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Abstract. We investigate connections between the continuum and atomistic
descriptions of deformable crystals, using certain interesting results from num-

ber theory. The energy of a deformed crystal is calculated in the context of a

lattice model with general binary interactions in two dimensions. A new bond
counting approach is used, which reduces the problem to the lattice point prob-

lem of number theory. The main contribution is an explicit formula for the

surface energy density as a function of the deformation gradient and bound-
ary normal. The result is valid for a large class of domains, including faceted

(polygonal) shapes and regions with piecewise smooth boundaries.

1. Introduction. This article is concerned with the derivation of continuum sur-
face energy from a standard lattice model, by exploiting results related to certain
lattice point problems of number theory, e.g. [1, 4, 11, 12, 14].

We study the energy of a crystal, modelled as the part of a Bravais lattice L
contained in a reference region Ω ⊂ Rd, with atoms (elements of Ω∩L) interacting
through a pair potential ϕ. The potential may have unrestricted range but must
decay fast enough. The crystal is subjected to a smooth deformation y : Ω → Rd.
The energy under consideration is

E{Ω, y} =
∑

x∈Ω∩L

∑
z∈(Ω∩L)\x

ϕ (|y(z)− y(x)|) (1)

To approach the continuum limit, one may scale the lattice, i.e., replace L by εL
and rescale the potential to ϕε = ϕ( ·ε ), then study asymptotics of the energy as
ε → 0 [3, 13]. Equivalently, one can rescale the region to rΩ and the deformation
to yr = ry( ·r ), with r = 1/ε, but leave L and ϕ unscaled.

The aim of this paper is to write the discrete energy (1.1) in the canonical form
of continuum mechanics, with emphasis on its dependence on the geometry of the
boundary ∂Ω. We describe our main results, Propositions 4.3 and 5.1. For the case
d = 2, suppose Ω is a convex region whose boundary is piecewise smooth and may
contain crystallographic facets (subject to certain restrictions) with outward unit
normal n, and that the deformation is homogeneous, y(x) = Fx, x ∈ Ω for some1
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1M2×2

+ is the set of 2× 2 matrices with positive determinant.
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F ∈M2×2
+ . Proposition 4.3 shows that the energy (1) satisfies

E{kΩ, y} =

∫
kΩ

W (F )dx+

∫
k∂Ω

γ̂(F, n)ds+ o(k), (2)

as k → ∞, k ∈ Z. Here W (F ) is given by the Cauchy-Born formula ((5) below)
and kΩ = {z : z = kx, x ∈ Ω} is the dilated region. The new aspect of this
result is the explicit computation of the surface energy density function γ̂; see (9)
below. It turns out that the dependence of γ̂(F, n) on the normal n involves a
dense set of discontinuities (Proposition 4.4). As a result, the hypotheses of the
standard surface energy minimization theorem yielding the Wulff shape, may not
be fulfilled in general [7], [9]. This pathological behavior is due to geometrical
reasons, stemming from the difference between the continuum volume |Ω| and what
is sometimes termed the “discrete volume” #(Ω ∩ L), cf. [4] (associating a cell of
unit volume to each atom in the discrete body Ω∩L). These difficulties are resolved
in Proposition 5.1, where the energy is written in the alternative form

E{kΩ, y} =

∫
Ω(k)

W (F )dx+

∫
∂Ω(k)

γ◦(F, n)ds+ o(k), (3)

as k →∞, k ∈ Z. Here Ω(k) is a suitably defined region containing the same lattice
points as kΩ, namely Ω(k) ∩ L = kΩ ∩ L, thus the discrete energy is the same.
On the other hand, Ω(k) is constructed so that its continuum and discrete volumes
coincide to order o(k). Specifically, when Ω is a lattice polygon (i.e., its vertices are
lattice points), then Ω(k) is the rational polygon obtained by translating each side
of kΩ outwards by half the distance to the next crystallographic plane with the same
normal. However, Ω(k) is not a dilation of Ω in general. In this case, the dominant
part of the o(k) term in (3) is an O(1) corner energy that is obtained exactly. Our
main contribution is the following explicit formula for the surface energy density
γ◦ : M2×2

+ × S1 → R:

γ◦(F, n) = −1

4

∑
w∈L\{0}

|w · n|ϕ(|Fw|). (4)

Unlike γ̂ in (2), γ◦(F, ·) is Lipschitz on S1, thus it abides by the hypotheses of the
Wulff theorem.

On the other hand, if Ω is a smooth C2 strictly convex region, on may choose
Ω(k) = kΩ; moreover (3) then holds for any real (not only integer) sequence k →∞;
see Proposition 5.1.

Formula (4) for the surface energy density is analogous to the well-known Cauchy-
Born formula for the stored energy function in the first term of (3):

W (F ) =
1

2

∑
w∈L\{0}

ϕ(|Fw|). (5)

The first rigorous derivation of continuum energy functions from atomistic models
is due to Blanc, Le Bris and Lions [3], who study (among other problems) the
asymptotics of the energy2 of a crystal Ω ∩ εL, subject to a prescribed smooth
deformation y : Ω → R3 as ε → 0. The dominant term is the usual elastic energy∫

Ω
W (∇y(x))dx with W given by (5). The next term, of order ε in Theorem 3 of

[3], is a surface integral over ∂Ω; the integrand depends on the deformation gradient
and the geometry of ∂Ω. The form of this surface energy is not explicit. Terms

2The energy in [3] is divided by #(Ω ∩ εL) and has rescaled potential ϕε.
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of order ε2 include a volume integral of an explicitly determined higher gradient
energy, but also surface terms; the latter are left unspecified.

As shown in one dimension by Mora-Corral [13], the higher order terms in the
asymptotic expansion of the energy in powers of ε depend on the choice of the
sequence of ε → 0. In Theorem 3 of [3], this choice is restricted by the hypothesis
that there exist a sequence ε = εk → 0 as k → ∞, such that #(Ω ∩ εkL) = |Ω|/εdk
(in dimension d). Letting r = 1/ε and scaling Ω instead of the lattice, this means
that for some sequence rk →∞,

#(rkΩ ∩ L) = |rkΩ|. (6)

In the present work we rely on bond counting arguments instead of asymptotics to
a large extent. A byproduct of this approach is an explanation of this sequential
dependence issue. Our method hinges on finding, for each w ∈ L, the w-bond
number of Ω:

Nw(Ω) = #{x : x ∈ Ω ∩ L, x+ w ∈ Ω ∩ L}, (7)

that is, the number of pairs of atoms within Ω separated by a given vector w. For
large r, the dominant contribution to Nw(rΩ) is #(rΩ∩L). Finding the asymptotics
of #(rΩ ∩ L) as r → ∞ is the lattice point problem of number theory [4, 12, 20].
This reduces to studying the lattice point remainder R(r) = #(rΩ ∩ L) − |rΩ|,
the difference of the two sides of (6). In the context of crystals, letting each atom
have unit mass, and since the lattice cell in Zd has unit measure, the continuum
mass density should equal 1. Thus R(r) = #(rΩ ∩ L) − |rΩ| is the difference of
the discrete and the continuum mass of the body, which do not coincide in general.
This causes problems with the continuum notion of mass density; see Remark 10.
Another difficulty is that fixing the (discrete) mass of the body in surface energy
minimization problems is not equivalent to the traditional volume constraint.

In two dimensions, the problem of characterizing R(r) is open for general domains
with piecewise C1 boundary, while even the Gauss circle problem (Ω the unit disk,
L = Z2) is not completely settled [11]. Through (7), the lattice point remainder
enters our estimates for the energy E{rΩ, yr}, whose asymptotic form thus depends
on the sequence rk through R(rk). This can be problematic as R is discontinuous
and highly oscillatory. In general, the behavior of R(r) depends strongly on the
shape of ∂Ω. For Ω a lattice polygon (one whose vertices are lattice points), R(r) is
of same order as the surface energy—R(r) = O(rd−1) in dimension d—and can be
characterized explicitly; see, e.g., Lemma 2.1 below. For smooth convex domains
in R2, as shown by van der Corput [6], R(r) = O(r2/3), between the orders of the
surface and the gradient energy of [3], but difficult to characterize [11].

Hypothesis (6) made by [3] is equivalent to existence of a sequence rk such that
R(rk) = 0, thus it eliminates such undesirable higher order terms from a Riemann
sum of the elastic energy. In addition, it has the desirable property that the con-
tinuum and discrete mass coincide for rkΩ. Unfortunately however, it is not known
for which choices of Ω such a sequence exists. Another approach (see Theil [19]) is
to define the surface energy as the difference of the discrete energy E{rΩ, y} and

a bulk energy of the form #(rΩ∩L)
|rΩ|

∫
Ω
W (F ). Under the hypotheses of Proposition

4.3, for r ∈ Z we find that the resulting surface energy equals the one in (3) and
is thus free from the pathology associated with γ̂ in (2). On the other hand, the
lattice point number #(rΩ∩L) cannot be obtained explicitly for general piecewise
C1 domains, as discussed above. This means that the bulk energy is not explicitly
characterized in this approach. Here we choose to maintain the standard notion of



456 PHOEBUS ROSAKIS

continuum bulk energy,
∫

Ω
W (F ), without the additional discrete factor. This issue

is discussed further in Remark 11.
We summarize our results. Crystals typically occur in faceted form in their

natural state (for instance, the Wulff shape, e.g., [10, 7, 9]). This is because of
surface energetics affecting crystal growth, but also because cleavage fracture creates
new surfaces along special crystallographic planes. This means that they can be
modeled as crystallographic polyhedra, whose facets inhabit crystallographic planes
(that contain a two-dimensional sublattice of L).

In Section 2 we assume that Ω is a lattice polytope, i.e, one whose vertices are
lattice points. This does not sacrifice too much generality over crystallographic
polytopes. Indeed, if Ω is crystallographic polytope, then kΩ is a lattice polytope for
some k ∈ Z. In addition, there is a lattice polytope Ω′ ⊂ Ω, such that Ω′∩L = Ω∩L.
If Ω is convex, then Ω′ = conv{Ω ∩ L}. In view of Theorem 3 of [3], one expects
that the dominant surface energy term does not involve higher gradients of the
deformation. Accordingly, it suffices to assume that the deformation is homogeneous
(affine). To keep the geometry simple, we confine our analysis to two dimensions.
Unlike [3, 13], initially we do not employ a limit process, but rather a bond counting
technique. The computation of the energy is reduced to that of (7). We then show
that this calculation reduces to a number of lattice point problems. The solution
of the latter for lattice polygons is furnished by Pick’s Theorem [14]. The lattice
point remainder R(k) is known exactly (for k ∈ Z) and contributes to the surface
energy explicitly, being of the same order.

In Section 3 we compute the energy of polygonal crystals. For an interatomic
potential of finite but arbitrary range, we obtain the energy of essentially any convex
lattice polygon exactly (Proposition 3.1). This result is not asymptotic and does not
suffer from the sequential dependence issue explored in [13]. Let the deformation be
y(x) = Fx, x ∈ Ω. The energy equals the exact sum of the elastic energy

∫
Ω
W (F )dx

plus the surface energy
∫
∂Ω
γ�(F, n̄)dx, plus the corner energy

∑N
i=1 τ(F, ni, ni−1),

summed over the N vertices of Ω. The surface energy density is explicitly obtained:

γ�(F, n̄) = −1

4

∑
w∈L\{0}

1

|n̄|
(|w · n̄| − 1)ϕ(|Fw|), (8)

where n̄ is a normal to ∂Ω whose components on each facet are the Miller indices
(irreducible integers) of the corresponding lattice plane, and ϕ is the interatomic
potential. The corner energy τ(F, ni, ni−1) is also explicit but more complicated;
apart from F , it depends on the two unit normals of the facets meeting at the ith
vertex.

For an infinite range potential this result retains only asymptotic validity for a
lattice polygon kΩ as k →∞; the three energies just mentioned are the first three
terms of the asymptotic expansion of the energy for large k (Proposition 3.3).

