A combined finite volume - finite element scheme for a dispersive shallow water system

  • Received: 01 June 2015 Revised: 01 October 2015
  • Primary: 65M06, 65M60, 76M10; Secondary: 76B15.

  • We propose a variational framework for the resolution of a non-hydrostatic Saint-Venant type model with bottom topography. This model is a shallow water type approximation of the incompressible Euler system with free surface and slightly differs from the Green-Nagdhi model, see [13] for more details about the model derivation.
        The numerical approximation relies on a prediction-correction type scheme initially introduced by Chorin-Temam [17] to treat the incompressibility in the Navier-Stokes equations. The hyperbolic part of the system is approximated using a kinetic finite volume solver and the correction step implies to solve a mixed problem where the velocity and the pressure are defined in compatible finite element spaces.
        The resolution of the incompressibility constraint leads to an elliptic problem involving the non-hydrostatic part of the pressure. This step uses a variational formulation of a shallow water version of the incompressibility condition.
        Several numerical experiments are performed to confirm the relevance of our approach.

    Citation: Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system[J]. Networks and Heterogeneous Media, 2016, 11(1): 1-27. doi: 10.3934/nhm.2016.11.1

    Related Papers:

  • We propose a variational framework for the resolution of a non-hydrostatic Saint-Venant type model with bottom topography. This model is a shallow water type approximation of the incompressible Euler system with free surface and slightly differs from the Green-Nagdhi model, see [13] for more details about the model derivation.
        The numerical approximation relies on a prediction-correction type scheme initially introduced by Chorin-Temam [17] to treat the incompressibility in the Navier-Stokes equations. The hyperbolic part of the system is approximated using a kinetic finite volume solver and the correction step implies to solve a mixed problem where the velocity and the pressure are defined in compatible finite element spaces.
        The resolution of the incompressibility constraint leads to an elliptic problem involving the non-hydrostatic part of the pressure. This step uses a variational formulation of a shallow water version of the incompressibility condition.
        Several numerical experiments are performed to confirm the relevance of our approach.


    加载中
    [1] Submitted.
    [2] B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math., 171 (2008), 485-541. doi: 10.1007/s00222-007-0088-4
    [3] B. Alvarez-Samaniego and D. Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations, Indiana Univ. Math. J., 57 (2008), 97-131. doi: 10.1512/iumj.2008.57.3200
    [4] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows, SIAM J. Sci. Comput., 25 (2004), 2050-2065. doi: 10.1137/S1064827503431090
    [5] URL http://hal.inria.fr/hal-01063577, (Submitted) http://hal.inria.fr/hal-01063577/PDF/kin_hydrost.pdf.
    [6] J.-L. Bona, T.-B. Benjamin and J.-J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London Series A, 272 (1972), 47-78. doi: 10.1098/rsta.1972.0032
    [7] P. Bonneton, E. Barthelemy, F. Chazel, R. Cienfuegos, D. Lannes, F. Marche and M. Tissier, Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes, European Journal of Mechanics - B/Fluids, 30 (2011), 589-597, URL http://www.sciencedirect.com/science/article/pii/S0997754611000185, Special Issue: Nearshore Hydrodynamics. doi: 10.1016/j.euromechflu.2011.02.005
    [8] F. Bouchut, An introduction to finite volume methods for hyperbolic conservation laws, ESAIM Proc., 15 (2005), 1-17.
    [9] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Birkhäuser, 2004. doi: 10.1007/b93802
    [10] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), 129-151.
    [11] M.-O. Bristeau and B. Coussin, Boundary Conditions for the Shallow Water Equations Solved by Kinetic Schemes, Rapport de recherche RR-4282, INRIA, 2001, URL http://hal.inria.fr/inria-00072305, Projet M3N.
    [12] M.-O. Bristeau, N. Goutal and J. Sainte-Marie, Numerical simulations of a non-hydrostatic Shallow Water model, Computers & Fluids, 47 (2011), 51-64. doi: 10.1016/j.compfluid.2011.02.013
    [13] M. O. Bristeau, A. Mangeney, J. Sainte-Marie and N. Seguin, An energy-consistent depth-averaged Euler system: Derivation and properties, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 961-988, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10801. doi: 10.3934/dcdsb.2015.20.961
    [14] M.-O. Bristeau and J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 733-759. doi: 10.3934/dcdsb.2008.10.733
    [15] R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Math., 31 (1994), 1-33. doi: 10.1016/S0065-2156(08)70254-0
    [16] F. Chazel, D. Lannes and F. Marche, Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model, J. Sci. Comput., 48 (2011), 105-116. doi: 10.1007/s10915-010-9395-9
    [17] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762. doi: 10.1090/S0025-5718-1968-0242392-2
    [18] M.-W. Dingemans, Wave Propagation Over Uneven Bottoms, Advanced Series on Ocean Engineering - World Scientific, 1997. doi: 10.1142/9789812796042
    [19] M. Dingemans, Comparison of Computations with Boussinesq-like Models and Laboratory Measurements, Technical Report H1684-12, AST G8M Coastal Morphodybamics Research Programme, 1994.
    [20] A. Duran and F. Marche, Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations, Communications in Computational Physics, 17 (2015), 721-760, URL https://hal.archives-ouvertes.fr/hal-00980826. doi: 10.4208/cicp.150414.101014a
    [21] W. E and J.-G. Liu, Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32 (1995), 1017-1057. doi: 10.1137/0732047
    [22] A. Ern and S. Meunier, A posteriori error analysis of euler-galerkin approximations to coupled elliptic-parabolic problems, ESAIM Math. Model. Numer. Anal., 43 (2009), 353-375, URL http://journals.cambridge.org/abstract\_S0764583X05000166. doi: 10.1051/m2an:2008048
    [23] E. Godlewski and P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118, Springer, New York, 1996. doi: 10.1007/978-1-4612-0713-9
    [24] A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246. doi: 10.1017/S0022112076002425
    [25] First Int. Conf. on Comput. Methods in Flow Analysis, Okayama University, Japan.
    [26] J.-L. Guermond, Some implementations of projection methods for Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, 30 (1996), 637-667, URL http://eudml.org/doc/193818.
    [27] J.-L. Guermond and J. Shen, On the error estimates for the rotational pressure-correction projection methods, Math. Comput., 73 (2004), 1719-1737, URL http://dblp.uni-trier.de/db/journals/moc/moc73.html#GuermondS04. doi: 10.1090/S0025-5718-03-01621-1
    [28] H. Johnston and J.-G. Liu, Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, Journal of Computational Physics, 199 (2004), 221-259, URL http://www.sciencedirect.com/science/article/pii/S002199910400083X. doi: 10.1016/j.jcp.2004.02.009
    [29] D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Physics of Fluids, 21 (2009), 016601. doi: 10.1063/1.3053183
    [30] O. Le Métayer, S. Gavrilyuk and S. Hank, A numerical scheme for the Green-Naghdi model, J. Comput. Phys., 229 (2010), 2034-2045. doi: 10.1016/j.jcp.2009.11.021
    [31] R.-J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002. doi: 10.1017/CBO9780511791253
    [32] O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 119 (1993), 618-638. doi: 10.1061/(ASCE)0733-950X(1993)119:6(618)
    [33] D. Peregrine, Long waves on a beach, J. Fluid Mech., 27 (1967), 815-827. doi: 10.1017/S0022112067002605
    [34] O. Pironneau, Méthodes Des Éléments Finis Pour Les Fluides., Masson, 1988.
    [35] R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, in The Navier-Stokes Equations II - Theory and Numerical Methods (eds. G. Heywood John, K. Masuda, R. Rautmann and A. Solonnikov Vsevolod), vol. 1530 of Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1992, 167-183, URL http://dx.doi.org/10.1007/BFb0090341. doi: 10.1007/BFb0090341
    [36] 11th AIAA Computational Fluid Dynamic Conference, Orlando, FL, USA.
    [37] J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations, SIAM J. Numer. Anal., 32 (1995), 386-403. doi: 10.1137/0732016
    [38] W. C. Thacker, Some exact solutions to the non-linear shallow water wave equations, J. Fluid Mech., 107 (1981), 499-508. doi: 10.1017/S0022112081001882
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4385) PDF downloads(163) Cited by(12)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog