A fluid dynamic model for supply chains

  • Received: 01 November 2005 Revised: 01 March 2006
  • Primary: 35L65, 90B30; Secondary: 34B45.

  • The paper deals with a fluid dynamic model for supply chains. A mixed continuum-discrete model is proposed and possible choices of solutions at nodes guaranteeing the conservation of fluxes are discussed. Fixing a rule a Riemann solver is defined and existence of solutions to Cauchy problems is proved.

    Citation: Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains[J]. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379

    Related Papers:

    [1] Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli . A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2(4): 661-694. doi: 10.3934/nhm.2007.2.661
    [2] Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379
    [3] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [4] Ciro D'Apice, Peter I. Kogut, Rosanna Manzo . On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501
    [5] Alexandre M. Bayen, Alexander Keimer, Nils Müller . A proof of Kirchhoff's first law for hyperbolic conservation laws on networks. Networks and Heterogeneous Media, 2023, 18(4): 1799-1819. doi: 10.3934/nhm.2023078
    [6] Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969
    [7] Olli-Pekka Tossavainen, Daniel B. Work . Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8(3): 803-824. doi: 10.3934/nhm.2013.8.803
    [8] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [9] Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565
    [10] Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497
  • The paper deals with a fluid dynamic model for supply chains. A mixed continuum-discrete model is proposed and possible choices of solutions at nodes guaranteeing the conservation of fluxes are discussed. Fixing a rule a Riemann solver is defined and existence of solutions to Cauchy problems is proved.


  • This article has been cited by:

    1. Alfredo Cutolo, Benedetto Piccoli, Luigi Rarità, An Upwind-Euler Scheme for an ODE-PDE Model of Supply Chains, 2011, 33, 1064-8275, 1669, 10.1137/090767479
    2. L. Forestier--Coste, S. Göttlich, M. Herty, Data-Fitted Second-Order Macroscopic Production Models, 2015, 75, 0036-1399, 999, 10.1137/140989832
    3. Mauro Garavello, Benedetto Piccoli, 2013, Chapter 6, 978-1-4614-6242-2, 143, 10.1007/978-1-4614-6243-9_6
    4. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On optimization of a highly re-entrant production system, 2016, 11, 1556-1801, 415, 10.3934/nhm.2016003
    5. Ciro D’Apice, Peter I. Kogut, 2017, 1863, 0094-243X, 560055, 10.1063/1.4992738
    6. C. D'Apice, R. Manzo, B. Piccoli, Numerical Schemes for the Optimal Input Flow of a Supply Chain, 2013, 51, 0036-1429, 2634, 10.1137/120889721
    7. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    8. Simone Göttlich, Michael Herty, Christian Ringhofer, 2012, Chapter 11, 978-0-85729-643-6, 265, 10.1007/978-0-85729-644-3_11
    9. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, 2014, 9, 1556-181X, 501, 10.3934/nhm.2014.9.501
    10. C. D’Apice, R. Manzo, B. Piccoli, Modelling supply networks with partial differential equations, 2009, 67, 0033-569X, 419, 10.1090/S0033-569X-09-01129-1
    11. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    12. Ming Dong, Fenglan He, A new continuous model for multiple re-entrant manufacturing systems, 2012, 223, 03772217, 659, 10.1016/j.ejor.2012.07.002
    13. Simone Göttlich, Axel Klar, 2013, Chapter 8, 978-3-642-32159-7, 395, 10.1007/978-3-642-32160-3_8
    14. C. D'Apice, R. Manzo, B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks, 2010, 362, 0022247X, 374, 10.1016/j.jmaa.2009.07.058
    15. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms, 2010, 2010, 1687-5249, 1, 10.1155/2010/982369
    16. Simone Göttlich, Michael Herty, Ute Ziegler, Modeling and optimizing traffic light settings in road networks, 2015, 55, 03050548, 36, 10.1016/j.cor.2014.10.001
    17. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    18. P. I. Kogut, R. Manzo, On Vector-Valued Approximation of State Constrained Optimal Control Problems for Nonlinear Hyperbolic Conservation Laws, 2013, 19, 1079-2724, 381, 10.1007/s10883-013-9184-5
    19. Simone Göttlich, Michael Herty, Melanie Luckert, 2017, Chapter 2, 978-3-319-63955-0, 21, 10.1007/978-3-319-63957-4_2
    20. Maria Pia D'Arienzo, Luigi Rarità, 2020, 2293, 0094-243X, 420041, 10.1063/5.0026464
    21. Agnes Dittel, Simone Göttlich, Ute Ziegler, Optimal design of capacitated production networks, 2011, 12, 1389-4420, 583, 10.1007/s11081-010-9123-1
    22. Ke Han, Terry L. Friesz, Tao Yao, A Variational Approach for Continuous Supply Chain Networks, 2014, 52, 0363-0129, 663, 10.1137/120868943
    23. Ciro D’Apice, Maria Pia D’Arienzo, Peter I. Kogut, Rosanna Manzo, On boundary optimal control problem for an arterial system: Existence of feasible solutions, 2018, 18, 1424-3199, 1745, 10.1007/s00028-018-0460-4
    24. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    25. Simone Göttlich, Stephan Martin, Thorsten Sickenberger, Time-continuous production networks with random breakdowns, 2011, 6, 1556-181X, 695, 10.3934/nhm.2011.6.695
    26. Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535
    27. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    28. S. Göttlich, M. Herty, C. Ringhofer, U. Ziegler, Production systems with limited repair capacity, 2012, 61, 0233-1934, 915, 10.1080/02331934.2011.615395
    29. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    30. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    31. Ming Dong, Fenglan He, Zhigang Wu, Optimal control of a continuum model for single-product re-entrant manufacturing systems, 2011, 49, 0020-7543, 6363, 10.1080/00207543.2010.519736
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3746) PDF downloads(213) Cited by(31)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog