 ṡ3)v−ε 1

2 ṡ1
∂v

∂ζ
∼ ε 1

2
∂2v

∂ζ2
+ψ(2t)v+ε

1
2 (s1 +ζ)ψ

′
(2t)v.

13By this we exclude situations in which a pushed (nonlinearity selected) front arises, i.e.
when, in the case of higher-order systems, the corresponding analogue of the scenario summarised
in footnote 3 pertains.
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hence

s1(t) =

∫ t

0

ψ(2t
′
)dt
′
, s2(t) = −3

2
, (A1.3)

and

∂v0

∂t
=
∂2v0

∂ζ2
+ ψ(2t)

∂v0

∂ζ
+ (s1(t)ψ

′
(2t)− ṡ3(t) + ψ

′
(2t)ζ)v0,

as ζ → 0+ v0 ∼ Kζ,

as t→ 0+ v0 ∼ Kζe−ζ
2/4t,

(A1.4)

which (cf. (33)) determines s3(t) as well as v0(ζ, t). The formulation (A1.4) can be
simplified somewhat by setting

v0 = exp

(
−1

2
ψ(2t)ζ +

∫ t

0

(
s1(t

′
)ψ
′
(2t
′
)− 1

4
ψ2(2t

′
)

)
dt
′
− s3(t)

)
w

to give

∂w

∂t
=
∂2w

∂ζ2
+ 2ψ

′
(2t)ζw,

at ζ = 0 w = 0,

as t→ 0+ w ∼ I1

t
3
2

ζe−ζ
2/4t,

(A1.5)

where I1 corresponds to that in Section 2.1.
Analysing (A1.5) for large ψ reestablishes the subdivision between the cases

Ψ
′
> 0 and Ψ

′
< 0, but for ψ = O(1) no further simplification is possible for

t = O(1). The key point to emphasise is then as follows: in (A1.1) the heterogeneity
is both small and slowly varying, so the behaviour could be expected very closely to
follow that of the classical homogeneous case; nevertheless, the correction term s3(t)
is sensitive to the form of ψ(x), as expressed by (A1.4) – in this sense, considerable
caution needs to be exercised in the application of universality results such as those
of [3] beyond the context in which they were derived. A further cautionary example
is provided by the case ε = 1,Ψ(x) ∼ 1+µ/x as x→ +∞ for which the logarithmic
term in the large-time expansion for s(t) depends on the value of the constant µ.

Appendix 2 Piecewise-constant heterogeneity. Here we consider the in-
structive special case

Ψ(x) ≡ 1 for 0 < x < 1, Ψ(x) ≡ Ψ∞ for x > 1, (A2.1)

aspects of which have been investigated by [6]. While x < 1, the expansion fan
solution is given by

x = 2p0t, f = (p2
0 − 1)t =

x2

4t
− t, A =

1

t1/2
a
(x
t

)
, t < 1/2p0. (A2.2)

Since q = ∂f/∂t is constant on rays, those that pass through x = 1 are refracted
and have

p = (p2
0 + 1−Ψ∞)

1
2 for t > 1/2p0,

i.e. they require that p2
0 > Ψ∞ − 1, and on such rays f is given parametrically in

terms of p0 by

x = 2(p2
0 + 1−Ψ∞)

1
2

(
t− 1

2p0

)
+ 1, f = (p2

0 + 1− 2Ψ∞)t+
1

p0
(Ψ∞ − 1) (A2.3)
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for t > 1/2p0. The most significant ray for what follows is that corresponding to

p0 = p∗ ≡ (Ψ∞ − 1)
1
2 for which (A2.3) reduces to

x = 1, f = −Ψ∞t+ (Ψ∞ + 1)
1
2 for t > 1/2(Ψ∞ − 1)

1
2 . (A2.4)

This identifies Ψ∞ = 2 as a borderline value: for 1 < Ψ∞ < 2 we have p∗ < 1 and
(A2.4) has f < 0 for all t > t† ≡ 1/2p∗, whereas for Ψ∞ > 2, p∗ > 1 and (A2.4)

passes through zero from above at t = t∗ ≡ (Ψ∞ − 1)
1
2 /Ψ∞, where t∗ < 1/2: as we

shall see, this corresponds to the nucleation of additional fronts.
The front location in x < 1 follows at once from (A2.2), corresponding to p0 = 1

and hence

s0(t) = 2t for t < 1/2. (A2.5)

