Citation: Hervé Le Dret, Annie Raoult. Homogenization of hexagonal lattices[J]. Networks and Heterogeneous Media, 2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541
[1] | Hervé Le Dret, Annie Raoult . Homogenization of hexagonal lattices. Networks and Heterogeneous Media, 2013, 8(2): 541-572. doi: 10.3934/nhm.2013.8.541 |
[2] | Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879 |
[3] | Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005 |
[4] | Leonid Berlyand, Volodymyr Rybalko . Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8(1): 115-130. doi: 10.3934/nhm.2013.8.115 |
[5] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[6] | Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551 |
[7] | Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453 |
[8] | Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379 |
[9] | Andrea Braides, Valeria Chiadò Piat . Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3(3): 489-508. doi: 10.3934/nhm.2008.3.489 |
[10] | Lorenza D'Elia . $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17(1): 15-45. doi: 10.3934/nhm.2021022 |
[1] |
R. Alicandro, A. Braides and M. Cicalese, Continuum limits of discrete thin films with superlinear growth densities, Calc. Var. Partial Diff. Eq., 33 (2008), 267-297. doi: 10.1007/s00526-008-0159-4
![]() |
[2] |
R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37. doi: 10.1137/S0036141003426471
![]() |
[3] |
R. Alicandro, M. Cicalese and A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rational Mech. Anal., 200 (2011), 881-943. doi: 10.1007/s00205-010-0378-7
![]() |
[4] |
S. Bae, et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, 5 (2010), 574-578. doi: 10.1038/nnano.2010.132
![]() |
[5] |
M. Barchiesi and A. Gloria, New counterexamples to the cell formula in nonconvex homogenization, Arch. Rational Mech. Anal., 195 (2010), 991-1024. doi: 10.1007/s00205-009-0226-9
![]() |
[6] |
X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics, Arch. Rational Mech. Anal., 164 (2002), 341-381. doi: 10.1007/s00205-002-0218-5
![]() |
[7] |
A. Braides and M. S. Gelli, From discrete systems to continuous variational problems: An introduction, in "Topics on Concentration Phenomena and Problems with Multiple Scales" (eds. A. Braides and V. Chiado' Piat), Lecture Notes Unione Mat. Ital., 2, Springer, Berlin, (2006), 3-77. doi: 10.1007/978-3-540-36546-4_1
![]() |
[8] |
A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids, 7 (2002), 41-66. doi: 10.1177/1081286502007001229
![]() |
[9] |
D. Caillerie, A. Mourad and A. Raoult, Discrete homogenization in graphene sheet modeling, J. Elast., 84 (2006), 33-68. doi: 10.1007/s10659-006-9053-5
![]() |
[10] |
S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$, J. Eur. Math. Soc., 8 (2006), 515-539. doi: 10.4171/JEMS/65
![]() |
[11] | B. Dacorogna, "Direct Methods in the Calculus of Variations," Second edition, Applied Mathematical Sciences, 78, Springer, New York, 2008. |
[12] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications, 8, Birkäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8
![]() |
[13] |
W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems, Arch. Rational Mech. Anal., 183 (2007), 241-297. doi: 10.1007/s00205-006-0031-7
![]() |
[14] |
J. L. Ericksen, On the Cauchy-Born rule, Math. Mech. Solids, 13 (2008), 199-220. doi: 10.1177/1081286507086898
![]() |
[15] |
G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478. doi: 10.1007/s00332-002-0495-z
![]() |
[16] |
A. K. Geim and A. H. MacDonald, Graphene: Exploring carbon flatland, Physics Today, 60 (2007), 35-41. doi: 10.1063/1.2774096
![]() |
[17] | H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), 74 (1995), 549-578. |
[18] |
H. Le Dret and A. Raoult, Homogenization of hexagonal lattices, C. R. Acad. Sci. Paris, 349 (2011), 111-114. doi: 10.1016/j.crma.2010.12.012
![]() |
[19] |
P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl. (4), 117 (1978), 139-152. doi: 10.1007/BF02417888
![]() |
[20] |
N. Meunier, O. Pantz and A. Raoult, Elastic limit of square lattices with three point interactions, Math. Mod. Meth. Appl. Sci., 22 (2012), 21 pp. doi: 10.1142/S0218202512500327
![]() |
[21] |
S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., 99 (1987), 189-212. doi: 10.1007/BF00284506
![]() |
[22] |
G. Odegard, Equivalent-continuum modeling of nanostructured materials, ChemInform, 38 (2007). doi: 10.1002/chin.200723218
![]() |
[23] |
A. Raoult, D. Caillerie and A. Mourad, Elastic lattices: Equilibrium, invariant laws and homogenization, Ann. Univ. Ferrara Sez. VII Sci. Mat., 54 (2008), 297-318. doi: 10.1007/s11565-008-0054-0
![]() |
[24] |
B. Schmidt, On the passage from atomic to continuum theory for thin films, Arch. Ration. Mech. Anal., 190 (2008), 1-55. doi: 10.1007/s00205-008-0138-0
![]() |
1. | Andrea Braides, Leonard Kreutz, An Integral-Representation Result for Continuum Limits of Discrete Energies with MultiBody Interactions, 2018, 50, 0036-1410, 1485, 10.1137/17M1121433 | |
2. | Matko Ljulj, Kersten Schmidt, Adrien Semin, Josip Tambača, Homogenization of the time-dependent heat equation on planar one-dimensional periodic structures, 2022, 101, 0003-6811, 4046, 10.1080/00036811.2022.2078713 | |
3. | Raz Kupferman, Cy Maor, Variational convergence of discrete geometrically-incompatible elastic models, 2018, 57, 0944-2669, 10.1007/s00526-018-1306-1 | |
4. | Hervé Le Dret, Annie Raoult, Hexagonal lattices with three-point interactions, 2017, 108, 00217824, 613, 10.1016/j.matpur.2017.05.008 | |
5. |
Cesare Davini, Antonino Favata, Roberto Paroni,
A REBO-Potential-Based Model for Graphene Bending by
Γ
Γ
-Convergence,
2018,
229,
0003-9527,
1153,
10.1007/s00205-018-1236-2
|
|
6. | Marta Lewicka, Pablo Ochoa, 2015, Chapter 10, 978-3-319-18572-9, 279, 10.1007/978-3-319-18573-6_10 | |
7. | Houssam Abdoul-Anziz, Pierre Seppecher, Strain gradient and generalized continua obtained by homogenizing frame lattices, 2018, 6, 2325-3444, 213, 10.2140/memocs.2018.6.213 | |
8. | G. Rizzi, F. Dal Corso, D. Veber, D. Bigoni, Identification of second-gradient elastic materials from planar hexagonal lattices. Part I: Analytical derivation of equivalent constitutive tensors, 2019, 176-177, 00207683, 1, 10.1016/j.ijsolstr.2019.07.008 |