We consider two compressible immiscible fluids in one space
dimension and in the isentropic approximation. The first fluid is
surrounded and in contact with the second one. As the sound speed of
the first fluid diverges to infinity, we present the proof of
rigorous convergence for the fully non--linear compressible to
incompressible limit of the coupled dynamics of the two fluids. A
linear example is considered in detail, where fully explicit
computations are possible.
Citation: Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D --system in the non smooth case[J]. Networks and Heterogeneous Media, 2016, 11(2): 313-330. doi: 10.3934/nhm.2016.11.313
Related Papers:
[1]
Rinaldo M. Colombo, Graziano Guerra .
A coupling between a non--linear 1D compressible--incompressible
limit and the 1D p--system in the non smooth case. Networks and Heterogeneous Media, 2016, 11(2): 313-330.
doi: 10.3934/nhm.2016.11.313
[2]
Steinar Evje, Kenneth H. Karlsen .
Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673.
doi: 10.3934/nhm.2006.1.639
[3]
Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie .
A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11(1): 1-27.
doi: 10.3934/nhm.2016.11.1
[4]
Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch .
Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381.
doi: 10.3934/nhm.2011.6.351
[5]
José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska .
Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15(3): 369-387.
doi: 10.3934/nhm.2020023
[6]
Frederike Kissling, Christian Rohde .
The computation of nonclassical shock waves with a heterogeneous
multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674.
doi: 10.3934/nhm.2010.5.661
[7]
Pierre Degond, Sophie Hecht, Nicolas Vauchelet .
Incompressible limit of a continuum model of tissue growth for two cell populations. Networks and Heterogeneous Media, 2020, 15(1): 57-85.
doi: 10.3934/nhm.2020003
[8]
Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko .
Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590.
doi: 10.3934/nhm.2017023
[9]
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski .
An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171.
doi: 10.3934/nhm.2017006
[10]
Xavier Litrico, Vincent Fromion .
Modal decomposition of linearized open channel flow. Networks and Heterogeneous Media, 2009, 4(2): 325-357.
doi: 10.3934/nhm.2009.4.325
Abstract
We consider two compressible immiscible fluids in one space
dimension and in the isentropic approximation. The first fluid is
surrounded and in contact with the second one. As the sound speed of
the first fluid diverges to infinity, we present the proof of
rigorous convergence for the fully non--linear compressible to
incompressible limit of the coupled dynamics of the two fluids. A
linear example is considered in detail, where fully explicit
computations are possible.
References
[1]
D. Amadori and G. Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1-26. doi: 10.1017/S0308210500000767
[2]
R. Borsche, R. M. Colombo and M. Garavello, Mixed systems: ODEs - balance laws, J. Differential Equations, 252 (2012), 2311-2338. doi: 10.1016/j.jde.2011.08.051
[3]
A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem.
[4]
R. M. Colombo and G. Guerra, Bv solutions to 1d isentropic euler equations in the zero mach number limit, J. Hyperbolic Differ. Equ., 2016, to appear.
[5]
R. M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of one dimensional euler equations: The non smooth case, Arch. Ration. Mech. Anal., 219 (2016), 701-718. doi: 10.1007/s00205-015-0904-8
[6]
R. M. Colombo and V. Schleper, Two-phase flows: Non-smooth well posedness and the compressible to incompressible limit, Nonlinear Anal. Real World Appl., 13 (2012), 2195-2213. doi: 10.1016/j.nonrwa.2012.01.015
[7]
S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524. doi: 10.1002/cpa.3160340405
[8]
S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math., 35 (1982), 629-651. doi: 10.1002/cpa.3160350503
[9]
G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90. doi: 10.1007/PL00004241
[10]
S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75. doi: 10.1007/BF01210792
[11]
S. Schochet, The mathematical theory of low Mach number flows, M2AN Math. Model. Numer. Anal., 39 (2005), 441-458. doi: 10.1051/m2an:2005017
[12]
J. Xu and W.-A. Yong, A note on incompressible limit for compressible Euler equations, Math. Methods Appl. Sci., 34 (2011), 831-838. doi: 10.1002/mma.1405
Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible limit and the 1D --system in the non smooth case[J]. Networks and Heterogeneous Media, 2016, 11(2): 313-330. doi: 10.3934/nhm.2016.11.313
Rinaldo M. Colombo, Graziano Guerra. A coupling between a non--linear 1D compressible--incompressible
limit and the 1D --system in the non smooth case[J]. Networks and Heterogeneous Media, 2016, 11(2): 313-330. doi: 10.3934/nhm.2016.11.313