For 1 < Ψ∞ < 2 propagation proceeds continuously into x > 1, with s0(t) given
parametrically by

s0(t) = 2(p2
0+1−Ψ∞)

1
2

(
t− 1

2p0

)
+1, 0 = (p2

0+1−2Ψ∞)t+
1

p0
(Ψ∞−1) for t > 1/2;

(A2.6)
from (A2.6) we have that p0 is a monotonically increasing function of t with

p0 ∼ 1 +
2(Ψ∞ − 1)

(2−Ψ∞)

(
t− 1

2

)
, s0(t) ∼ 1 +

2

(2−Ψ∞)
1
2

(
t− 1

2

)
as t→ 1

2

+

,

(A2.7)
from which the requirement that Ψ∞ < 2 holds is immediate and

p0 ∼ (2Ψ∞ − 1)
1
2 , s0(t) ∼ 2Ψ

1
2∞t as t→ +∞, (A2.8)

as is to be expected. The velocity thus jumps discontinuously to its maximum value
as s0 passes through 1 and then decreases.

For Ψ∞ > 2 new wavefronts are born at x = 1, t = t∗. The one that propagates
to the right is determined by the Hamilton-Jacobi selection mechanism, so is given
by (A2.6) and satisfies

p0 ∼ (Ψ∞ − 1)
1
2 +

Ψ2
∞

(Ψ∞ − 2)
(t− t∗),

s0(t) ∼ 1 +

(
2(Ψ∞ − 2)

(Ψ∞ − 1)
1
2

) 1
2

(t− t∗) 1
2 as t→ t∗

+

, (A2.9)

the requirement that Ψ∞ > 2 being immediately apparent, and (A2.8). Alongside
(A2.9) we have

f(x, t) ∼ Ψ∞(Ψ∞ − 2)
1
2

2(Ψ∞ − 2)
(x− 1)2 −Ψ∞(t− t∗) as x→ 1+, t→ t∗

+

. (A2.10)

Thus the speed is unbounded at t = t∗ and subsequently decreases to 2Ψ
1
2∞. The

leftward moving front has no analog for the linear PDE theory and is in effect
determined by the repeated-root mechanism, being given by

s0(t) = 1− 2(t− t∗) for t∗ < t < (1 + 2t∗)/4,

colliding with the original front (A2.5) at t = (1 + 2t∗)/4, after which time the only
front is the one in x > 1, given by (A2.6).
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Finally, in the borderline case Ψ∞ = 2 we find that

p0 ∼ 1 + 2

(
1

3

(
t− 1

2

)) 1
2

, s0(t) ∼ 1 + 4

(
1

3

(
t− 1

2

)) 3
4

as t→ 1

2

+

(A2.11)

together with (A2.8). Thus, as for (A2.9) the interface velocity is unbounded as s0

passes through 1, but (A2.11), unlike (A2.9), exhibits continuity with (A2.5). In
addition

f(x, t) ∼ 3

25/3
(x− 1)

4
3 − 2

(
t− 1

2

)
as x→ 1+, t→ 1

2

+

.

Rays with p2
0 < Ψ∞ − 1 suffer total internal reflection at x = 1, p becoming −p0

(hence maintaining the value of q = −p2 − 1) on hitting x = 1, so that the ray
propagates back into x < 1. The critical ray (on which p0 = p∗) also sheds rays
having p = −p∗ back into x < 1 for each value of t > t†; however, none of these
backward propagating rays plays a role in wavefront selection and we do not discuss
them further.

The final issue we shall discuss here is associated with the initiation of the two
additional fronts at x = 1, t = t∗, since the inner problem that describes this plays
a role akin to that of a canonical diffraction problem in geometric optics, but has
no analog in the linear PDE. To accomplish this, we first need to characterise the
behaviour of the solution close to x = 1. For t < t† < t∗ we have from (A2.2) that

u ∼ ε1/2

t1/2
a

(
1

t

)
e(t−1/4t)/ε e−X/2t for X = O(1)

where x = 1 + εX. Setting

u =
ε1/2

t1/2
a

(
1

t

)
e(t−1/4t)/ε v(X, t)

gives

∂2v0

∂X2
=

1

4t2
v0, X < 0,

∂2v0

∂X2
=

(
1 +

1

4t2
−Ψ∞

)
v0, X > 0

so that

v0 = e−X/2t +
1− (1− 4(Ψ∞ − 1)t2)

1
2

1 + (1− 4(Ψ∞ − 1)t2)
1
2

eX/2t, X < 0 (A2.12)

the second term in which represents a reflected field that is not significant here
since it decays exponentially as X decreases; a reflected field will also be present
for smooth Ψ(x), but can for the usual reasons be expected to be multiplied by a
prefactor that is exponentially small in ε – such behaviour is of interest in its own
right but is not germaine here. The transmitted field corresponding to (A2.12) is

v0 =
2

1 + (1− 4(Ψ∞ − 1)t2)
1
2

exp

(
− 1

2t
(1− 4(Ψ∞ − 1)t2)

1
2X

)
, X > 0; (A2.13)

this ceases to be exponentially decaying at t = t†, leading to a canonical ‘diffraction’
problem for t close to t† that is again of interest in its own right but is relegated to
Appendix 3 because it is a problem exclusively in linear PDE theory.

For t† < t < t∗ the behaviour for |x − 1| � 1 is dictated by rays close to the
critical one corresponding to p = p∗: setting p0 = p∗(1 + δ) where δ is an artificial
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small parameter yields from (A2.3) that

x ∼ 1 + 23/2p∗δ
1
2 (t− t†), f ∼ (x− 1)2

4(t− t†)
−Ψ∞(t− t∗) as x→ 1+, (A2.14)

having (A2.10) as a special case. There are now two additional regions close to
x = 1. Firstly, we set x = 1 + ε1/2Y with Y > 0 and

u = Λ(ε)eΨ∞(t−t∗)/εW (Y, t), (A2.15)

where calculating the quantity Λ(ε) requires analysis of the inner problem at t = t†

(see Appendix 3). At leading order we have for t† < t < t∗

∂W0

∂t
=

∂2W0

∂Y 2
,

at Y = 0 W0 = 0,

where the condition at Y = 0 follows from matching into the X = O(1) region
described next, and hence

W0 =
Y

(t− t†)3/2
e−Y

2/4(t−t†), (A2.16)

given the results of Appendix 3, which yield on matching into (A2.16) that

Λ(ε) ∼ εa(2p∗)

2p∗
.

The second region has X = O(1) with

u = ε
1
2 Λ(ε) eΨ∞(t−t∗)/ε V (X, t)

and at leading order

∂2V0

∂X2
= (Ψ∞ − 1)V0, X < 0,

∂2V0

∂X2
= 0, X > 0

so that

V0 =
1

p∗(t− t†)3/2
ep
∗X , X < 0, V0 =

1

p∗(t− t†)3/2
(1 + p∗X), X > 0

(A2.17)
on matching with (A2.16). The first of (A2.17) generates a reflected field in x < 114;
this and the totally internally reflected field arising for p0 < p∗ should be contrasted
with that present in (A2.12) in that rays analogous to the former are also relevant
in the case of smooth Ψ(x): considering the case in which Ψ increases rapidly but
smoothly from 1 to Ψ∞ in the neighbourhood of x = 1, rays with p just less than
p∗ hug x = 1 while those with smaller p turn around more rapidly – the role of rays
which swap direction has been discussed above.

Evidently, (A2.15) ceases to be small when t approaches t∗ and u becomes of
O(1). Setting

t = t∗ − ε

Ψ∞
ln Λ + εT

we have in Y = O(1) with Y > 0

∂u0

∂T
= Ψ∞u0(1− u0)

14It is reflected at the critical angle, with the ray with p0 = p∗ being that analogous to that
associated with the head wave in descriptions of seismic wave propagation, for example.
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as T → −∞ u0 ∼
Y

(t∗ − t†) 3
2

e−Y
2/4(t∗−t†)

so the rightward moving front satisfies

Y ∼ 2(Ψ∞(t∗ − t†)T )
1
2 as T → +∞;

since

t∗ − t† =
Ψ∞ − 2

2Ψ∞(Ψ∞ − 1)
1
2

,

this is consistent with (A2.9). As Y → 0+ we have

u0 ∼
Y

(t∗ − t†) 3
2

eΨ∞T (A2.18)

for T = O(1), and to initiate the leftward moving front we need to take account of
(A2.17) by setting

T =
1

2Ψ∞
ln(1/ε) +

3

2Ψ∞
ln(t∗ − t†) + T̂

to give the canonical nonlinear ‘diffraction’ problem

∂u0

∂T̂
=
∂2u0

∂X2
+ (1 +H(X)(Ψ∞ − 1))u0(1− u0),

as X → −∞ u0 → 0, as X → +∞ u0 → 1,

where H(X) is the Heaviside step function, subject to the initial data

u0 ∼
1

p∗
eΨ∞T̂+p∗X as T̂ → −∞, X = O(1) with X < 0,

u0 ∼
1

p∗
eΨ∞T̂ (1 + p∗X) as T̂ → −∞, X = O(1) with X > 0,

u0 ∼ eΨ∞T̂X/(1 + eΨ∞T̂X) as T̂ → −∞, X = O(e−Ψ∞T̂ ) with X > 0,

where we have made use of (A2.18). Since p∗ > 1, the rate of exponential decay in
the initial data as X → −∞ ensures that the leftward propagating wave is one of
minimum speed, the location of which is therefore given by

X ∼ −2T̂ +
3

2
ln T̂ as T̂ → +∞.

This propagating wave has no analog in the linearised PDE, no indication of its
location being provided by the original expansion-fan solution.

Appendix 3 A linear canonical inner problem. Here, as promised in Ap-
pendix 2, we analyse the behaviour close to t = t† ≡ 1/2p∗ for Ψ∞ > 2, in part to
emphasis how much analytical progres is possible with the techniques implemented
here. First we set

p0 = p∗(1 + δ), t = t† + δt̂ (A3.1)

in (A2.3), where δ > 0 is an artificial small parameter. Retaining terms in f up to
O(δ2) we find

x− 1 ∼ 2
1
2 δ

3
2 (2p∗t̂+ 1), f ∼ Ψ∞(t∗ − t†)− δΨ∞t̂+ δ2p∗

(
2p∗t̂+

3

2

)
. (A3.2)

At t̂ = 0 we therefore have

f(x, t†) ∼ Ψ∞(t∗ − t†) +
3p∗

25/3
(x− 1)

4
3 as x→ 1+ (A3.3)
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while for t̂ < 0 (A3.2) takes the selfsimilar form

f(x, t) ∼ Ψ∞(t∗− t†)+Ψ∞(t†− t)+(t†− t)2F−(η−) as t→ t†
−
, x→ 1+ (A3.4)

with the following parametric representation for F−(η−)

η− = (x−1)/(t†−t) 3
2 , η− = 2

1
2µ

3
2
−−2

3
2 p∗µ

1
2
−, F−(µ−) =

3

2
p∗µ2
−−2p∗

2

µ−, (A3.5)

where δ = µ−(t† − t); similarly, for t̂ > 0 we have

f(x, t) ∼ Ψ∞(t∗−t†)−Ψ∞(t−t†)+(t−t†)2F+(η+) as t→ t†
+

, x→ 1+ (A3.6)

with

η+ = (x−1)/(t−t†) 3
2 , η+ = 2

1
2µ

3
2
+ +2

3
2 p∗µ

1
2
+, F+(η+) =

3

2
p∗µ2

+ +2p∗
2

µ+, (A3.7)

where δ = µ+(t− t∗). Asymptotic expressions accordingly take the form

F−(η) ∼ 3p∗

25/3
η

4
3 +22/3p∗

2

η
2
3 , F+(η) ∼ 3p∗

25/3
η

4
3 −22/3p∗

2

η
2
3 as η → +∞ (A3.8)

and

F−(η) ∼ 2p∗3 + 2p∗
3
2 η, F+(η) ∼ 1

4
η2 as η → 0+, (A3.9)

the first of (A3.9) correspond to µ− ∼ 2p∗ and the second to µ+ ∼ η2
+/8p

∗2.
From the scalings in (A3.4)-(A3.5), it is clear that the inner analysis requires us

to set

x = 1 + ε
3
4X, t = t† + ε

1
2T (A3.10)

and, by (A3.2) or (A3.4),

u = ε1/2(2p∗)
1
2 a(2p∗) e−Ψ∞(t∗−t†)/ε eΨ∞T/ε

1
2 v (A3.11)

to give
∂v0

∂T
=
∂2v0

∂X2
for X > 0. (A3.12)

The ε1/2 and other prefactors in (A3.11) are introduced for convenience in view of
the incoming ray solution in X < 0, namely

u ∼ ε
1
2

t
1
2

a
(x
t

)
e(t−x2/4t)/ε

which becomes

v ∼ e−p
∗X/ε

1
4 e−2p∗T 2

(A3.13)

under the rescalings (A3.10)-(A3.11); it is no coincidence that time dependence in
(A3.13) corresponds to the first term in F− in (A3.9). For T = O(1), X < 0 we

need to introduce X̂ = X/ε
1
4 to give

∂2v0

∂X̂2
= p∗

2

v0 for X̂ < 0

so that

v0 = (e−p
∗X̂ + ep

∗X̂)e−2p∗T 2

(A3.14)

follows on applying the matching condition

∂v0

∂X̂
= 0 on X̂ = 0. (A3.15)
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Thus (A3.12) is to be solved subject to

v0 = 2e−2p∗T 2

on X = 0; (A3.16)

in setting up the initial boundary value problem it is necessary also to determine the
amplitude prefactor in x > 1, whereby u can for reasons noted above be expressed
in the form

u ∼ ε 1
2

(
− ∂2f

∂x∂t

) 1
2

Ω

(
−∂f
∂t

)
e−f(x,t)/ε (A3.17)

for some function Ω. Since

q = −p2
0 − 1, p = (p2

0 + 1−Ψ∞)
1
2

and by (A3.1), (A3.3) we have

p0 ∼ p∗ + 2p∗
2

(t† − t) on x = 1 as t→ t†
−
,

it follows that

∂f

∂t
∼ −Ψ∞ − 4p∗

3

(t† − t), ∂f
∂x
∼ 2p∗

3
2 (t† − t) 1

2 ,
∂2f

∂x∂t
∼ −p∗

3
2 (t† − t)− 1

2

on x = 1 and consistency with (A3.16) as T → −∞ is readily seen to demand that

Ω

(
−∂f
∂t

)
∼ 2a(2p∗)

p∗

(
−∂f
∂t
−Ψ∞

) 1
4

, (A3.18)

this giving the amplitude carried by the rays that enter x > 1 when t is just less
than t†. The significance of this result is that it provides the initial data on (A3.12),
(A3.16) as T → −∞, namely

v0 ∼
1

p∗
3
2

(
dF−
dη−

− 3η−
d2F−
dη2
−

) 1
2
(

2F− −
3

2
η−
dF−
dη−

) 1
4

e−T
2F−(η−) as T → −∞

(A3.19)
completing the specification of the canonical ‘diffraction’ problem.

Since
d

dT

∫ ∞
0

Xv0(X,T )dX = v0(0, T ),

it follows from (A3.16) and (A3.19) that∫ ∞
0

Xv0(X,T )dX →
(

π

2p∗3

) 1
2

as T → +∞

and hence that

v0 ∼
X

(2p∗T )3/2
e−X

2/4T as T → +∞ with X = O(T
1
2 ), (A3.20)

wherein the exponential dependence is consistent with the second of (A3.9). In
terms of the far-field behaviour, (A3.18) implies that

v0 ∼
1

p∗3/2

(
3η+

d2F+

dη2
+

− dF+

dη+

) 1
2
(

3

2
η+
dF+

dη+
− 2F+

) 1
4

e−T
2F+(η+) (A3.21)

for X = O(T 3/2) and the transition between (A3.20) and (A3.21) occurs over the
scale X = O(T ): (A3.9) implies that (A3.21) has the asymptotic behaviour

v0 ∼
X

21/2(p∗T )3/2
e−X

2/4T (A3.22)
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for η+ � 1, so this transition is surprisingly subtle (it should be emphasised that
it is clear a priori that (A3.22) need not be equivalent to (A3.20), since the ray
solution is not of course an exact solution to the canonical inner problem – indeed
(A3.21) would imply v0 = 0 on X = 0, whereas (A3.19) satisfies the boundary
condition (A3.16)). Thus in describing this transition we have

v0 ∼
1

T 1/2
b

(
X

T

)
eX

2/4T as T → +∞ with X = O(T )

for some b(ζ) with

b(ζ) ∼ 3

(2p∗)3/2
as ζ → 0, b(ζ) ∼ 3

21/2p∗3/2
as ζ → +∞,

and construction of b(ζ) for ζ = O(1) would require the solution to (A3.12) subject
to (A3.16) and (A3.19).

Finally, we note that the next term in the expansion

v ∼ v0(X̂, T ) + ε
1
4 v1(X̂, T )

in X < 0 takes the form

v1 =
ε

1
4

p∗
ep
∗X̂ ∂v0

∂X
(0, T ) (A3.23)

where v0(X,T ) is the solution to (A3.12), (A3.16), (A3.19): this induces an O(ε
1
4 )

correction term in v in X > 0 but, more importantly, confirms the applicability
of the matching condition (A3.15). Given the exponential decay in T of (A3.14)
and the algebraic decay of (A3.20), it is clear that (A3.23) becomes the dominant
contribution to the reflected field for the large T .
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