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Abstract. We analyze Lennard-Jones systems from the standpoint of vari-
ational principles beyond the static framework. In a one-dimensional setting

such systems have already been shown to be equivalent to energies of Fracture

Mechanics. Here we show that this equivalence can also be given in dynamical
terms using the notion of minimizing movements.

1. Introduction. The main scope of this paper is to analyze Lennard-Jones sys-
tems from the standpoint of variational principles beyond the static framework. In
a one-dimensional setting such systems have already been shown to be equivalent
to energies of Fracture Mechanics using the notion of equivalence by Γ-convergence
[9, 10]. Here we show that this equivalence can also be given in dynamical terms
using the notion of minimizing movements.

We start by briefly recalling the definition of a minimizing-movement scheme.
Typically, we are given an ‘energy functional’ F , defined on a space X, whose
(local) minimizers provide the stable configurations of the system. As an answer to
the problem of modeling the evolution from a given initial state u0, in [12] (see also
[1, 5]) a general scheme is proposed, based on an iterative-minimization process.
More precisely, in the particular case in which X is a Hilbert space, we fix a ‘time
step’ τ > 0 and consider the sequence (ukτ )k recursively defined by letting u0

τ = u0

and ukτ (k ≥ 1) be a minimizer of the penalized functional

v 7→ F (v) +
1

2τ
‖v − uk−1

τ ‖2X . (1)

We interpret ukτ as the state of the system at discrete times t = kτ , and let
uτ : [0,+∞)→ X be its piecewise-constant extension for all positive times: uτ (t) =

u
bt/τc
τ . A function u : [0,+∞) → X is a minimizing movement for F from u0 if
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u is the pointwise limit of a (sub)sequence (uτn). Note that the last term in (1)
tends to constrain the minimizer ukτ on a O(τ)-neighbourhood of uk−1

τ , thus giving
a X-continuous trajectory in the limit. As a standard example we mention the case
X = L2(Ω), with Ω an open subset of Rn, and F (u) =

∫
Ω
|∇u|2 dx on the Sobolev

space H1(Ω), extended with value +∞ otherwise; it turns out that the evolution of
an initial datum u0 is given by the (weak) solution of the heat equation ut = 2∆xu
with initial condition u(·, 0) = u0 and Neumann boundary conditions.

Consider now the case of an energy Fε which depends on a small parameter
ε, and assume that we know its limit F as ε → 0 (technically, the Γ-limit in a
suitable topology). The method of minimizing movements, applied to each Fε,
leads to functionals defined as in (1) but depending on both ε and τ . By letting
simultaneously ε and τ tend to 0 we have a minimizing movement along the sequence
Fε at time scale τ . In general the evolution of the system from an initial state, driven
by the functional Fε according to the scheme above is not close, for ε and τ small,
to the evolution ruled by the limit functional F . This is true (upon some bounds
and equi-coerciveness assumptions) if ε is sufficiently small with respect to τ (see
[7] Theorem 8.1 (i)), but it is in general false; e.g., for F with interfacial energies.
In that case evolutions for Fε constructed from discrete approximations are often
pinned by local minimizers (see [8], [7] Section 9.5). We note that a condition which
guarantees that the minimizing movement is independent of the mutual behaviour
of ε and τ is the convexity of the functionals Fε (see [7] Section 11.1 and [13];
see also [4] Section 3.2.4): as a heuristic motivation, consider that, in the convex
case, energies as in (1) do not possess local minimizer other than the global one.
Unfortunately, convexity conditions are often ruled out in many physical models,
as the one we are considering here.

In this paper we focus the attention on a well-known family of non-convex en-
ergies defined through a Lennard-Jones potential, and prove in particular that the
minimizing movements along this family coincide with that of their limit also when
τ is sufficiently small with respect to ε (i.e., in a regime “opposite” to the one
for which this always holds). More precisely, we consider the family (Fε)ε>0 of
functionals defined on the set of functions u : [0, 1] ∩ εZ→ R by (see (7))

Fε(u) =

Nε−1∑

i=0

ψ

(
ui+1 − ui√

ε

)
, (ui := u(iε), Nε := b1/εc), (2)

where ψ : (−1,+∞) → R is, up to a translation, a convex-concave potential of
Lennard-Jones type with minimum in 0 (see Figure 2: we postpone the motivation
for such a potential to the next section). The

√
ε-scaling considered here leads to

the prototypical free-discontinuity functional, namely the Mumford-Shah functional
(or Griffith fracture energy)

F (u) =
1

2
ψ′′(0)

∫ 1

0

|u′|2 dx+ a#S(u),

where a = limz→+∞ ψ(z), and S(u) denotes the set of jump points of the function
u (i.e., the set of the points x where the right and left limits u± are different).
Moreover, the increasing-jump condition u+ > u− on S(u) has to be taken into
account. It is known that the minimizing-movement scheme can be applied to the
functional F , giving the heat equation with Neumann boundary conditions on the
jump set (and on the boundary), with the constraint that S(u(t)) is decreasing (see,
e.g., [7] Example 7.3).
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For every ε, τ > 0 we can define the discrete evolution (ukε,τ )k from an initial
datum, driven by the functional Fε according to the scheme (1). As above, we denote

by uε,τ its piecewise-constant extension for all positive times: uε,τ (t) = u
bt/τc
ε,τ . In

Section 3 we prove a compactness result for sequences
(
uεn,τn

)
and in Section 4

we characterize the minimizing movement along Fεn (with time step τn); namely,
we prove that all limit points of

(
uεn,τn

)
are weak solutions of the heat equation,

independently of the particular sequences (εn) and (τn), with fixed jump set, hence
obtaining the minimizing movement for the Mumford-Shah functional. This result
is obtained under the assumption τ << ε2. From this in particular we deduce that
the limit as ε → 0 of the minimizing movements along the scaled Lennard-Jones
functionals Fε (computed at ε fixed) coincides with the minimizing movement of
the limit Griffith energy F . This is a consequence of the general property that the
minimizing movements along a sequence Fε at time scale τ are limits of minimizing
movements along functionals Fε at fixed ε if τ is small enough with respect to ε
(see [7] Theorem 8.1(ii)). A similar ‘commutativity’ result between Γ-convergence
and gradient flow has been obtained for Ginzburg-Landau energies [15].

In the framework of the theory of minimizing movements for varying energies,
this result gives an example of a family of non-convex energies for which the limit is
independent of the ratio of ε and τ , at least for some cases comprising the ‘extreme’
regimes. Note however that the hypothesis τ << ε2 is required only for an argu-
ment used to compare finite-difference equations with related ordinary differential
equations in the proof of Proposition 4 and seems to be only a technical assump-
tion. It can be altogether dropped upon requiring some bounds on the Dirichlet
energy of the initial data. Compared with other situations where the limit motion
of interfaces does depend on the mutual behaviour of ε and τ due to pinning effects,
it must be noted that for the Griffith fracture energy F interfaces are themselves
automatically pinned. This is a characteristic feature of brittle fracture, where the
crack site is supposed to be increasing in time.

2. Setting of the problem and preliminary results.

2.1. Function spaces. Let I = (a, b) be a bounded open interval. We denote by
W k,p(I) and Hk(I) := W k,2(I) the standard Sobolev spaces on I. Moreover, we
say that a function u : I → R is piecewise-W 1,p(I) if there exist a = x0 < x1 <
. . . < xm+1 = b such that

u ∈W 1,p(xk, xk+1) for every k = 0, . . . ,m. (3)

It is well known that, considering the continuous representative of u in each interval,
the limits

u+(xk) := lim
x→x+

k

u(x), u−(xk) := lim
x→x−

k

u(x)

exist and are finite. The minimal set {x1, . . . , xm} for which (3) holds coincides
with the jump set S(u) of the function u.

If u ∈ BV (I); i.e., u is a function with bounded variation in I, then its distribu-
tional derivative Du is a measure which can be written as

Du = u′dx+Dsu, (4)

for a suitable function u′ ∈ L1(I) and with Dsu singular with respect to the
Lebesgue measure dx. It is well known that if u ∈ BV (I) then the unilateral
(approximate) limits u±(x) exist and are finite for every x ∈ I.
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Figure 1 - Potentials of Lennard-Jones type

In this paper we focus the attention on a well-known family of non-convex
energies (defined through a Lennard-Jones potential) and prove the validity of
this commutativity property. More precisely, we consider the family (Fε)ε>0 of
functionals defined on the set of functions u : [0, 1] ∩ εZ → R by (see (2.4))

(1.2) Fε(u) =

Nε−1∑
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ψ

(
ui+1 − ui√

ε

)
, (ui := u(iε), Nε := %1/ε&),

where ψ : (−1, +∞) → R is, up to a translation, a convex-concave potential
of Lennard-Jones type (see Figure 1(b)). We refer to the next section for the
motivation of the ε-scaling considered here, which leads to the prototype free-
discontinuity functional, namely the Mumford-Shah functional

F (u) =
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∫ 1
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|u′|2 dx + a#S(u)

where a = limz→+∞ ψ(z).
For every ε, τ > 0 we can define the discrete evolution (uk

ε,τ )k from an
initial datum, driven by the functional Fε according to the scheme (1.1). As
above, let uε,τ be the piecewise-constant extension for all positive times: uτ (t) =

u
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ε,τ . In Section 3 we prove a compactness result for sequences

(
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)
; and in

Section 4 we characterize the limit points as weak solutions of the heat equation,
independently of the particular sequences (εn) and (τn).

2 Setting of the problem and preliminary results

Function spaces. Let I = (a, b) be a bounded open interval. We denote by
W k,p(I) and Hk(I) := W k,2(I) the standard Sobolev spaces on I. Moreover,
we say that a function u : I → R is piecewise-W 1,p(I) if there exist a = x0 <
x1 < . . . < xm+1 = b such that

(2.1) u ∈ W 1,p(xk, xk+1) for every k = 0, . . . , m.

2

Figure 1. A potential of Lennard-Jones type

A relevant subspace of BV (I) is the space SBV (I) (special functions with
bounded variation) determined by the condition that Dsu is concentrated on the
set S(u) of discontinuity points of u (i.e., the points where u± are different). In this
case,

Dsu = (u+ − u−)dH0 S(u),

(here H0 denotes the counting measure) and we refer to Dsu as the jump part
Dju of the derivative Du. It turns out that u is piecewise-W 1,p(I) if and only if
u ∈ SBV (I), the set S(u) is finite and u′ ∈ Lp(I) (see [3] Section 3.2). In this case,
the density u′ in the decomposition (4) is nothing but the usual weak derivative
of u as a Sobolev function in each interval of the partition determined by S(u).
A crucial property of this space is given by the following compactness and closure
results (see [3], Theorems 4.8 and 4.7, where the general n-dimensional setting is
considered; see also [6], Theorem 7.3, for the one-dimensional case).

Theorem 2.1. Let (un) be a sequence of piecewise-H1(I) functions, such that

sup
n

(∫ b

a

|u′n(x)|2 dx+ #S(un)+‖un‖∞
)
< +∞.

Then there exist a subsequence (unk) and a piecewise-H1(I) function u such that

unk → u, u′nk ⇀ u′ in L2(a, b).

Moreover, Djunk ⇀ Dju weakly∗ in the sense of measures; i.e., for every ϕ ∈
C0([0, 1]) vanishing on 0 and 1 we have

∫ 1

0
ϕDjunk →

∫ 1

0
ϕDju.

For a function u = u(x, t) depending on both a space and a time variable, if u(·, t)
is piecewise-H1(I) we denote by ux(·, t) the (density of the absolutely continuous
part of the) derivative of u(·, t).

Since in this paper we do not make use of any technical result about Γ-converg-
ence, we refer the interested reader to [6] and [11] for a thorough presentation.
In view of the arguments displayed in the next subparagraph, we only need to
recall that the main feature of Γ-convergence for a sequence of functionals is that,
under mild compactness assumptions, it leads to the convergence of minima and
minimizers.
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In this paper we focus the attention on a well-known family of non-convex
energies (defined through a Lennard-Jones potential) and prove the validity of
this commutativity property. More precisely, we consider the family (Fε)ε>0 of
functionals defined on the set of functions u : [0, 1] ∩ εZ → R by (see (2.4))
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where ψ : (−1, +∞) → R is, up to a translation, a convex-concave potential
of Lennard-Jones type (see Figure 1(b)). We refer to the next section for the
motivation of the ε-scaling considered here, which leads to the prototype free-
discontinuity functional, namely the Mumford-Shah functional
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For every ε, τ > 0 we can define the discrete evolution (uk

ε,τ )k from an
initial datum, driven by the functional Fε according to the scheme (1.1). As
above, let uε,τ be the piecewise-constant extension for all positive times: uτ (t) =

u
%t/τ&
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; and in

Section 4 we characterize the limit points as weak solutions of the heat equation,
independently of the particular sequences (εn) and (τn).

2 Setting of the problem and preliminary results

Function spaces. Let I = (a, b) be a bounded open interval. We denote by
W k,p(I) and Hk(I) := W k,2(I) the standard Sobolev spaces on I. Moreover,
we say that a function u : I → R is piecewise-W 1,p(I) if there exist a = x0 <
x1 < . . . < xm+1 = b such that
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2

Figure 2. A possible function ψ in the definition of Fε (ε = rm
and a = 1)

2.2. Lennard-Jones potentials. Consider a one-dimensional array of particles
whose mutual interactions can be described by a nearest-neighbour scheme ruled
by a potential of Lennard-Jones type; i.e.,

VLJ(r) = 4a

[(σ
r

)12

−
(σ
r

)6
]

= a

[(rm
r

)12

− 2
(rm
r

)6
]
, (5)

where: r denotes the distance between the particles, a is the depth of the potential
well and rm = 21/6σ is the distance at which the minimum is attained (see Fig. 1).
These parameters can be adjusted according to experimental data.

A specific configuration of the array of particles corresponds to assigning the
distance of each particle from the neighbouring ones. Equivalently, denoting by N
the number of particles, we define a configuration as a function w : [0, l] ∩ εZ→ R,
where ε is a fixed parameter, and l = Nε; thus, we prescribe the position of each
point, labelled by an element of [0, l]∩ εZ. In this perspective, the identity function
is the reference configuration. It will be convenient to choose rm as the reference
space-step ε. We will assume that l = 1 (thus taking a ‘sample’ of material into
account), and denote by Nε the number of elements in [0, 1] ∩ εZ.

If w : [0, 1] ∩ εZ → R is a given configuration, we denote the value w(iε) simply
by wi. The energy corresponding to w is given by

Nε−1∑

i=0

VLJ(wi+1 − wi) ,

with the constraint that wi+1 > wi (we agree that the energy takes value +∞ if
the configuration w does not satisfy this constraint). The effective configurations
under given boundary data are obtained by minimizing this energy. In terms of the
displacement v = w− id, and making the difference quotient (vi+1 − vi)/ε explicit,

each term of the sum can be written as VLJ
(
ε(1 + vi+1−vi

ε )
)
. Since the minimizers

are not affected by the addition of a constant in the energy, we equivalently consider
the following functional, whose absolute minimum is zero:

Eε(v) =

Nε−1∑

i=0

ψ
(vi+1 − vi

ε

)
,

where ψ(t) = VLJ(ε(1 + t)) + a (independent of ε: indeed, VLJ in (5) is a function
of rm/r; i.e., of ε/r). For a graph see Fig. 2.
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When ε is small, the minimizers of Eε can be qualitatively described by means
of the minimizers of the Γ-limit functional for ε → 0. In order to have the same
functional domain for Eε independently of ε, we consider each function v : [0, 1] ∩
εZ → R as a function in L1(0, 1), defined by v(x) = v(bx/εc). Then it turns out
(see [6] Theorem 11.7) that the Γ-limit of (Eε) with respect to the L1-convergence
is given by

E(v) =





a#S(v) if v is piecewise constant on (0, 1)

and v+ > v− on S(v),

+∞ otherwise.

A more refined analysis of the displacement v (i.e., of the “correction” term with
respect to the identity) can be obtained by suitably rescaling the state variable, so
as to obtain a non-trivial limit. By letting v =

√
εu we get the functionals:

Fε(u) =

Nε−1∑

i=0

ψ
(ui+1 − ui√

ε

)
.

In [9] (see also [10]) it is proved that as a Γ-limit we get the well-known Mumford-
Shah functional

F (u) =
1

2
ψ′′(0)

∫ 1

0

|u′|2 dx+ a#S(u),

with the constraint u+ > u−. Note that, in terms of the variable u, the initial
configuration w can be written as w = id+

√
εu.

In this paper we focus on the relationship between the asymptotic bahaviour of
Fε as ε→ 0 and the methods of minimizing movements described below.

2.3. Setting of the problem and first results. Let ε > 0 be given. If u is a
function [0, 1]∩εZ→ R, we denote the value u(iε) simply by ui; therefore, we often
write u as an indexed family (ui)i=0,1,...,Nε where Nε = b1/εc. By u we will also
denote the piecewise-constant extension defined by u(x) = ui with i = bx/εc. The
Lp(0, 1) norms of u are defined taking this extension into account.

Let ψ : (−1,+∞)→ [0,+∞) be a C1 function satisfying the following conditions
(see the model example in Fig. 2):

A1) there exists z0 > 0 such that ψ is C3 and convex in (−1, z0) and is concave in
(z0,+∞);

A2) lim
z→−1+

ψ(z) = +∞, lim
z→+∞

ψ(z) = 1.

A3) ψ(0) = 0, ψ′(0) = 0 and ψ′′(0) > 0.

Remark 1. As regards the smoothness assumptions about ψ, we point out that
the requirement that ψ is globally C1 is needed to deduce the optimality conditions
in the form of Proposition 2, while the assumption that ψ is C3 on (−1, z0) is used
in the proof of Theorem 3.2; otherwise, C2 suffices.

Note, in particular, that the stated conditions imply that ψ is monotone on each
of the intervals (−1, 0] and [0,+∞); moreover, 0 is a minimum point and there
exists a constant ν > 0 such that

ψ(z) ≥ νz2 for z ≤ z0. (6)
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On the space of discrete functions u : [0, 1]∩ εZ→ R we consider the functionals

Fε(u) =





Nε−1∑

i=0

ψ
(ui+1 − ui√

ε

)
if ui+1 − ui > −

√
ε for all i

+∞ otherwise.

(7)

It will be useful to express Fε in an “integral form” with explicit dependence on the
difference quotient:

Fε(u) =





Nε−1∑

i=0

εϕε

(ui+1 − ui
ε

)
if ui+1 − ui > −

√
ε for all i

+∞ otherwise,

(8)

where

ϕε(z) =
1

ε
ψ(
√
εz). (9)

Thus ϕε : (−1/
√
ε,+∞)→ [0,+∞).

For a function u : [0, 1] ∩ εZ→ R a key role will be played by the “singular set”
of the points i where the discrete gradient (ui+1−ui)/ε exceeds the threshold given
by the inflection point of ψ. More precisely, we define

I+
ε (u) =

{
i ∈ Z : 0 ≤ i ≤ Nε − 1,

ui+1 − ui
ε

>
z0√
ε

}
. (10)

For future reference we state the following lemma.

Lemma 2.2. Let u : [0, 1] ∩ εZ→ R with Fε(u) < +∞. Then

a) #I+
ε (u) ≤ 1

νz2
0

Fε(u);

b) if ζ0 ∈ (−1, 0) is such that ψ(ζ0) ≥ Fε(u), then
ui+1 − ui

ε
>

ζ0√
ε

for every

i = 0, . . . , Nε − 1.

Proof. Estimate (a) immediately follows from (6), since

Fε(u) ≥
∑

i∈I+ε (u)

νz2
0 = νz2

0#I+
ε (u).

As for (b), for every i we have

ψ
(√

ε
ui+1 − ui

ε

)
≤ Fε(u) ≤ ψ(ζ0),

and we conclude by the monotonicity of ψ in (−1, 0].

For any given u : [0, 1] ∩ εZ→ R we define the extension û on [0, 1] obtained by
linear interpolation outside the set εI+

ε (u):

û(x) =





ui if i := bx/εc ∈ I+
ε (u) or i = Nε

(1− λ)ui + λui+1 otherwise (here, i := bx/εc
and λ = x/ε− bx/εc).

(11)

Remark 2. a) The extension û is right-continuous and

iε ∈ S(û) if and only if i− 1 ∈ I+
ε (u).

Note that û+(x)− û−(x) > 0 for every x ∈ S(û).
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b) Recalling that by u we also denote the piecewise-constant function [0, 1]→ R
defined by u(x) = ui with i = bx/εc, we have

|û(x)− u(x)| ≤ z0

√
ε for every x ∈ [0, 1]. (12)

An important compactness property for the extensions û is given by the following
lemma.

Lemma 2.3. Let (εn) be a positive infinitesimal sequence and let (vn) be an equi-
bounded sequence of functions [0, 1] ∩ εnZ→ R such that

Fεn(vn) ≤M
for some constant M . Let v̂n be the extensions introduced according to (11). Then

∫ 1

0

|v̂′n(x)|2 dx+ #S(v̂n) ≤ M

νmin(z2
0 , 1)

. (13)

In particular, up to a subsequence, there exists a piecewise-H1(0, 1) function v such
that

v̂n → v, v̂′n ⇀ v′ in L2(0, 1).

Moreover, Dj v̂n ⇀ Djv weakly∗ in the sense of measures.

Proof. We have:

M ≥ Fεn(vn) =
∑

i/∈I+εn (vn)

εnϕεn

(
(vn)i+1 − (vn)i

εn

)

+
∑

i∈I+εn (vn)

εnϕεn

(
(vn)i+1 − (vn)i

εn

)

≥ ν
∑

i/∈I+εn (vn)

εn

(
(vn)i+1 − (vn)i

εn

)2

+ νz2
0 #I+

εn(vn)

≥ νmin(z2
0 , 1)

[∫ 1

0

|v̂′n(x)|2 dx+ #S(v̂n)

]
.

We conclude by applying Theorem 2.1.

Remark 3. By the uniform estimate (12), the Lp(0, 1) convergence of (v̂n) is equiv-
alent to the Lp(0, 1) convergence of the piecewise-constant functions vn.

Lemma 2.4. Let (vn) and v be as in Lemma 2.3. Then

a) v+ − v− > 0 on S(v);
b) up to a subsequence, (vn) satisfies the following property: for every x ∈ S(v)

there exists a sequence (xn) converging to x and such that

xn ∈ S(v̂n) and lim
n→∞

(
v̂+
n (xn)− v̂−n (xn)

)
> 0.

Proof. a) Since Dj v̂n are positive measures which weakly∗ converge to Djv, this
latter is a positive measure, too.
b) Let x ∈ S(v) and let V be an open neighbourhood of x such that S(v) ∩ V =

{x}. By the weak∗ convergence of the measures Dj v̂n to Djv on V , we have (see,
e.g., [3], Prop. 1.62) Djv(V ) = limn→∞Dj v̂n(V ); i.e.,

v+(x)− v−(x) = lim
n→∞

∑

x∈S(v̂n)∩V

(
v̂+
n (x)− v̂−n (x)

)
. (14)
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By estimate (13) for every n ∈ N, we can define xn1 , . . . , x
n
m, with m independent of

n, such that

S(v̂n) ⊆ {xni : i = 1, . . . ,m}.

Up to a subsequence we can assume that every sequence (xni )n converges to a point
in [0, 1]: denote by S this set of points. It turns out that S ∩ V 6= ∅, otherwise
v+(x)− v−(x) = 0 by (14). By the arbitrariness of V we must have x ∈ S. Hence,
we can choose V such that V ∩ S = {x}. From (14) it follows that there exists a
sequence (xni )n converging to x such that

xni ∈ S(v̂n), and lim sup
n→∞

(
v̂+
n (xni )− v̂−n (xni )

)
> 0,

otherwise v+(x)− v−(x) = 0.

2.4. Minimizing movements along Fε. As mentioned in the introduction, we
apply the method of minimizing movements to the functionals Fε, but we allow the
space-discretization parameter ε to vary as the time-discretization step goes to zero.

For each ε > 0 let u0
ε : [0, 1] ∩ εZ → R be a given function and let τ > 0 be

fixed. We recursively define a sequence uk := ukε,τ (k ∈ N) of real-valued functions

on [0, 1] ∩ εZ, by requiring that u0 is the initial datum u0
ε just fixed, while for any

k ≥ 1, the function uk is a minimizer of

Gkε,τ (v) := Fε(v) +
1

2τ

Nε∑

i=0

ε|vi − uk−1
i |2 , (15)

with respect to all functions v : [0, 1] ∩ εZ → R. We state some easy consequences
of this definition.

Proposition 1. For every k ∈ N the following properties hold:

a) Fε(u
k) ≤ Fε(uk−1),

b)

Nε∑

i=0

ε|uki − uk−1
i |2 ≤ 2τ

[
Fε(u

k−1)− Fε(uk)
]
,

c) ‖uk‖∞ ≤ ‖uk−1‖∞ ≤ ‖u0
ε‖∞ .

Proof. The minimality of uk with respect to the test function v = uk−1, implies
that

Fε(u
k) +

1

2τ

Nε∑

i=0

ε|uki − uk−1
i |2 ≤ Fε(uk−1).

From this inequality, (a) and (b) follow immediately.
Moreover, if M := ‖uk−1‖∞, then for every u we have

Gkε,τ ((u ∧M) ∨ (−M)) ≤ Gkε,τ (u).

Therefore ‖uk‖∞ ≤ ‖uk−1‖∞.
Since uk is a solution of a minimum problem in finite dimension we get the

classical optimality conditions.
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Proposition 2. Let uk be defined recursively by (15). Then, the following equations
hold:

− ϕ′ε
(
uk1 − uk0

ε

)
+
ε

τ
(uk0 − uk−1

0 ) = 0

ϕ′ε

(
uki − uki−1

ε

)
− ϕ′ε

(
uki+1 − uki

ε

)
+
ε

τ
(uki − uk−1

i ) = 0 (0 < i < Nε)

ϕ′ε

(
ukNε − ukNε−1

ε

)
+
ε

τ
(ukNε − uk−1

Nε
) = 0.

For any given ε > 0 and τ > 0 and for every k ∈ N we interpret the values
(ukε,τ )i (for i = 0, . . . , Nε) as the discrete evolution, at the time t = kτ , of the initial

(discrete) datum u0
ε : [0, 1] ∩ εZ → R. The goal is to detect the limit evolution as

ε, τ → 0.

Remark 4. The optimality conditions in the proposition above easily suggest the
form of the evolution equation satisfied by a possible limit function u. Indeed, by
dividing the i-th equation by ε and applying the mean-value theorem to ϕ′ε(z) =
ψ′(
√
εz)/
√
ε, we get

uki − uk−1
i

τ
= ψ′′(

√
εξ)

uki+1 − 2uki + uki−1

ε2
,

where ξ is a suitable value between the two difference quotients. Hence, in the limit
we obtain

ut = ψ′′(0)uxx

at the points in which u is twice differentiable (see Theorem 4.1).

On the initial datum u0
ε we make the following assumptions:

B1) (u0
ε)ε is an equibounded set of functions [0, 1]∩εZ→ R; i.e., we have sup{(u0

ε)i :
0 ≤ i ≤ Nε, ε > 0} < +∞;

B2) there exists M > 0 such that Fε(u
0
ε) ≤M for every ε > 0.

With in view the analysis of the limit, as ε, τ → 0, of the discrete evolutions
(ukε,τ )k defined in the previous section, we introduce the piecewise-constant spatial-
time extension uε,τ of these values to [0, 1]× [0,+∞) by defining

uε,τ : [0, 1]× [0,+∞)→ R,

uε,τ (x, t) =
(
ukε,τ

)
i

with k = bt/τc and i = bx/εc. (16)

In the following section we give a compactness result (Theorem 3.1) for the family
uε,τ as ε, τ → 0.

3. Compactness. The compactness result contained in Theorem 3.1 follows a
standard argument in the theory of minimizing movements (see [1], [2] and [7]).
In Theorem 3.2 we prove a regularity result for the limit function.

Proposition 3. For any s, t ≥ 0, with s < t, we have

‖uε,τ (·, t)− uε,τ (·, s)‖2 ≤
(
2Fε(u

0
ε)
)1/2√

t− s+ τ .
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Proof. Let x ∈ [0, 1] and 0 ≤ s < t be fixed; set h = bs/τc and k = bt/τc. For every
i it turns out that:

|
(
ukε,τ

)
i
−
(
uhε,τ

)
i
| ≤

k−1∑

j=h

|
(
uj+1
ε,τ

)
i
−
(
ujε,τ

)
i
|

≤
√
k − h

√√√√
k−1∑

j=h

|
(
uj+1
ε,τ

)
i
−
(
ujε,τ

)
i
|2 .

Therefore, by Proposition 1, we have

Nε∑

i=0

ε|
(
ukε,τ

)
i
−
(
uhε,τ

)
i
|2 ≤ (k − h)

Nε∑

i=0

k−1∑

j=h

ε|
(
uj+1
ε,τ

)
i
−
(
ujε,τ

)
i
|2

≤ 2τ(k − h)

k−1∑

j=h

(
Fε(u

j
ε,τ )− Fε(uj+1

ε,τ )
)

≤ 2τ(k − h)(Fε(u
h
ε,τ )− Fε(ukε,τ )

)
≤ 2(t− s+ τ)Fε(u

0
ε).

Theorem 3.1. Under assumptions (B1) and (B2), let (εn) and (τn) be positive
infinitesimal sequences, and let vn = uεn,τn be the piecewise-constant functions
defined in (16). For every t ≥ 0 denote by v̂n(·, t) the piecewise-affine extension of
vn(·, t) according to (11). Then there exist a subsequence (not relabeled) of (vn) and
a function u ∈ C1/2([0,+∞);L2(0, 1)) such that

vn → u, v̂n → u in L∞([0, T ];L2(0, 1)) and a.e. in (0, 1)× (0, T )

for every T ≥ 0. Moreover, for every t ≥ 0,

u(·, t) is piecewise-H1(0, 1)

(v̂n)x(·, t) ⇀ ux(·, t) in L2(0, 1).

Finally, for every x ∈ S
(
u(·, t)

)
there exist a subsequence (v̂nh)h, possibly depending

on t, and a sequence (xh)h converging to x and such that

xh ∈ S(vnh) and lim
h→∞

(
v̂+
nh

(xh, t)− v̂−nh(xh, t)
)
> 0.

Proof. Let t ≥ 0 be fixed. By Proposition 1(a) we have that Fεn
(
vn(·, t)

)
is a

bounded sequence. Thus, we can apply Lemma 2.3 to the functions vn(·, t): the
sequence (v̂n(·, t))n is pre-compact with respect to the L2(0, 1) convergence; more-
over, the limit is piecewise-H1(0, 1), and we have weak-L2 convergence of (v̂n)x(·, t).
Note that, by the uniform estimate (12), the L2(0, 1) (or a.e.) convergence of (v̂n)
is equivalent to the corresponding convergence of (vn).

By a diagonalization argument we can assume that, up to a subsequence, v̂n(·, t)
converge in L2(0, 1) for every t ∈ Q+: let u(·, t) be the limit function. The estimate
in Proposition 3 allows to get the L2(0, 1) convergence for every t ≥ 0 (hence, u(·, t)
is well defined for every t ≥ 0). Moreover

‖u(·, t)− u(·, s)‖2 ≤ C
√
t− s, (17)

for any s, t ≥ 0, with s < t and for a suitable constant C, independent of s and t.
Thus u ∈ C1/2([0,+∞);L2(0, 1)). Furthermore, by the uniqueness of the L2 limit,
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the compactness result of Theorem 2.1 guarantees that u(·, t) is piecewise-H1(0, 1)
and that (v̂n)x(·, t) weakly converges to ux(·, t) in L2(0, 1) for every t ≥ 0.

We now prove the convergence of (vn) to u in L∞([0, T ];L2(0, 1)) (from which
the analogous convergence of (v̂n) follows as well). Let T > 0 be fixed. For any
given N ∈ N, define tj = jT/N for j = 0, . . . , N ; then, for every t ∈ [0, T ] there
exists j = 0, . . . , N − 1 with tj ≤ t ≤ tj+1. By Proposition 3 and estimate (17), we
have:

‖vn(·, t)− u(·, t)‖2 ≤ ‖vn(·, t)− vn(·, tj)‖2 + ‖vn(·, tj)− u(·, tj)‖2
+‖u(·, tj)− u(·, t)‖2

≤ 2C
√
t− tj + τn + ‖vn(·, tj)− u(·, tj)‖2 .

Fix σ > 0 and let nσ ∈ N be such that

‖vn(·, tj)− u(·, tj)‖2 ≤ σ for every n ≥ nσ and j = 0, . . . , N − 1.

Then

sup
t∈[0,T ]

‖vn(·, t)− u(·, t)‖2 ≤ 2C
√

(T/N) + τn + σ for every n ≥ nσ,

and this yields

lim sup
n→+∞

sup
t∈[0,T ]

‖vn(·, t)− u(·, t)‖2 ≤ 2C
√

(T/N) + σ.

By the arbitrariness of N and σ we deduce the convergence in L∞([0, T ];L2(0, 1)).
In particular, we have the convergence in L2((0, 1)× (0, T )), and hence the conver-
gence a.e. (up to a subsequence).

Finally, if x ∈ S
(
u(·, t)

)
then we can apply Lemma 2.4(b) to the sequence

vn = vn(·, t) (note that we are arguing for a t fixed, and the possible subsequence
considered in Lemma 2.4(b) may depend on t).

Remark 5. The weak-L2(0, 1) convergence of the sections (v̂n)x(·, t) and their uni-
form boundedness in L2(0, 1) (see Lemma 2.3) allow to deduce the weak-L2

(
(0, 1)×

(0, T )
)

convergence of (v̂n)x.

Theorem 3.2. Let vn = uεn,τn be a sequence converging to a function u as in
Theorem 3.1. Then ux(·, t) ∈ H1(0, 1) for a.e. t ≥ 0 and (ux)x ∈ L2

(
(0, 1)× (0, T )

)

for every T > 0. Moreover, for a.e. t ≥ 0, we have ux(0, t) = ux(1, t) = 0 and
ux(·, t) = 0 on S

(
u(·, t)

)
.

For future reference it is useful to isolate from the proof a technical lemma.
Let vn = uεn,τn be a sequence converging to u according to Theorem 3.1. In the

sequel we will drop the index n and simply write ε and τ in place of εn and τn. By
(16) we have

vn(x, t) =
(
ukε,τ

)
i

with k = bt/τc and i = bx/εc. (18)

We extend the definition by setting

(
ukε,τ

)
i

=

{(
ukε,τ

)
0

if i ∈ Z, i < 0,(
ukε,τ

)
Nε

if i ∈ Z, i > Nε .

Thus, for every x ∈ R and t ≥ 0 we can define the piecewise-constant function

wn(x, t) = ϕ′ε

(
(ukε,τ )i+1 − (ukε,τ )i

ε

)
, with

i = bx/εc
k = bt/τc. (19)
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Lemma 3.3. For every t ≥ 0

wn(·, t) ⇀ ψ′′(0)ux(·, t) in L2(0, 1).

Moreover, for every T > 0 the sequence (wn(·, t))n is uniformly bounded, with respect
to t ∈ [0, T ], in L2(0, 1). In particular, ux ∈ L2

(
(0, 1)× (0, T )

)
.

Proof. Let t ≥ 0 be fixed. Denote by χn the characteristic function of the set⋃
i∈I+ε ε[i, i+ 1), where I+

ε = I+
ε

(
vn(·, t)

)
. Consider the decomposition

wn(·, t) = χnwn(·, t) + (1− χn)wn(·, t).
By Lemma 2.2 and the decreasing monotonicity of Fε(u

k) with respect to k (see
Proposition 1), it turns out that

∫ 1

0

|χnwn(x, t)|2 dx =
∑

i∈I+ε

ε|wn(iε, t)|2

≤ ε(#I+
ε )ϕ′ε

( z0√
ε

)2

≤ M

νz2
0

ψ′(z0)2 ,

(20)

so that
(
χnwn(·, t)

)
is bounded in L2(0, 1). By the same argument we get

∫ 1

0

|χnwn(x, t)|dx ≤ ε(#I+
ε )ϕ′ε

( z0√
ε

)
≤ √ε M

νz2
0

ψ′(z0)→ 0 (21)

as n→ +∞. We conclude that

χnwn(·, t) ⇀ 0 weakly in L2(0, 1). (22)

Let us now consider (1−χn)wn(·, t). Note that, in the notation of (19), if i /∈ I+
ε

and x ∈ [iε, (i+ 1)ε) we have

(ukε,τ )i+1 − (ukε,τ )i

ε
= (v̂n)x(x, t),

where v̂n(·, t) is the extension of vn(·, t) according to (11). If we take into account
that (v̂n)x(x, t) = 0 in

(
iε, (i+ 1)ε

)
if i ∈ I+

ε , then

(1− χn)wn(·, t) = ϕ′ε
(
(v̂n)x(·, t)

)
. (23)

Consider now the Taylor expansion of ϕ′ε at 0; for every x ∈ [iε, (i + 1)ε), with
i /∈ I+

ε , we have

ϕ′ε
(
(v̂n)x(x, t)

)
= ϕ′ε(0) + ϕ′′ε (0)(v̂n)x(x, t) +

1

2
ϕ′′′ε (ξn)

(
(v̂n)x(x, t)

)2

with ξn between 0 and (v̂n)x(x, t); hence,

ϕ′ε
(
(v̂n)x(x, t)

)
= ψ′′(0)(v̂n)x(x, t) +

1

2

√
εrn
(
(v̂n)x(x, t)

)2
(24)

with rn = ψ′′′(
√
εξn). From Lemma 2.2 we deduce that

ζ0√
ε
< (v̂n)x(x, t) ≤ z0√

ε

where ζ0 ∈ (−1, 0) is such that ψ(ζ0) ≥ M . Then (rn) is a bounded sequence, and
(
√
ε(v̂n)x)n is bounded. This implies that

∣∣ϕ′ε
(
(v̂n)x(x, t)

)∣∣ ≤ C|(v̂n)x(x, t)| (25)

for a suitable constant C. Note that (24) and (25) hold for i ∈ I+
ε , too (indeed

(v̂n)x(x, t) = 0 for such indices).
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Let T > 0 and t ∈ [0, T ] be fixed. By the boundedness of
(
(v̂n)x(·, t)

)
n

in L2(0, 1)

(see Lemma 2.3) we have the weak convergence of ϕ′ε
(
(v̂n)x(·, t)

)
in L2(0, 1), up to

a subsequence. Let us show that the limit is ψ′′(0)ux(·, t), hence it is independent
of the subsequence, and therefore the whole sequence converges:

ϕ′ε
(
(v̂n)x(·, t)

)
⇀ ψ′′(0)ux(·, t) weakly in L2(0, 1). (26)

Indeed, by the weak-L2 convergence of (v̂n)x(·, t) (see Theorem 3.1), the right-hand
side of (24) weakly converges to ψ′′(0)ux(·, t) in L1(0, 1).

By (22), (23) and (26) we now have

wn(·, t) ⇀ ψ′′(0)ux(·, t) weakly in L2(0, 1). (27)

Finally, by the uniform boundedness (with respect to t) of
(
(v̂n)x(·, t)

)
n

in L2(0, 1)

(see Lemma 2.3), from (25) we deduce the same boundedness of
(
ϕ′ε
(
(v̂n)x(·, t)

))
n
,

too. From this, (23) and the uniform L2-bound of χwn(·, t) (see (20)), we conclude
with the uniform L2(0, 1)-bound for wn(·, t).
Proof of Theorem 3.2. Here we improve the convergence result of the previous
lemma, showing that ψ′′(0)ux(·, t) is the weak limit in H1(0, 1) of the piecewise-
affine extension w̃n of the function defined in (19) on the nodes.

By Proposition 1

Nε∑

i=0

ε
∣∣(ukε,τ

)
i
−
(
uk−1
ε,τ

)
i

∣∣2 ≤ 2τ
[
Fε
(
uk−1
ε,τ

)
− Fε

(
ukε,τ

)]
.

Let T > 0 be fixed, and Mτ = bT/τc. Then

Mτ∑

k=1

Nε∑

i=0

τε
∣∣(ukε,τ

)
i
−
(
uk−1
ε,τ

)
i

∣∣2 ≤ 2τ2Fε(u
0
ε) ≤ 2τ2M

(where M is given in assumption (B2)). By Proposition 2 and the extension, defined
above, of

(
ukε,τ

)
i

for i < 0 and i > Nε, this estimate can be written as

Mτ∑

k=1

τ
∑

i∈Z
ετ2

[
ε−1

(
ϕ′ε
( (ukε,τ )i+1 − (ukε,τ )i

ε

)
−ϕ′ε

( (ukε,τ )i − (ukε,τ )i−1

ε

))]2

≤ 2τ2M .

Let w̃n(·, t) be the function obtained as the piecewise-affine extension of the values
wn(·, t) on the nodes εZ. By the previous estimate we have

Mτ∑

k=1

τ

∫

R

[
(w̃n)x(x, kτ)

]2
dx ≤ 2M,

and therefore, for every δ > 0 and τ < δ:
∫ T

δ

dt

∫

R

[
(w̃n)x(x, t)

]2
dx ≤ 2M.

By Fatou’s Lemma
∫ T

δ

(
lim inf
n→+∞

∫

R

[
(w̃n)x(x, t)

]2
dx
)

dt ≤ 2M. (28)

We deduce that

lim inf
n→+∞

∫

R

[
(w̃n)x(x, t)

]2
dx < +∞ for a.e. t ∈ (δ, T ).
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We now fix t satisfying this condition; let (nk) be a sequence such that

lim
k→+∞

∫

R

[
(w̃nk)x(x, t)

]2
dx = lim inf

n→+∞

∫

R

[
(w̃n)x(x, t)

]2
dx. (29)

Then ∫

R

[
(w̃nk)x(x, t)

]2
dx ≤ C (30)

for a suitable constant C independent of k.
The functions wn(·, t) in (19) take the value 0 outside the interval [0, εNε]. There-

fore, the weak convergence stated in Lemma 3.3 yields

wn(·, t) ⇀ w(·, t) :=

{
ψ′′(0)ux(·, t) in (0, 1),

0 otherwise in R in L2(R).

By (30) this implies the weak convergence in L2(R) of the piecewise-affine functions

w̃nk(·, t). Indeed,
∑
i ε
∣∣wnk

(
(i+ 1)ε, t

)
− wnk(iε, t)

∣∣2 ≤ ε2C. Thus

w̃nk(·, t) ⇀ w(·, t) in L2(R). (31)

At this point we have proved that for a.e. t ≥ 0 both (30) and (31) hold.
Therefore, for any open interval J ⊃ [0, 1] we have w ∈ H1(J); in particular,
ux(·, t) ∈ H1(0, 1) and ux(0, t) = ux(1, t) = 0 for a.e. t ≥ 0.

Moreover,
(
w̃nk

)
x
(·, t) weakly converges to wx(·, t) il L2(0, 1); therefore, by (29)

∫ 1

0

[wx(x, t)]2 dx ≤ lim inf
k→+∞

∫

R

[
(w̃nk)x(x, t)

]2
dx

= lim inf
n→+∞

∫

R

[
(w̃n)x(x, t)

]2
dx.

Let us now take the arbitrariness of t into account: by (28) it turns out that

∫ T

δ

dt

∫ 1

0

[wx(x, t)]2 dx ≤ 2M

for every δ > 0. We conclude that (ux)x ∈ L2
(
(0, 1)× (0, T )

)
.

Finally, let us prove that ux(·, t) vanishes on the jump points of u(·, t). Let t be
such that (30) and (31) hold. For the sake of simplicity let us drop the subscript k
from nk. By the compact injection of H1(0, 1) into C([0, 1]), we deduce that

w̃n(·, t)→ ψ′′(0)ux(·, t) in C([0, 1]).

Let x be a jump point of u(·, t); on account of Lemma 2.4(b) we can assume that
there exist a sequence (xn) converging to x and a value γ > 0 such that for every n

xn ∈ S
(
v̂n(·, t)

)
, v̂+

n (xn, t)− v̂−n (xn, t) ≥ γ > 0.

Recall that xn can be expressed as inε, for a suitable in. By Remark 2(a), xn =
inε ∈ S

(
v̂n(·, t)

)
if and only if in − 1 ∈ I+

ε

(
v̂n(·, t)

)
. Then

w̃n
(
(in − 1)ε, t

)
= wn

(
(in − 1)ε, t

)
= ϕ′ε

( v̂+
n (xn, t)− v̂−n (xn, t)

ε

)

≤ ϕ′ε
(γ
ε

)
=

1√
ε
ψ′
( γ√

ε

)
.
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Note now that limz→+∞ zψ′(z) = 0; indeed, for every z ≥ 2z0 there exists a value
ξz ∈ (z/2, z) such that

ψ(z)− ψ(z/2)

z/2
= ψ′(ξz) ≥ ψ′(z) ≥ 0,

from which 0 ≤ zψ′(z) ≤ 2
(
ψ(z)− ψ(z/2)

)
→ 0 as z → +∞. Therefore,

lim
n→+∞

w̃n((in − 1)ε, t) = 0,

and the uniform convergence of w̃n(·, t) to ψ′′(0)ux(·, t) imply that ux(x, t) = 0.

4. Limit equation and evolution of the singular set.

4.1. Limit equation. Assume that (u0
ε)ε>0 is an indexed family of functions satis-

fying conditions (B1) and (B2) and converging a.e. (as piecewise-constant functions)
to a function u0. By the estimate of Lemma 2.3 we have that u0 is piecewise-
H1(0, 1). For any fixed time step τ let uε,τ be the discrete evolution of the initial
datum u0

ε as in (16).

Theorem 4.1. Let vn = uεn,τn be a sequence converging to a function u as in
Theorem 3.1 (thus ux(·, t) ∈ H1(0, 1) for a.e. t ≥ 0 by Theorem 3.2). Then

ut = ψ′′(0)(ux)x (32)

in the distributional sense in (0, 1)× (0,+∞), i.e.,
∫ 1

0

∫ T

0

u(x, t)φt(x, t) dxdt = ψ′′(0)

∫ 1

0

∫ T

0

φx(x, t)ux(x, t) dxdt,

for every T > 0 and φ ∈ C∞c
(
(0, 1) × (0, T )

)
(recall that ux denotes the density of

the absolutely continuous part of the derivative). Moreover

u(·, 0) = u0 a.e. in (0, 1);

ux(·, t) = 0 on S
(
u(·, t)

)
∪ {0, 1} for a.e. t ≥ 0.

Proof. As above, we will drop the index n and simply write ε and τ in place of εn
and τn.

Taking Theorem 3.1 and Theorem 3.2 into account, we only have to prove that u
satisfies the equation ut = ψ′′(0)(ux)x in the distributional sense and that u(·, 0) =
u0. Note that u(·, 0) is well defined since u ∈ C1/2([0,+∞);L2(0, 1)). As for the
initial datum, we have:

‖u(·, 0)− u0‖L2(0,1) ≤ ‖u(·, 0)− uε,τ (·, 0)‖2 + ‖uε,τ (·, 0)− u0‖2
= ‖u(·, 0)− uε,τ (·, 0)‖2 + ‖u0

ε − u0‖2 .
Both terms on the right-hand side tend to 0 since for every T > 0 we have uε,τ → u
in L∞

(
[0, T ];L2(0, 1)

)
(see Theorem 3.1), and (u0

ε) is an equibounded sequence

converging a.e. to u0.
We now address the evolution equation. Fix T > 0 and let Mτ = bT/τc. Let

φ ∈ C∞c
(
(0, 1)× (0, T )

)
be fixed, and define

φki = φ(iε, kτ) with k, i ∈ Z.

Recall the summation by parts formula:

l−1∑

j=0

aj(bj+1 − bj) = albl − a0b0 −
l−1∑

j=0

(aj+1 − aj)bj+1 .
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Then (l = Mτ ) we have:

A : =

Nε∑

i=0

Mτ−1∑

k=0

ετ(ukε,τ )i
φk+1
i − φki

τ

= ε

Nε∑

i=0

[
(uMτ
ε,τ )iφ

Mτ
i − (u0

ε,τ )iφ
0
i −

Mτ−1∑

k=0

(
(uk+1
ε,τ )i − (ukε,τ )i

)
φk+1
i

]
.

Since φ has compact support in (0, 1)× (0, T ) we have φ0
i = φk0 = 0 and, for ε and

τ sufficiently small we can assume that φMτ
i = φkNε = 0.

The optimality conditions now yield:

A = −τ
Nε∑

i=0

Mτ−1∑

k=0

[
ϕ′ε

(
(uk+1
ε,τ )i+1 − (uk+1

ε,τ )i

ε

)
− ϕ′ε

(
(uk+1
ε,τ )i − (uk+1

ε,τ )i−1

ε

)]
φk+1
i .

Apply again the summation by parts formula, with

aj = φk+1
j , bj = ϕ′ε

(
(uk+1
ε,τ )j − (uk+1

ε,τ )j−1

ε

)
;

then

A = τ

Nε∑

i=0

Mτ−1∑

k=0

(
φk+1
i+1 − φk+1

i

)
ϕ′ε

(
(uk+1
ε,τ )i+1 − (uk+1

ε,τ )i

ε

)
.

We conclude that
Nε∑

i=0

Mτ−1∑

k=0

ετ(ukε,τ )i
φk+1
i − φki

τ

=

Nε∑

i=0

Mτ−1∑

k=0

ετ
φk+1
i+1 − φk+1

i

ε
ϕ′ε

(
(uk+1
ε,τ )i+1 − (uk+1

ε,τ )i

ε

)
.

(33)

Let now φ
(0,1)
ε,τ and φ

(1,0)
ε,τ be the piecewise-constant functions on R2 defined by

φ(0,1)
ε,τ (x, t) =

φk+1
i − φki

τ
, φ(1,0)

ε,τ (x, t) =
φki+1 − φki

ε

where i = bx/εc and k = bt/τc. Then, we can write the left-hand side of (33) in
the following form (as φ = 0 in a neighbourhood of ∂([0, 1]× [0, T ])):

∫ 1

0

∫ T

0

uε,τ (x, t)φ(0,1)
ε,τ (x, t) dxdt.

In the limit as n→ +∞ we get
∫ 1

0

∫ T

0

u(x, t)φt(x, t) dxdt.

We now examine the right-hand side of (33). By means of the functions wn
introduced in equation (19), this term can be written as

∫ 1

0

dx

∫ T

0

φ(1,0)
ε,τ (x, t)wn(x, t) dt.

By Lemma 3.3, in the limit as n→ +∞ we get

ψ′′(0)

∫ 1

0

dt

∫ T

0

φx(x, t)ux(x, t) dx ,
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which concludes the proof.

4.2. Evolution of the singular set. Let ukε,τ (k = 0, 1, 2, . . .) be the discrete

evolution of the initial datum u0
ε as introduced in Section 2 through the minimization

of the functional in (15). In what follows we analyse the evolution of the singular
set I+

ε (ukε,τ ) (see (10)) with respect to the index k. The key tool will be estimate
(35) below and the subsequent lemma, which are a discrete version of the argument
applied in [14] (Lemma 4.10 and Proposition 4.11); this will require a condition on
the ratio τ/ε2.

We simply write uki in place of
(
ukε,τ

)
i
. Fix 0 ≤ i < Nε and define

vki :=
uki+1 − uki

ε

If 0 < i < Nε − 1, then by the optimality conditions in Proposition 2 we have

vk+1
i − vki =

1

ε

(
uk+1
i+1 − uk+1

i − uki+1 + uki

)

=
1

ε
(uk+1
i+1 − uki+1)− 1

ε
(uk+1
i − uki )

=
τ

ε2

[
ϕ′ε

(
uk+1
i+2 − uk+1

i+1

ε

)
+ ϕ′ε

(
uk+1
i − uk+1

i−1

ε

)
− 2ϕ′ε

(
uk+1
i+1 − uk+1

i

ε

)]
.

Hence,

(vk+1
i − vki )+2

τ

ε2
ϕ′ε

(
uk+1
i+1 − uk+1

i

ε

)

=
τ

ε2

[
ϕ′ε

(
uk+1
i+2 − uk+1

i+1

ε

)
+ ϕ′ε

(
uk+1
i − uk+1

i−1

ε

)]
,

(34)

and

(vk+1
i − vki ) + 2

τ

ε2
ϕ′ε

(
uk+1
i+1 − uk+1

i

ε

)
≤ 2

τ

ε2
maxϕ′ε.

We introduce the function

g(z) = 2
τ

ε2
ϕ′ε(z).

Then, the previous inequality can be re-written in the form

(vk+1
i − vki ) + g

(
vk+1
i

)
≤ max g. (35)

Note that in case i = 0 or i = Nε − 1, only one of the two terms on the right-hand
side of equation (34) remains. Since maxϕ′ε is positive, estimate (35) still holds
unchanged for i = 0 and i = Nε − 1.

Lemma 4.2. Let g : R→ R be a Lipschitz function with Lipschitz constant L < 1.
Let (ak)k≥0 be a sequence of real numbers, and let C ∈ R be such that

ak+1 − ak + g(ak+1) ≤ g(C) for every k.

Then

a0 ≤ C ⇒
(
ak ≤ C for every k

)
.
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Proof. If we set ãk = ak − C and g̃(z) = g(C + z) − g(C) then we can argue with
C = 0 and g(0) = 0. Therefore, for every k

ak+1 − ak ≤ −g(ak+1) ≤ L|ak+1|.
The inequality ak ≤ 0 now yields

ak+1 ≤ L|ak+1|,
hence ak+1 ≤ 0 if L < 1.

We would like to apply the previous lemma with C = z0/
√
ε; i.e., with the

maximizer of g. The Lipschitz constant of g involves the second derivative ϕ′′ε (z) =
ψ′′(
√
εz). Now recall the boundedness of

(
Fε(u

0
ε)
)
ε

(see assumption (B2)), hence

the uniform boundedness of Fε(u
k
ε,τ ) with respect to ε, τ and k by Proposition 1.

Thus, if ζ0 ∈ (−1, 0) is such that ψ(ζ0) > M , then (see Lemma 2.2)

ukj+1 − ukj
ε

>
ζ0√
ε

for every k ∈ N and j = 0, . . . , Nε − 1.

Therefore, the relevant domain for the function g in (35) is [ζ0/
√
ε,+∞). Hence,

we meet the requirement that the Lipschitz constant of g is less than 1 if

2
τ

ε2
max

[ζ0,+∞)
ψ′′ < 1. (36)

The application of Lemma 4.2 to the sequence (vk) now gives the following result.

Proposition 4. If condition (36) holds, then

I+
ε (uk+1

ε,τ ) ⊆ I+
ε (ukε,τ )

for every k ≥ 0.

By the estimate of Lemma 2.3 we have u0
ε ∈ SBV (0, 1), and we can define m

points xε1 ≤ xε2 ≤ . . . ≤ xεm (not necessarily distinct, and with m independent of ε),
such that for every ε > 0 we have

I+
ε (u0

ε) ⊆ {xεj : j = 1, . . . ,m}.
Therefore, up to a subsequence, we can assume that

lim
ε→0

xεj = xj for every j = 1, . . . ,m. (37)

Denote by S this set of limit points.
Since, for every t ≥ 0, each jump point of u(·, t) is the limit of a sequence of jump

points of the piecewise-linear functions v̂n(·, t) (see Theorem 3.1), if (36) holds then,
by Proposition 4

S
(
u(·, t)

)
⊆ S for every t ≥ 0.

Taking into account this condition and Theorem 4.1, we characterize the limit
motion as the heat equation with Neumann boundary conditions on (0, 1) \ S(u0);
that is, the same as the minimizing movement of the Mumford-Shah energy as
described in [7] Section 8.3. This characterization is valid until the first collision
time, for which #S

(
u(·, t+)

)
< #S

(
u(·, t−)

)
= #(S(u0)).

Corollary 1 (commutativity of minimizing movements). Let u0
ε be an initial datum

satisfying assumptions (B1) and (B2) at the end of Section 2. Let uε be a minimizing
movement of the functional Fε in (8). Then uε converges in L∞

(
(0, T );L2(0, 1)

)

as ε→ 0 to a minimizing movement of the Mumford-Shah functional.
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Proof. As in the proof of Theorem 3.1, uε : [0,+∞) → L2(0, 1) satisfies a Hölder
continuity estimate which is uniform with respect to ε. Hence, up to a subsequence,
uε : [0, 1] × [0,+∞) → R converges in L∞

(
(0, T );L2(0, 1)

)
to a function u. By a

diagonal argument we deduce that such u is the minimizing movement along Fε with
a suitable time scale τ = τ(ε) (see also Theorem 8.1(ii) in [7]). Since we may choose
τ(ε) << ε2, we can apply Theorem 4.1 to deduce that u is a solution of the heat
equation (hence it is a minimizing movement for the Mumford-Shah energy).

4.3. Initial data with controlled Dirichlet energy. We conclude with a simple
result which gives a sufficient condition for the uniqueness of the evolution without
assuming condition (36) on ε and τ . First, we state a remark on the discontinuity
lines of the evolution function u.

Remark 6. Let u be as in Theorem 4.1, and let T > 0. Then the distributional
derivative of u(x, ·) is in L2(0, T ) for a.e. x ∈ (0, 1); thus, u(x, ·) is in H1(0, T ), hence
continuous for a.e. x ∈ (0, 1). This implies that the projection onto the x-axis of
the jump set Su of u as a function of both x and t has zero Lebesgue measure. In
other words, u can only present discontinuity lines which are parallel to the t-axis.

Proposition 5. Let u0 be a piecewise C1-function on (0, 1) satisfying the condition

1

2

∫ 1

0

(u0
x)2 dx <

1

ψ′′(0)
. (38)

Let ε = εn and τ = τn be positive infinitesimal sequences, and let u0
ε be the dis-

cretization of u0. Let u be defined as in Theorem 4.1 with respect to the initial
datum u0

ε . Then there exists σ > 0 such that

S
(
u(·, t)

)
= S(u0)

for t ∈ (0, σ).

The value σ actually represents the first ‘collision time’, in which at least one
jump of u(·, t) disappears. As a consequence of this result, under assumption (38)
we have the uniqueness, up to σ, of the evolution u from the initial datum u0, since
u is uniquely characterized as the solution of the heat equation, with Neumann
boundary conditions, between two consecutive jump points.

Proof. From the definition of uε,τ and Proposition 1 we get

Fε
(
uε,τ (·, t)

)
≤ Fε(u0

ε)

(where ε = εn and τ = τn). Since uε,τ (·, t)→ u(·, t) in L2(0, 1) for every t ≥ 0, and
(Fε) Γ-converges to the Mumford-Shah functional, we have

MS(u(·, t)) :=
1

2
ψ′′(0)

∫ 1

0

|ux(x, t)|2 dx+ #S(u(·, t)) ≤ lim inf
ε→0

Fε(u
0
ε) .

Since u0
ε is the discretization of a piecewise-C1 function, it turns out that

Fε(u
0
ε)→MS(u0) ,

so that

MS(u(·, t)) ≤MS(u0). (39)

Let us now show that there exists σ > 0 such that

#S(u0) ≤ #S
(
u(·, t)

)
for any t ∈ (0, σ). (40)
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Let S(u0) = {x1, . . . , xs} and let Vi be a neighbourhood of xi such that Vi ∩ Vj = ∅
if i 6= j. Let

Ai = {t ≥ 0 : S
(
u(·, t)

)
∩ Vi 6= ∅}.

Inequality (40) is satisfied if each Ai contains a right neighbourhood of t = 0.
Otherwise, there exists i and a sequence tn → 0 such that S

(
u(·, tn)

)
∩ Vi = ∅ for

every n ∈ N. In this case we get a contradiction since u(·, tn) would be a precompact
family of functions in H1 on a full neighbourhood of xi, while the limit u0 has a
discontinuity in xi .

Now, (39) and (40) yield that

0 ≤ #S(u(·, t))−#S(u0) ≤ 1

2
ψ′′(0)

[∫ 1

0

|u0
x(x)|2 dx−

∫ 1

0

|ux(x, t)|2 dx
]

≤ 1

2
ψ′′(0)

∫ 1

0

|u0
x(x)|2 dx .

(41)

By (38) the last term is less than 1, which implies that #S(u(·, t)) = #S(u0). By
Remark 6 (u can only present discontinuity lines which are parallel to the t-axis)
we conclude that S

(
u(·, t)

)
= S(u0) in a right neighbourhood of t = 0.

Remark 7. The first line of inequality (41) clearly suggests the search for an
improvement of the previous result aiming to show the convergence, as t → 0,

of
∫ 1

0
|ux(x, t)|2 dx to

∫ 1

0
|u0
x(x)|2 dx. Note that, formally, it is easy to prove the

monotonicity of the L2-norm of the space derivative, since

d

dt

∫ 1

0

|ux(x, t)|2 dx =

∫ 1

0

2ux(x, t)uxt(x, t) dx

= −2

∫ 1

0

(ux)xut dx = −2ψ′′(0)

∫ 1

0

(ut)
2 dx ≤ 0 ,

where we have used the vanishing of the derivatives on the boundary of (0, 1) and
the fact that u satisfies (32). The continuity in t = 0, which is standard within the
classical geometrical framework of the heat equation on a rectangle, here requires
to manage the subtle problem of the unknown positions of the discontinuity lines
of u. We could make use of the classical results if we could prove that the following
condition is satisfied:

there exists σ > 0 such that Su∩
(
(0, 1)× (0, T )

)
consists of a finite

number of segments {xi} × (0, σ), with i = 1, . . . , s and 0 = x0 <
x1 < . . . < xs < xs+1 = 1 .

In this case assumption (38) can be removed.
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