Variational evolution of one-dimensional Lennard-Jones systems

  • Received: 01 October 2013 Revised: 01 May 2014
  • Primary: 35K90, 74A45; Secondary: 49J45, 74R10.

  • We analyze Lennard-Jones systems from the standpoint of variational principles beyond the static framework. In a one-dimensional setting such systems have already been shown to be equivalent to energies of Fracture Mechanics. Here we show that this equivalence can also be given in dynamical terms using the notion of minimizing movements.

    Citation: Andrea Braides, Anneliese Defranceschi, Enrico Vitali. Variational evolution of one-dimensional Lennard-Jones systems[J]. Networks and Heterogeneous Media, 2014, 9(2): 217-238. doi: 10.3934/nhm.2014.9.217

    Related Papers:

  • We analyze Lennard-Jones systems from the standpoint of variational principles beyond the static framework. In a one-dimensional setting such systems have already been shown to be equivalent to energies of Fracture Mechanics. Here we show that this equivalence can also be given in dynamical terms using the notion of minimizing movements.


    加载中
    [1] L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246.
    [2] L. Ambrosio and A. Braides, Energies in $SBV$ and variational models in fracture mechanics, in Homogenization and Applications to Material Sciences (Nice, 1995) (eds. D. Cioranescu, A. Damlamian, and P. Donato), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, 1995, 1-22.
    [3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.
    [4] L. Ambrosio and N. Gigli, A user's guide to optimal transport, in Modelling and Optimisation of Flows on Networks (eds. B. Piccoli and M. Rascle), Lecture Notes in Mathematics, 2062, Springer, Berlin, 2013, 1-155.
    [5] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH, Zürich, Birkhhäuser, Basel, 2008.
    [6] A. Braides, $\Gamma$-convergence for Beginners, Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
    [7] A. Braides, Local Minimization, Variational Evolution and $\Gamma$-Convergence, Lecture Notes in Mathematics, 2094, Springer, Berlin, 2014. doi: 10.1007/978-3-319-01982-6
    [8] A. Braides, M. S. Gelli and M. Novaga, Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 95 (2010), 469-498. doi: 10.1007/s00205-009-0215-z
    [9] A. Braides, A. J. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes, Arch. Ration. Mech. Anal., 180 (2006), 151-182. doi: 10.1007/s00205-005-0399-9
    [10] A. Braides and L. Truskinovsky, Asymptotic expansions by Gamma-convergence, Cont. Mech. Therm., 20 (2008), 21-62. doi: 10.1007/s00161-008-0072-2
    [11] G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8
    [12] E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, 81-98.
    [13] N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), 101-120. doi: 10.1007/s00526-009-0303-9
    [14] M. Gobbino, Gradient flow for the one-dimensional Mumford-Shah functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27 (1998), 145-193.
    [15] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows and application to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672. doi: 10.1002/cpa.20046
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3348) PDF downloads(94) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog