Loading [MathJax]/jax/output/SVG/jax.js

Mathematical modelling of a mushy region formation during sulphation of calcium carbonate

  • The subject of the present paper is the derivation and asymptotic analysis of a mathematical model for the formation of a mushy region during sulphation of calcium carbonate. The model is derived by averaging, with the use of the multiple scales method, applied on microscopic moving - boundary problems. The latter problems describe the transformation of calcium carbonate into gypsum on the microscopic scale. The derived macroscopic model is solved numerically with the use of a finite element method. The results of some simulations and a relevant discussion are also presented.

    Citation: Christos V. Nikolopoulos. Mathematical modelling of a mushy region formation during sulphation of calcium carbonate[J]. Networks and Heterogeneous Media, 2014, 9(4): 635-654. doi: 10.3934/nhm.2014.9.635

    Related Papers:

    [1] Xiaoxue Zhao, Zhuchun Li . Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15(3): 543-553. doi: 10.3934/nhm.2020030
    [2] Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077
    [3] Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33
    [4] Tingting Zhu . Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17(2): 255-291. doi: 10.3934/nhm.2022005
    [5] Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001
    [6] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013
    [7] Seung-Yeal Ha, Hansol Park, Yinglong Zhang . Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks and Heterogeneous Media, 2020, 15(3): 427-461. doi: 10.3934/nhm.2020026
    [8] Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787
    [9] Vladimir Jaćimović, Aladin Crnkić . The General Non-Abelian Kuramoto Model on the 3-sphere. Networks and Heterogeneous Media, 2020, 15(1): 111-124. doi: 10.3934/nhm.2020005
    [10] Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943
  • The subject of the present paper is the derivation and asymptotic analysis of a mathematical model for the formation of a mushy region during sulphation of calcium carbonate. The model is derived by averaging, with the use of the multiple scales method, applied on microscopic moving - boundary problems. The latter problems describe the transformation of calcium carbonate into gypsum on the microscopic scale. The derived macroscopic model is solved numerically with the use of a finite element method. The results of some simulations and a relevant discussion are also presented.


    Synchronization in complex networks has been a focus of interest for researchers from different disciplines[1,2,4,8,15]. In this paper, we investigate synchronous phenomena in an ensemble of Kuramoto-like oscillators which is regarded as a model for power grid. In [9], a mathematical model for power grid is given by

    $ Pisource=I¨θi˙θi+KD(˙θi)2Nl=1ailsin(θlθi),i=1,2,,N, $ (1)

    where $ P_{source}^{i}>0 $ is power source (the energy feeding rate) of the $ i $th node, $ I\ge 0 $ is the moment of inertia, $ K_{D}>0 $ is the ratio between the dissipated energy by the turbine and the square of the angular velocity, and $ a_{il}>0 $ is the maximum transmitted power between the $ i $th and $ l $th nodes. The phase angle $ \theta_{i} $ of $ i $th node is given by $ \theta_i(t) = \Omega t+\tilde\theta_i(t) $ with a standard frequency $ \Omega $ (50 or 60 Hz) and small deviations $ \tilde\theta_i(t) $. Power plants in a big connected network should be synchronized to the same frequency. If loads are too strong and unevenly distributed or if some major fault or a lightening occurs, an oscillator (power plant) may lose synchronization. In that situation the synchronization landscape may change drastically and a blackout may occur. The transient stability of power grids can be regarded as a synchronization problem for nonstationary generator rotor angles aiming to restore synchronism subject to local excitations. Therefore, the region of attraction of synchronized states is a central problem for the transient stability.

    By denoting $ \omega_{i} = \frac{P_{source}^{i}}{K_{D}} $ and assuming $ \frac{a_{il}}{K_{D}} = \frac{K}{N} \,(\forall i,l\in\{1,2,\dots,N\}) $ and $ I = 0 $ in (1), Choi et. al derived a Kuramoto-like model for the power grid as follows [5]:

    $ (˙θi)2=ωi+KNNl=1sin(θlθi),˙θi>0,i=1,2,,N. $ (2)

    Here, the setting $ \dot{\theta}_{i}>0 $ was made in accordance to the observation in system (1) that the grid is operating at a frequency close to the standard frequency with small deviations. In order to ensure that the right-hand side of (2) is positive, it is reasonable to assume that $ \omega_{i}>K,\; i = 1,2,\dots,N $. This model can be used to understand the emergence of synchronization in networks of oscillators. As far as the authors know, there are few analytical results. In [5], the authors considered this model with identical natural frequencies and prove that complete phase synchronization occurs if the initial phases are distributed inside an arc with geodesic length less than $ \pi/2 $.

    If $ (\dot{\theta}_{i})^2 $ in (2) is replaced by $ \dot{\theta}_{i} $, the model is the famous Kuramoto model [13]; for its synchronization analysis we refer to [3,6,10], etc. Sakaguchi and Kuramoto [16] proposed a variant of the Kuramoto model to describe richer dynamical phenomena by introducing a phase shift (frustration) in the coupling function, i.e., by replacing $ \sin(\theta_{l}-\theta_{i}) $ with $ \sin(\theta_{l}-\theta_{i}+\alpha) $. They inferred the need of $ \alpha $ from the empirical fact that a pair of oscillators coupled strongly begin to oscillate with a common frequency deviating from the simple average of their natural frequencies. Some physicists also realized via many experiments that the emergence of the phase shift term requires larger coupling strength $ K $ and longer relaxation time to exhibit mutual synchronization compared to the zero phase shift case. This is why we call the phase shift a frustration. The effect of frustration has been intensively studied, for example, [11,12,14]. In power grid model using Kuramoto oscillators, people use the phase shift to depict the energy loss due to the transfer conductance [7]. In this paper, we will incorporate the phase shift term in (2) and study the Kuramoto-like model with frustration $ \alpha\in(-\frac{\pi}{4},\frac{\pi}{4}) $:

    $ (˙θi)2=ωi+KNNl=1sin(θlθi+α),˙θi>0,i=1,2,,N. $ (3)

    We will find a trapping region such that any nonstationary state located in this region will evolve to a synchronous state.

    The contributions of this paper are twofold: First, for identical oscillators without frustration, we show that the initial phase configurations located in the half circle will converge to complete phase and frequency synchronization. This extends the analytical results in [5] in which the initial phase configuration for synchronization needs to be confined in a quarter of circle. Second, we consider the nonidentical oscillators with frustration and present a framework leading to the boundness of the phase diameter and complete frequency synchronization. To the best of our knowledge, this is the first result for the synchronization of (3) with nonidentical oscillators and frustration.

    The rest of this paper is organized as follows. In Section 2, we recall the definitions for synchronization and summarize our main results. In Section 3, we give synchronization analysis and prove the main results. Finally, Section 4 is devoted to a concluding summary.

    Notations. We use the following simplified notations throughout this paper:

    $ νi:=˙θi,i=1,2,,N,ω:=(ω1,ω2,,ωN),ˉω:=max1iNωi,ω_:=min1iNωi,D(ω):=ˉωω_,θM:=max1iNθi,θm:=min1iNθi,D(θ):=θMθm,νM:=max1iNνi,νm:=min1iNνi,D(ν):=νMνm,θνM{θj|νj=νM},θνm{θj|νj=νm}. $

    In this paper, we consider the system

    $ (˙θi)2=ωi+KNNl=1sin(θlθi+α),˙θi>0,α(π4,π4),θi(0)=θ0i,i=1,2,,N. $ (4)

    Next we introduce the concepts of complete synchronization and conclude this introductory section with the main result of this paper.

    Definition 2.1. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a dynamical solution to the system (4). We say

    1. it exhibits asymptotically complete phase synchronization if

    $ limt(θi(t)θj(t))=0,ij. $

    2. it exhibits asymptotically complete frequency synchronization if

    $ limt(˙θi(t)˙θj(t))=0,ij. $

    For identical oscillators without frustration, we have the following result.

    Theorem 2.2. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (4) with $ \alpha = 0,\omega_{i} = \omega_0,i = 1,2,\dots,N $ and $ \omega_0>K $. If the initial configuration

    $ θ0A:={θ[0,2π)N:D(θ)<π}, $

    then there exits $ \lambda_1,\lambda_2>0 $ and $ t_{0}>0 $ such that

    $ D(θ(t))D(θ0)eλ1t,t0. $ (5)

    and

    $ D(ν(t))D(ν(t0))eλ2(tt0),tt0. $ (6)

    Next we introduce the main result for nonidentical oscillators with frustration. For $ \bar{\omega}< \frac{1}{2\sin^2|\alpha|} $, we set

    $ K_{c}: = \frac{D({\omega})\sqrt{2\bar{\omega}}}{1-\sqrt{2\bar{\omega}}\sin|\alpha|} > 0. $

    For suitable parameters, we denote by $ D_{1}^{\infty} $ and $ D_{*}^{\infty} $ the two angles as follows:

    $ sinD1=sinD:=ˉω+K(D(ω)+Ksin|α|)Kω_K,0<D1<π2<D<π. $

    Theorem 2.3. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (4) with $ K>K_{c} $ and $ [\underline{\omega},\bar{\omega}]\subset \left[K+1,\frac{1}{2\sin^2|\alpha|}\right) $. If

    $ θ0B:={θ[0,2π)N|D(θ)<D|α|}, $

    then for any small $ \varepsilon>0 $ with $ D_{1}^{\infty}+\varepsilon<\frac{\pi}{2} $, there exists $ \lambda_{3}>0 $ and $ T>0 $ such that

    $ D(ν(t))D(ν(T))eλ3(tT),tT. $ (7)

    Remark 1. If the parametric conditions in Theorem 2.3 are fulfilled, the reference angles $ D_{1}^{\infty} $ and $ D_{*}^{\infty} $ are well-defined. Indeed, because $ K>K_{c} $ and $ \bar{\omega}<\frac{1}{2\sin^2 |\alpha|} $, we have

    $ D(ω)2ˉω12ˉωsin|α|<K,12ˉωsin|α|>0. $

    This implies

    $ 2ˉω(D(ω)+Ksin|α|)K<1. $

    Then, by $ \underline{\omega}\ge K+1 $ and $ K\le \bar{\omega} $ we obtain

    $ sinD1=sinD:=ˉω+K(D(ω)+Ksin|α|)Kω_K2ˉω(D(ω)+Ksin|α|)K<1. $

    Remark 2. In order to make $ 1<K+1<\frac{1}{2\sin^2|\alpha|} $, it is necessary to assume $ \alpha\in \left(-\frac{\pi}{4},\frac{\pi}{4}\right) $. This is the reason for the setting $ \alpha\in \left(-\frac{\pi}{4},\frac{\pi}{4}\right) $.

    In this subsection we consider the system (4) with identical natural frequencies and zero frustration:

    $ (˙θi)2=ω0+KNNl=1sin(θlθi),˙θi>0,i=1,2,,N. $ (8)

    To obtain the complete synchronization, we need to derive a trapping region. We start with two elementary estimates for the transient frequencies.

    Lemma 3.1. Suppose $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (8), then for any $ i,j\in\{1,2,\dots,N\}, $ we have

    $ (˙θi˙θj)(˙θi+˙θj)=2KNNl=1cos(θlθi+θj2)sinθjθi2. $

    Proof. It is immediately obtained by (8).

    Lemma 3.2. Suppose $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (8) and $ \Omega>K $, then we have

    $ ˙θiω0+K. $

    Proof. It follows from (8) and $ \dot{\theta}_{i}>0 $ that we have

    $ (˙θi)2=ω0+KNNl=1sin(θlθi)ω0+K. $

    Next we give an estimate for trapping region and prove Theorem 2.2. For this aim, we will use the time derivative of $ D(\theta(t)) $ and $ D(\nu(t)) $. Note that $ D(\theta(t)) $ is Lipschitz continuous and differentiable except at times of collision between the extremal phases and their neighboring phases. Therefore, for the collision time $ t $ at which $ D(\theta(t)) $ is not differentiable, we can use the so-called Dini derivative to replace the classic derivative. In this manner, we can proceed the analysis with differential inequality for $ D(\theta(t)) $. For $ D(\nu(t)) $ we can proceed in the similar way. In the following context, we will always use the notation of classic derivative for $ D(\theta(t)) $ and $ D(\nu(t)) $.

    Lemma 3.3. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (8) and $ \Omega>K $. If the initial configuration $ \theta(0)\in \mathcal{A} $, then $ \theta(t)\in \mathcal{A},\; t\ge 0 $.

    Proof. For any $ \theta^0\in \mathcal A $, there exists $ D^\infty\in (0,\pi) $ such that $ D(\theta^0)<D^{\infty} $. Let

    $ T:={T[0,+)|D(θ(t))<D,t[0,T)}. $

    Since $ D(\theta^0)<D^{\infty} $, and $ D(\theta(t)) $ is a continuous function of $ t $, there exists $ \eta>0 $ such that

    $ D(θ(t))<D,t[0,η). $

    Therefore, the set $ \mathcal T $ is not empty. Let $ T^*: = \sup \mathcal T. $ We claim that

    $ T=. $ (9)

    Suppose to the contrary that $ T^*<\infty $. Then from the continuity of $ D(\theta(t)) $, we have

    $ D(θ(t))<D,t[0,T),D(θ(T))=D. $

    We use Lemma 3.1 and Lemma 3.2 to obtain

    $ 12ddtD(θ(t))2=D(θ(t))ddtD(θ(t))=(θMθm)(˙θM˙θm)=(θMθm)1˙θM+˙θm2KNNl=1cos(θlθM+θm2)sin(θmθM2)(θMθm)1˙θM+˙θm2KNNl=1cosD2sin(θmθM2)(θMθm)1ω0+KKNNl=1cosD2sin(θmθM2)=2KcosD2ω0+KD(θ)2sinD(θ)2KcosD2πω0+KD(θ)2,t[0,T). $

    Here we used the relations

    $ D2<D(θ)2θlθM20θlθm2D(θ)2<D2 $

    and

    $ xsinx2πx2,x[π2,π2]. $

    Therefore, we have

    $ ddtD(θ)KcosD2πω0+KD(θ),t[0,T), $ (10)

    which implies that

    $ D(θ(T))D(θ0)eKcosD2πω0+KT<D(θ0)<D. $

    This is contradictory to $ D(\theta(T^*)) = D^{\infty}. $ The claim (9) is proved, which yields the desired result.

    Now we can give a proof for Theorem 2.2.

    Proof of Theorem 2.2.. According to Lemma 3.3, we substitute $ T^* = \infty $ into (10), then (5) is proved with $ \lambda_1 = \frac{K\cos\frac{D^{\infty}}{2}}{\pi\sqrt{\omega_0+K}} $.

    On the other hand, by (5) there exist $ t_{0} $ and $ \delta (0<\delta<\frac{\pi}{2}) $ such that $ D(\theta(t))\le \delta $ for $ t\ge t_{0} $. Now we differentiate (8) to find

    $ ˙νi=K2NνiNl=1cos(θlθi)(νlνi). $

    Using Lemma 3.2, we now consider the temporal evolution of $ D(\nu(t)) $:

    $ ddtD(ν)=˙νM˙νm=K2NνMNl=1cos(θlθνM)(νlνM)K2NνmNl=1cos(θlθνm)(νlνm)Kcosδ2NνMNl=1(νlνM)Kcosδ2NνmNl=1(νlνm)K2Ncosδω0+KNl=1(νlνM)K2Ncosδω0+KNl=1(νlνm)=Kcosδ2Nω0+KNl=1(νlνMνl+νm)=Kcosδ2ω0+KD(ν),tt0. $

    This implies that

    $ D(ν(t))D(ν(t0))eKcosδ2ω0+K(tt0),tt0, $

    and proves (6) with $ \lambda_2 = \frac{K\cos\delta}{2\sqrt{\omega_0+K}} $.

    Remark 3. Theorem 2.2 shows, as long as the initial phases are confined inside an arc with geodesic length strictly less than $ \pi $, complete phase synchronization occurs exponentially fast. This extends the main result in [5] where the initial phases for synchronization need to be confined in an arc with geodesic length less than $ \pi/2 $.

    In this subsection, we prove the main result for nonidentical oscillators with frustration.

    Lemma 3.4. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (4), then for any $ i,j\in\{1,2,\dots,N\}, $ we have

    $ (˙θi˙θj)(˙θi+˙θj)D(ω)+KNNl=1[sin(θlθi+α)sin(θlθj+α)]. $

    Proof. By (4) and for any $ i,j\in\{1,2,\dots,N\} $

    $ (˙θi˙θj)(˙θi+˙θj)=(˙θi)2(˙θj)2, $

    the result is immediately obtained.

    Lemma 3.5. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (4) and $ \underline{\omega}\ge K+1 $, then we have

    $ ˙θi[ω_K,ˉω+K],i=1,2,,N. $

    Proof. From (4), we have

    $ ω_K(˙θi)2ˉω+K,i=1,2,,N, $

    and also because $ \dot{\theta}_{i}>0 $. The following lemma gives a trapping region for nonidentical oscillators.

    Lemma 3.6. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (4) with $ K>K_{c} $ and $ [\underline{\omega},\bar{\omega}]\subset [K+1,\frac{1}{2\sin^2|\alpha|}) $. If the initial configuration $ \theta^0\in \mathcal{B} $, then $ \theta(t)\in \mathcal{B} $ for $ t\ge 0. $

    Proof. We define the set $ \mathcal T $ and its supremum:

    $ T:={T[0,+)|D(θ(t))<D|α|,t[0,T)},T:=supT. $

    Since $ \theta^0\in \mathcal{B} $, and note that $ D(\theta(t)) $ is a continuous function of $ t $, we see that the set $ \mathcal T $ is not empty and $ T^* $ is well-defined. We now claim that

    $ T=. $

    Suppose to the contrary that $ T^*<\infty $. Then from the continuity of $ D(\theta(t)) $, we have

    $ D(θ(t))<D|α|,t[0,T),D(θ(T))=D|α|. $

    We use Lemma 3.4 to obtain

    $ 12ddtD(θ)2=D(θ)ddtD(θ)=D(θ)(˙θM˙θm)D(θ)1˙θM+˙θm[D(ω)+KNNl=1(sin(θlθM+α)sin(θlθm+α))]I. $

    For $ I $, we have

    $ I=D(ω)+KcosαNNl=1[sin(θlθM)sin(θlθm)]+KsinαNNl=1[cos(θlθM)cos(θlθm)]. $

    We now consider two cases according to the sign of $ \alpha $.

    (1) $ \alpha\in[0,\frac{\pi}{4}). $ In this case, we have

    $ ID(ω)+KcosαsinD(θ)ND(θ)Nl=1[(θlθM)(θlθm)]+KsinαNNl=1[1cosD(θ)]=D(ω)K[sin(D(θ)+α)sinα]=D(ω)K[sin(D(θ)+|α|)sin|α|]. $

    (2) $ \alpha\in(-\frac{\pi}{4},0). $ In this case, we have

    $ ID(ω)+KcosαsinD(θ)ND(θ)Nl=1[(θlθM)(θlθm)]+KsinαNNl=1[cosD(θ)1]=D(ω)K[sin(D(θ)α)+sinα]=D(ω)K[sin(D(θ)+|α|)sin|α|]. $

    Here we used the relations

    $ sin(θlθM)θlθM,sin(θlθm)θlθmsinD(θ)D(θ), $

    and

    $ cosD(θ)cos(θlθM),cos(θlθm)1,l=1,2,,N. $

    Since $ D(\theta(t))+|\alpha|<D_{*}^{\infty}<\pi $ for $ t\in[0,T^*), $ we obtain

    $ ID(ω)K[sin(D(θ)+|α|)sin|α|] $ (11)
    $ D(ω)+Ksin|α|KsinDD(D(θ)+|α|). $ (12)

    By (12) and Lemma 3.5 we have

    $ 12ddtD(θ)2D(θ)1˙θM+˙θm(D(ω)+Ksin|α|KsinDD(D(θ)+|α|))=D(ω)+Ksin|α|˙θM+˙θmD(θ)KsinDD(˙θM+˙θm)D(θ)(D(θ)+|α|)D(ω)+Ksin|α|2ω_KD(θ)KsinDD2ˉω+KD(θ)(D(θ)+|α|),t[0,T). $

    Then we obtain

    $ ddtD(θ)D(ω)+Ksin|α|2ω_KKsinD2Dˉω+K(D(θ)+|α|),t[0,T), $

    i.e.,

    $ ddt(D(θ)+|α|)D(ω)+Ksin|α|2ω_KKsinD2Dˉω+K(D(θ)+|α|)=KsinD2ˉω+KKsinD2Dˉω+K(D(θ)+|α|),t[0,T). $

    Here we used the definition of $ \sin D_{*}^{\infty} $. By Gronwall's inequality, we obtain

    $ D(θ(t))+|α|D+(D(θ0)+|α|D)eKsinD2Dˉω+Kt,t[0,T), $

    Thus

    $ D(θ(t))(D(θ0)+|α|D)eKsinD2Dˉω+Kt+D|α|,t[0,T). $

    Let $ t\to T^{*-} $ and we have

    $ D(θ(T))(D(θ0)+|α|D)eKsinD2Dˉω+KT+D|α|<D|α|, $

    which is contradictory to $ D(\theta(T^*)) = D_{*}^{\infty}-|\alpha|. $ Therefore, we have

    $ T=. $

    That is,

    $ D(θ(t))D|α|,t0. $

    Lemma 3.7. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (4) with $ K>K_{c} $ and $ [\underline{\omega},\bar{\omega}]\subset [K+1,\frac{1}{2\sin^2|\alpha|}) $. If the initial configuration $ \theta(0)\in \mathcal{B} $, then

    $ ddtD(θ(t))D(ω)+Ksin|α|2ω_KK2ˉω+Ksin(D(θ)+|α|),t0. $

    Proof. It follows from (11) and Lemma 3.5, Lemma 3.6 and that we have

    $ 12ddtD(θ)2=D(θ)ddtD(θ)D(θ)1˙θM+˙θm[D(ω)K(sin(D(θ)+|α|)sin|α|)]=D(ω)+Ksin|α|˙θM+˙θmD(θ)Ksin(D(θ)+|α|)˙θM+˙θmD(θ)D(ω)+Ksin|α|2ω_KD(θ)Ksin(D(θ)+|α|)2ˉω+KD(θ),t0. $

    The proof is completed.

    Lemma 3.8. Let $ \theta: = (\theta_{1},\theta_{2},\dots,\theta_{N}) $ be a solution to the coupled system (4) with $ K>K_{c} $ and $ [\underline{\omega},\bar{\omega}]\subset [K+1,\frac{1}{2\sin^2|\alpha|}) $. If the initial configuration $ \theta(0)\in \mathcal{B} $, then for any small $ \varepsilon>0 $ with $ D_{1}^{\infty}+\varepsilon<\frac{\pi}{2} $, there exists some time $ T>0 $ such that

    $ D(θ(t))<D1|α|+ε,tT. $

    Proof. Consider the ordinary differential equation:

    $ ˙y=D(ω)+Ksin|α|2ω_KK2ˉω+Ksiny,y(0)=y0[0,D). $ (13)

    It is easy to find that $ y_{*} = D_{1}^{\infty} $ is a locally stable equilibrium of (13), while $ y_{**} = D_{*}^{\infty} $ is unstable. Therefore, for any initial data $ y^0 $ with $ 0<y^0<D_{*}^{\infty} $, the trajectory $ y(t) $ monotonically approaches $ y_{*} $. Then, for any $ \varepsilon>0 $ with $ D_{1}^{\infty}+\varepsilon<\frac{\pi}{2} $, there exists some time $ T>0 $ such that

    $ |y(t)y|<ε,tT. $

    In particular, $ y(t) <y_*+\varepsilon $ for $ t\ge T. $ By Lemma 3.7 and the comparison principle, we have

    $ D(θ(t))+|α|<D1+ε,tT, $

    which is the desired result.

    Remark 4. Since

    $ sinD1D(ω)K+sin|α|>sin|α|, $

    we have $ D_{1}^{\infty}>|\alpha| $.

    Proof of Theorem 2.3. It follows from Lemma 3.8 that for any small $ \varepsilon>0 $, there exists some time $ T>0 $ such that

    $ suptTD(θ(t))<D1|α|+ε<π2. $

    We differentiate the equation (4) to find

    $ ˙νi=K2NνiNl=1cos(θlθi+α)(νlνi),νi>0. $

    We now consider the temporal evolution of $ D(\nu(t)) $:

    $ ddtD(ν)=˙νM˙νm=K2NνMNl=1cos(θlθνM+α)(νlνM)K2NνmNl=1cos(θlθνm+α)(νlνm)K2NνMNl=1cos(D1+ε)(νlνM)K2NνmNl=1cos(D1+ε)(νlνm)Kcos(D1+ε)2Nˉω+KNl=1(νlνMνl+νm)=Kcos(D1+ε)2ˉω+KD(ν),tT, $

    where we used

    $ cos(θlθνM+α),cos(θlθνm+α)cos(D1+ε),andνM,νmˉω+K. $

    Thus we obtain

    $ D(ν(t))D(ν(T))eKcos(D1+ε)2ˉω+K(tT),tT, $

    and proves (7) with $ \lambda_{3} = \frac{K\cos(D_{1}^{\infty}+\varepsilon)}{2\sqrt{\bar{\omega}+K}} $.

    In this paper, we presented synchronization estimates for the Kuramoto-like model. We show that for identical oscillators with zero frustration, complete phase synchronization occurs exponentially fast if the initial phases are confined inside an arc with geodesic length strictly less than $ \pi $. For nonidentical oscillators with frustration, we present a framework to guarantee the emergence of frequency synchronization.

    We would like to thank the anonymous referee for his/her comments which helped us to improve this paper.

    [1] G. Ali, V. Furuholt, R. Natalini and I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with high permeability. Part I. Modeling and qualitative analysis, Transport in Porous Media, 69 (2007), 109-122. doi: 10.1007/s11242-006-9067-2
    [2] G. Ali, V. Furuholt, R. Natalini and I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with high permeability. Part II: Numerical approximation, Transport in Porous Media, 69 (2007), 175-188. doi: 10.1007/s11242-006-9068-1
    [3] D. Aregba-Driollet, F. Diele and R. Natalini, A Mathematical Model for the SO2 Aggression to Calcium Carbonate Stones: Numerical Approximation and Asymptotic Analysis, SIAM J. APPL. MATH. , 64 (2004), 1636-1667. doi: 10.1137/S003613990342829X
    [4] F. Clareli, A. Fasano and R. Natalini, Mathematics and monument conservation: Free boundary models of marble sulfation, SIAM Journal on Applied Mathematics, 69 (2008), 149-168. doi: 10.1137/070695125
    [5] A. Fasano and R. Natalini, Lost Beauties of the Acropolis: What Mathematics Can Say, SIAM news, 2006.
    [6] T. Fatima, Multiscale Reaction Diffusion Systems Describing Concrete Corrosion: Modelling and Analysis, Ph.D thesis, Technical University of Eindhoven, 2013.
    [7] T. Fatima, N. Arab, E. P. Zemskov and A. Muntean, Homogenization of a reaction - diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains, Journal of Engineering Mathematics, 69 (2011), 261-276. doi: 10.1007/s10665-010-9396-6
    [8] T. Fatima and A. Muntean, Sulfate attack in sewer pipes: Derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, 15 (2014), 326-344. doi: 10.1016/j.nonrwa.2012.01.019
    [9] T. Fatima, A. Muntean and T. Aiki, Distributed space scales in a semilinear reaction-diffusion system including a parabolic variational inequality: A well-posedness study, Adv. Math. Sci. Appl., 22 (2012), 295-318.
    [10] T. Fatima, A. Muntean and M. Ptashnyk, Unfolding-based corrector estimates for a reaction - diffusion system predicting concrete corrosion, Applicable Analysis, 91 (2012), 1129-1154. doi: 10.1080/00036811.2011.625016
    [11] F. R. Guarguaglini and R. Natalini, Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena, Commun. Partial Differ. Equations, 32 (2007), 163-189. doi: 10.1080/03605300500361438
    [12] F. R. Guarguaglini and R. Natalini, Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones, Nonlinear Analysis: Real World Applications, 6 (2005), 477-494. doi: 10.1016/j.nonrwa.2004.09.007
    [13] E. J. Hinch, Perturbation Methods, Cambridge University Press, 1991. doi: 10.1017/CBO9781139172189
    [14] A. A. Lacey and L. A. Herraiz, Macroscopic models for melting derived from averaging microscopic Stefan problems I: Simple geometries with kinetic undercooling or surface tension, Euro. Jnl. of Applied Mathematics, 11 (2002), 153-169. doi: 10.1017/S0956792599004027
    [15] A. A. Lacey and L. A. Herraiz, Macroscopic models for melting derived from averaging microscopic Stefan problems II: Effect of varying geometry and composition, Euro. Jnl. of Applied Mathematics, 13 (2002), 261-282. doi: 10.1017/S0956792501004818
    [16] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Caimbridge University Press, 2002. doi: 10.1017/CBO9780511791253
    [17] C. V. Nikolopoulos, A mushy region in concrete corrosion, Applied Mathematical Modelling, 34 (2010), 4012-4030. doi: 10.1016/j.apm.2010.04.005
    [18] C. V. Nikolopoulos, Macroscopic models for a mushy region in concrete corrosion, Journal of Engineering Mathematics, 2014, DOI 10.1007/s10665-014-9743-0.
    [19] J. L. Schnoor, Enviromental Modeling, Fate and transport of pollutants in water, air, and soil, John Willey and Sons, Inc., 1996.
  • This article has been cited by:

    1. Sha Xu, Xiaoyue Huang, Hua Zhang, 2024, Synchronization of a Kuramoto-like Model with Time Delay and Phase Shift, 978-9-8875-8158-1, 5299, 10.23919/CCC63176.2024.10662837
    2. Sun-Ho Choi, Hyowon Seo, Inertial power balance system with nonlinear time-derivatives and periodic natural frequencies, 2024, 129, 10075704, 107695, 10.1016/j.cnsns.2023.107695
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3770) PDF downloads(64) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog