Homogenization of hexagonal lattices

  • Received: 01 January 2012 Revised: 01 December 2012
  • 74Q05, 74Q15, 74K35, 49J45.

  • We characterize the macroscopic effective mechanical behavior of a graphene sheet modeled by a hexagonal lattice of elastic bars, using $\Gamma$-convergence.

    Citation: Hervé Le Dret, Annie Raoult. Homogenization of hexagonal lattices[J]. Networks and Heterogeneous Media, 2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541

    Related Papers:

    [1] Hervé Le Dret, Annie Raoult . Homogenization of hexagonal lattices. Networks and Heterogeneous Media, 2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541
    [2] Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
    [3] Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005
    [4] Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115
    [5] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [6] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [7] Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453
    [8] Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379
    [9] Andrea Braides, Valeria Chiadò Piat . Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3(3): 489-508. doi: 10.3934/nhm.2008.3.489
    [10] Lorenza D'Elia . $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17(1): 15-45. doi: 10.3934/nhm.2021022
  • We characterize the macroscopic effective mechanical behavior of a graphene sheet modeled by a hexagonal lattice of elastic bars, using $\Gamma$-convergence.


    [1] R. Alicandro, A. Braides and M. Cicalese, Continuum limits of discrete thin films with superlinear growth densities, Calc. Var. Partial Diff. Eq., 33 (2008), 267-297. doi: 10.1007/s00526-008-0159-4
    [2] R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37. doi: 10.1137/S0036141003426471
    [3] R. Alicandro, M. Cicalese and A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rational Mech. Anal., 200 (2011), 881-943. doi: 10.1007/s00205-010-0378-7
    [4] S. Bae, et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, 5 (2010), 574-578. doi: 10.1038/nnano.2010.132
    [5] M. Barchiesi and A. Gloria, New counterexamples to the cell formula in nonconvex homogenization, Arch. Rational Mech. Anal., 195 (2010), 991-1024. doi: 10.1007/s00205-009-0226-9
    [6] X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics, Arch. Rational Mech. Anal., 164 (2002), 341-381. doi: 10.1007/s00205-002-0218-5
    [7] A. Braides and M. S. Gelli, From discrete systems to continuous variational problems: An introduction, in "Topics on Concentration Phenomena and Problems with Multiple Scales" (eds. A. Braides and V. Chiado' Piat), Lecture Notes Unione Mat. Ital., 2, Springer, Berlin, (2006), 3-77. doi: 10.1007/978-3-540-36546-4_1
    [8] A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids, 7 (2002), 41-66. doi: 10.1177/1081286502007001229
    [9] D. Caillerie, A. Mourad and A. Raoult, Discrete homogenization in graphene sheet modeling, J. Elast., 84 (2006), 33-68. doi: 10.1007/s10659-006-9053-5
    [10] S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$, J. Eur. Math. Soc., 8 (2006), 515-539. doi: 10.4171/JEMS/65
    [11] B. Dacorogna, "Direct Methods in the Calculus of Variations," Second edition, Applied Mathematical Sciences, 78, Springer, New York, 2008.
    [12] G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8
    [13] W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Arch. Rational Mech. Anal., 183 (2007), 241-297. doi: 10.1007/s00205-006-0031-7
    [14] J. L. Ericksen, On the Cauchy-Born rule, Math. Mech. Solids, 13 (2008), 199-220. doi: 10.1177/1081286507086898
    [15] G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478. doi: 10.1007/s00332-002-0495-z
    [16] A. K. Geim and A. H. MacDonald, Graphene: Exploring carbon flatland, Physics Today, 60 (2007), 35-41. doi: 10.1063/1.2774096
    [17] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), 74 (1995), 549-578.
    [18] H. Le Dret and A. Raoult, Homogenization of hexagonal lattices, C. R. Acad. Sci. Paris, 349 (2011), 111-114. doi: 10.1016/j.crma.2010.12.012
    [19] P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl. (4), 117 (1978), 139-152. doi: 10.1007/BF02417888
    [20] N. Meunier, O. Pantz and A. Raoult, Elastic limit of square lattices with three point interactions, Math. Mod. Meth. Appl. Sci., 22 (2012), 21 pp. doi: 10.1142/S0218202512500327
    [21] S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., 99 (1987), 189-212. doi: 10.1007/BF00284506
    [22] G. Odegard, Equivalent-continuum modeling of nanostructured materials, ChemInform, 38 (2007). doi: 10.1002/chin.200723218
    [23] A. Raoult, D. Caillerie and A. Mourad, Elastic lattices: Equilibrium, invariant laws and homogenization, Ann. Univ. Ferrara Sez. VII Sci. Mat., 54 (2008), 297-318. doi: 10.1007/s11565-008-0054-0
    [24] B. Schmidt, On the passage from atomic to continuum theory for thin films, Arch. Ration. Mech. Anal., 190 (2008), 1-55. doi: 10.1007/s00205-008-0138-0
  • This article has been cited by:

    1. Andrea Braides, Leonard Kreutz, An Integral-Representation Result for Continuum Limits of Discrete Energies with MultiBody Interactions, 2018, 50, 0036-1410, 1485, 10.1137/17M1121433
    2. Matko Ljulj, Kersten Schmidt, Adrien Semin, Josip Tambača, Homogenization of the time-dependent heat equation on planar one-dimensional periodic structures, 2022, 101, 0003-6811, 4046, 10.1080/00036811.2022.2078713
    3. Raz Kupferman, Cy Maor, Variational convergence of discrete geometrically-incompatible elastic models, 2018, 57, 0944-2669, 10.1007/s00526-018-1306-1
    4. Hervé Le Dret, Annie Raoult, Hexagonal lattices with three-point interactions, 2017, 108, 00217824, 613, 10.1016/j.matpur.2017.05.008
    5. Cesare Davini, Antonino Favata, Roberto Paroni, A REBO-Potential-Based Model for Graphene Bending by Γ
    Γ -Convergence, 2018, 229, 0003-9527, 1153, 10.1007/s00205-018-1236-2
    6. Marta Lewicka, Pablo Ochoa, 2015, Chapter 10, 978-3-319-18572-9, 279, 10.1007/978-3-319-18573-6_10
    7. Houssam Abdoul-Anziz, Pierre Seppecher, Strain gradient and generalized continua obtained by homogenizing frame lattices, 2018, 6, 2325-3444, 213, 10.2140/memocs.2018.6.213
    8. G. Rizzi, F. Dal Corso, D. Veber, D. Bigoni, Identification of second-gradient elastic materials from planar hexagonal lattices. Part I: Analytical derivation of equivalent constitutive tensors, 2019, 176-177, 00207683, 1, 10.1016/j.ijsolstr.2019.07.008
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3551) PDF downloads(112) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog