Citation: Phoebus Rosakis. Continuum surface energy from a lattice model[J]. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453
[1] | I. Bárány and D. G. Larman, The convex hull of the integer points in a large ball, Mathematische Annalen, 312 (1998), 167-181. doi: 10.1007/s002080050217 |
[2] | A. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New Perspectives in Algebraic Combinatorics, 38 (1999), 91-147. |
[3] | X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics, Arch. Rational Mech. Anal., 164 (2002), 341-381. doi: 10.1007/s00205-002-0218-5 |
[4] | M. Beck and S. Robins, Computing the Continuous Discretely: Integer Point Enumeration in Polyhedra, Undergraduate Texts in Mathematics, Springer-Verlag, 2007. |
[5] | A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems, Mathematical Models and Methods in Applied Sciences, 17 (2007), 985-1037. doi: 10.1142/S0218202507002182 |
[6] | J. G. Van der Corput, Over Roosterpunten in het Platte vlak (de Beteekenis van de Methoden van Voronoi en Pfeiffer), Noordhoff, 1919. |
[7] | B. Dacorogna and C.-E Pfister, Wulff theorem and best constant in Sobolev inequality, Journal de mathématiques pures et appliquées, 71 (1992), 97-118. |
[8] | A. Eichler, J. Hafner, J. Furthmüller and G. Kresse, Structural and electronic properties of rhodium surfaces: an ab initio approach, Surface Science, 346 (1996), 300-321. doi: 10.1016/0039-6028(95)00906-X |
[9] | I. Fonseca, The Wulff theorem revisited, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432 (1991), 125-145. doi: 10.1098/rspa.1991.0009 |
[10] | C. Herring, Some theorems on the free energies of crystal surfaces, Physical Review, 82 (1951), 87-93. doi: 10.1103/PhysRev.82.87 |
[11] | M. N. Huxley, Exponential sums and lattice points III, Proceedings of the London Mathematical Society, 87 (2003), 591-609. doi: 10.1112/S0024611503014485 |
[12] | preprint, arXiv:math/0410522v1. |
[13] | C. Mora-Corral, Continuum limits of atomistic energies allowing smooth and sharp interfaces in 1D elasticity, Interfaces and Free Boundaries, 11 (2009), 421-446. doi: 10.4171/IFB/217 |
[14] | G. A. Pick, Geometrisches zur Zahlenlehre, Sitzenber. Lotos Naturwissen Zeitschrift (Prague), 19 (1899), 311-319 |
[15] | J. E. Reeve, On the volume of lattice polyhedra, Proc. London Math. Soc., 3 (1957), 378-395. |
[16] | P. Rosakis, Surface and Interfacial Energy in Three Dimensional Crystals, in progress, (2014). |
[17] | J. D. Sally and P. Sally, Roots to research: A vertical development of mathematical problems, American Mathematical Society, (2007). |
[18] | A. V. Shapeev, Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions, Multiscale Modeling and Simulation, 9 (2011), 905-932 doi: 10.1137/100792421 |
[19] | F. Theil, Surface energies in a two-dimensional mass-spring model for crystals, ESAIM Math. Model. Numer. Anal., 45 (2011), 873-899 doi: 10.1051/m2an/2010106 |
[20] | K.-M. Tsang, Counting lattice points in the sphere, Bull. London Math. Soc., 32 (2000), 679-688. doi: 10.1112/S0024609300007505 |