In Section 4, we consider regions with smooth boundaries. Because of its con-
struction based on lattice polygons, the surface energy density (8) is only defined
for “rational” directions of the surface normal; n = (ν1, ν2) ∈ S1 is called rational
if ν2/ν1 is a rational number or ν1 = 0, irrational otherwise. It is natural to ask
how (8) can be extended to irrational normals. When Ω is strictly convex and ∂Ω
is smooth for example, the normal is irrational almost everywhere on ∂Ω. We start
by letting ∂Ω be of class C2 with positive curvature. The key observation is that
the convex hull of all lattice points contained in such an Ω is a lattice polygon. This
allows us to use number-theoretic results on the asymptotic properties of such hulls
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due to Bárány and Larman [1]; see also the survey [12]. Perhaps surprisingly, the
surface energy density for smooth strictly convex regions (Proposition 4.1) is differ-
ent from (8). It is given by (4), where n is the unit normal to ∂Ω and can take on
irrational values. The difference is due to the lattice point remainder R(r) = O(r2/3)
[6, 11], which is now of lower order than the surface energy. As a result, the asymp-
totic expression for the energy of inflated regions rΩ is sequence-independent ; the
sequence of r →∞ is not restricted to be integer but arbitrary.

We then consider more general regions with piecewise C1 boundary that com-
prises flat facets as well as curves with positive curvature. For such regions, the
surface energy density function, now defined for all n ∈ S1, is obtained in Proposi-
tion 4.3:

γ̂(F, n) =

{
γ�(F, n̄), n rational (n̄/|n̄| = n),

γ◦(F, n), n irrational,
(9)

with γ� from (8) and γ◦ from (4). The dependence of the surface energy density
on the normal is rather pathological. Specifically, γ̂(F, ·) : S1 → R is continuous at
irrational n, discontinuous at rational n, and almost nowhere differentiable (Propo-
sition 4.4). Because of this, the surface energy density need not satisfy the usual
hypotheses of the Wulff theorem (determining the domain that minimizes the sur-
face energy under fixed measure); see e.g. [7, 9], but also Remark 8.

In Section 5, we resolve the difficulties due to discontinuous dependence of the
surface energy on the unit normal. This dependence is due to the behavior of the
lattice point remainder of regions with rational boundary normal. We alter the
region Ω so as to change its measure, but not the lattice points it contains. The
goal is that the lattice point remainder of the modified region should be of lower
order than the surface energy. For example, if Ω, hence kΩ, is a lattice polygon,
translate each side of kΩ outwards by half the distance to the next crystallographic
plane with the same normal. This results in a rational polygon Ω(k) that contains
the same lattice points as kΩ. Note, however, that Ω(k) is not a rescaling of Ω in
general. The lattice point remainder of Ω(k) is O(1) as k →∞, of lower order than
the surface energy. This allows us to write the latter in the form

∫
∂Ω(k)

γ◦(F, n)ds.

The associated surface energy density γ◦, given by (4), is Lipschitz continuous in
the unit normal. This and additional considerations discussed in Section 5, show
that γ◦ is the appropriate density for the determination of the Wulff shape that
minimizes the surface energy

∫
∂Ω
γ◦(F, n)ds over a suitable class of regions Ω with

fixed measure [10, 7, 9].
A more realistic approach to surface energy would allow for “relaxation” of atomic

positions from the macroscopic deformation near the boundary. Such deviations
might be determined by minimization of the atomistic energy. This is a formidable
problem in the present setting (more than one dimension, general boundary geom-
etry, arbitrary interaction range, nonconvex potentials). One of the few results in
this direction is due to Braides and Cicalese [5]; they obtain the relaxed surface
energy in one dimension using Γ-convergence. The result is not explicit and seems
difficult to compare quantitatively with the explicit “constrained” energy of Mora-
Corral [13]. In two dimensions, Theil ([19], Theorem 1.4) calculates the relaxed
surface energy of a crystal with quadratic short range potentials; the result is in the
form of a perturbation of the constrained surface energy.

In order to obtain quantitative information on the difference between the relaxed
and constrained surface energies, numerical optimization of the atomistic energy was



458 PHOEBUS ROSAKIS

recently performed for a completely unconstrained, Lennard-Jones two-dimensional
crystal [16]. Atomic positions were allowed to relax from initial positions form-
ing a lattice triangle or hexagon with low Miller-index boundary. The constrained
energy was obtained by minimizing over the deformation gradient matrix of a ho-
mogeneous deformation that the atoms are constrained to follow. It was found that
the difference between the relaxed and constrained surface energies is typically less
than three percent (after the appropriate scaling and bulk energy is accounted for).
This suggests that in some situations the relaxed and constrained surface energies
may be quite close. In analogous one-dimensional computations, the results agree
qualitatively with the conclusions of [5], while the difference between the relaxed
and constrained surface energies is less than one percent. Values of this difference
computed in three dimensions using density-functional theory for low Miller-index
surfaces in various metals are usually less than three percent; see, e.g., [8].

Many of the results presented here, in particular expressions (8) through (9) for
the surface energy density, are valid for three-dimensional crystals as well [16].

2. The bond counting approach. For subsets P , Q of Rn, define the Minkowski
sum P ⊕ Q = {p + q : p ∈ P, q ∈ Q} and write p + Q = {p} ⊕ Q. The lattice is
L = Z2 unless otherwise noted.

Remark 1. All of our results can be immediately adapted to any Bravais Lattice
L∗ by incorporating the linear mapping from L onto L∗ into the deformation. Ex-
pressions like (4) remain valid if L is replaced by L∗, provided the linear mapping
from L onto L∗ has unit Jacobian determinant.

For x = (α, β) ∈ Z2 let

gcd(x) = gcd(|α|, |β|), x̄ =
1

gcd(x)
x, x⊥ = (β,−α).

We assume that the reference region Ω ⊂ R2 is a convex body, or a compact convex
set with nonempty interior. Fix w ∈ L, let x ∈ L and define b = b(x,w) = {z ∈
R2 : z = x + tw, 0 ≤ t ≤ 1} = conv{x, x + w} as the bond starting at x with bond
vector w . The set

Bw(Ω) = {b : b = b(x,w), x ∈ Ω ∩ L, x+ w ∈ Ω ∩ L} (10)

is the set of all w-bonds of Ω (bonds with bond vector w). We will use the abbre-
viation

b0 = b(0, w).

The energy of the homogeneous deformation y(x) = Fx can be written as

E{Ω, y} =
1

2

∑
x∈Ω∩L

∑
w∈L\{0}
x+w∈Ω∩L

ϕ(|Fw|). (11)

The factor of 1/2 occurs since b(x,w) = b(x + w,−w) and the potential ϕ is even
in w. Interchanging the order of summation above we obtain

E{Ω, y} =
1

2

∑
w∈L\{0}

∑
x∈Ω

x+w∈Ω∩L

ϕ(|Fw|)

=
1

2

∑
w∈L\{0}

∑
b∈Bw(Ω)

ϕ(|Fw|) =
1

2

∑
w∈L\{0}

ϕ(|Fw|)
∑

b∈Bw(Ω)

1.
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Evidently, in order to determine the energy, it suffices to calculate, for each w ∈ L,
the w-bond number of Ω, i.e., Nw(Ω) = #Bw(Ω); see (10):

E{Ω, y} =
1

2

∑
w∈L\{0}

ϕ(|Fw|)Nw(Ω). (12)

Clearly the number of w-bonds “starting” in Ω equals the number of lattice points
of Ω:

#{b = b(x,w) : x ∈ Ω ∩ L} = #(Ω ∩ L).

Some of these bonds are not contained in Bw(Ω):

Nw(Ω) = #(Ω∩L)−#Tw(Ω), Tw(Ω) = {b = b(x,w) : x ∈ Ω∩L, x+w 6∈ Ω∩L}.
(13)

For w ∈ L let

S+
w = {x : x ∈ ∂Ω, x+ w 6∈ Ω}. (14)

so that S+
w is the part of ∂Ω through which w points outwards. Denote by T †w(Ω)

the set of all w-bonds that intersect S+
w and terminate outside Ω.

T †w(Ω) = {b : b = b(x,w) ∈ Bw(L), b ∩ S+
w 6= ∅, x+ w 6∈ Ω}. (15)

Some of these bonds “straddle” Ω, that is, have both endpoints outside Ω but
intersect ∂Ω; specifically,

T ‡w(Ω) = {b(x,w) ∈ T †w(Ω) : x 6∈ Ω, x+ w 6∈ Ω}. (16)

Then obviously in view of (13),

Tw(Ω) = T †w(Ω) \ T ‡w(Ω).

As a result,

Nw(Ω) = #(Ω ∩ L)−#T †w(Ω) + #T ‡w(Ω). (17)

Roughly speaking, the number of w-bonds in Ω equals the number of lattice points
in it, minus the number of bonds that traverse the boundary at least once, plus the
number of bonds that traverse the boundary twice. The reason for the splitting (17)
is that each term can be evaluated using results from geometric number theory.

One important case we will consider is when Ω ⊂ R2 is a convex lattice polygon.
In particular, Ω = conv{v1, . . . , vN}, the convex hull of its N vertices vi ∈ L,
i ∈ {1, . . . , N}, which are lattice points. The boundary ∂Ω consists of N facets
Si = conv{vi, vi+1}, where vN+1 = v1 and SN+1 = S1. Letting mi = vi+1 − vi,
m̄i = mi/ gcd(mi), the Miller normal n̄i to Si is n̄i = m̄⊥i , so that gcd(n̄i) = 1. The
number of lattice points in Ω, #(Ω∩L), is addressed by Pick’s Theorem, [14, 15, 4],
a variant of which is the following

Lemma 2.1. Let Ω be a simple closed lattice polygon with facets Si and outward
Miller normal n̄ = n̄i on Si. Then

#(Ω ∩ L) = |Ω|+ 1

2

N∑
i=1

|Si|
|n̄i|

+ 1. (18)

Equivalently, letting θi be the (dihedral) angle between normals of facets meeting at
the ith vertex,

#(Ω ∩ L) =

∫
Ω

1dx+

∫
∂Ω

1

2|n̄|
ds+

N∑
i=1

θi
2π
. (19)
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Proof. Pick’s Theorem [14, 15] states that

|Ω| = #(Ω̊ ∩ L) +
1

2
#(∂Ω ∩ L)− 1 = #(Ω ∩ L)− 1

2
#(∂Ω ∩ L)− 1 (20)

(since Ω is closed). If two neighboring lattice points in a facet Si differ by m̄i ∈ L
(with relatively prime components), then #(Si∩L) = |Si|/|m̄i|+1 while #(∂Ω∩L) =∑N
i=1[#(Si ∩ L) − 1] =

∑N
i=1 |Si|/|m̄i| since each Si contains both its endpoints.

Now the Miller normal n̄i = m̄⊥i , so that |n̄i| = |m̄i| and (18) follows. Also, (19) is
a trivial consequence of (18), given that the sum in (19) equals 1.

Remark 2. The shape of naturally occurring crystals is very often faceted (poly-
hedral). Thus one might start by assuming that Ω is a polygon, though not nec-
essarily a lattice polygon. In that case though, there is a lattice polygon Ω′ such
that Ω ∩ L = Ω′ ∩ L. For example, if Ω is convex, let Ω′ = conv{Ω ∩ L}. If Ω is a
crystallographic polygon, so that its facets are contained in crystallographic lines,
then its vertices need not be lattice points. However, one can then show that there
is some integer k such that kΩ is a lattice polygon.

Remark 3. Eq. (19) has an interesting interpretation. It exactly equates a dis-
crete quantity (number of atoms in Ω) with a continuum expression: the “volume”
integral of a bulk density, plus the “surface” integral of a surface density, plus con-
tributions of corners. We will show in the sequel that both the w-bond number
Nw(Ω) and the energy admit analogous representations.

Recall that S = ∂Ω consists of N facets Si, i = 1, . . . , N , each with unit normal
ni, outward with respect to Ω. Define

J(w) = {i ∈ Z : 1 ≤ i ≤ N,ni · w > 0} , S+
w =

⋃
i∈J(w)

Si, (21)

The first term in (17) is given by (18). Turning to the second term, let Pi(w)
be the parallelogram b0 ⊕ Si with two parallel sides Si and w + Si if w · ni > 0,
Pi(w) = ∅ otherwise. Then it is easy to see that b(x,w) ∈ T †w(Ω) if and only if
x+ w ∈ Pi(w) \ Si for some i ∈ J(w). Thus

T †w(Ω) = {b(x,w) : x+w ∈ P (w)∩L}, P (w) =
⋃

i∈J(w)

Pi(w)\Si = (b0⊕S+
w )\S+

w .

(22)
It follows that

#T †w(Ω) = #(P (w) ∩ L). (23)

In general, P (w) is not convex. However, if one defines

Ωw = b0 ⊕ Ω =
⋃

t∈[0,1]

(tw + Ω), (24)

then Ωw is a convex lattice polygon, being the Minkowski sum of two such sets. In
fact,

Ωw = conv{Ω, w + Ω}. (25)

Also P (w) = Ωw \ Ω, while Ω ⊂ Ωw. This and (23) imply

#T †w(Ω) = #(Ωw ∩ L)−#(Ω ∩ L). (26)
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The right hand side can be evaluated using Lemma 2.1 for each term. Note that
∂Ωw comprises ∂Ω \S+

w , w+S+
w and two w-bonds joining these two pieces. In view

of (21) the result is

#T †w(Ω) =
∑

i∈J(w)

|Si|w · ni + |b0|/|w̄| =
N∑
i=1

|Si|〈w · ni〉+ gcd(w), (27)

where 〈x〉 = (x+ |x|)/2 for x ∈ R and n = ni on Si is the unit outward normal to
∂Ω. Here |b0|/|w̄| = gcd(w).

It remains to evaluate T ‡w(Ω). If a bond b = b(x,w) terminates in w + Ω, or
x + w ∈ w + Ω, then x ∈ Ω. This together with (16) and (22) immediately shows
that b ∈ T ‡w(Ω) if and only if x+ w ∈ P (w) \ w + Ω. Since P (w) = Ωw \ Ω,

#T ‡w(Ω) = #(Q(w) ∩ L), Q(w) = Ωw \ (Ω ∪ (w + Ω)). (28)

We will show next that for |w| small enough compared to the facets of Ω, Q(w)
consists of one or two triangles, each having a vertex at one of the two ends of the
simple polygonal line S+

w . For example, if Ω = [0, 3]2 and w = (1, 1), Q(w) consists
of the triangle with vertices (0, 3), (1, 4) and (1, 3) and its image under reflection
about the (1, 1)-axis. Any b ∈ T ‡w(Ω) intersects two different facets of ∂Ω by (16).
Let

δ = δ(Ω) = min
1≤i,j≤N
vi 6∈Sj

dist(vi, Sj) (29)

where vi ∈ Z2 are the vertices of Ω. The shortest line segment with endpoints on
non-adjacent facets has length δ. If |w| < δ, b ∈ T ‡w(Ω) necessarily intersects two
adjacent facets, say Si and Si−1 meeting at some vertex vi, with outward normals
ni, ni−1 (where n0 = nN ). Since both endpoints of b are outside Ω, w · ni and
w ·ni−1 must have opposite signs. Then in case w ·ni > 0 and w ·ni−1 < 0, x+w is
in the triangle with vertices vi, vi+w and the intersection of Si and w+Si−1, which
is therefore part of Q(w). If the reverse inequality holds, the triangle with vertices
vi, vi+w and the intersection of w+Si and Si−1 is part of Q(w). Regarding lattice
point count, both cases reduce to the triangle with base b0 and sides normal to ni
and ni−1:

T (w, ni, ni−1) = conv{0, w, q}, q·ni = 0, (q−w)·ni−1 = 0, (w·ni)(w·ni−1) < 0.
(30)

In addition, the relative interior of the base b(vi, w) of the triangle with endpoints
vi, vi+w is also part of Q(w) and contains gcd(w)−1 lattice points. Consequently,
if |w| < δ,

#T ‡w(Ω) =
∑

1≤i≤N
(w·ni)(w·ni−1)<0

[gcd(w)− 1 + #T (w, ni, ni−1)]. (31)

Unfortunately, T (w, ni, ni−1) is not a lattice polygon in general, since q need not
have integer coordinates and Lemma 2.1 does not apply. Instead, we count the
lattice points inside the triangle more directly:

Lemma 2.2. Suppose (w ·ni)(w ·ni−1) < 0 and let T = T (w, ni, ni−1) ⊂ R2 be the
triangle of (30). Let u ∈ Z2 be such that {u, w̄} is a lattice basis for Z2. Then

#(T̊ ∩ L) = NT (w, ni, ni−1),
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where for w ∈ Z2 and unit n, m ∈ R2 with (w · n)(w ·m) < 0,

NT (w, n,m) = s
(
q · w̄⊥, q · u⊥, gcd(w)

)
, q =

m · w
m · n⊥

n⊥ (32)

and s : R× R× Z→ R is given by

s(α, β, k) = (1− d |α| e)(k − 1) +

d |α| e−1∑
j=1

(⌈
β − k
|α|

j

⌉
−
⌊
β

|α|
j

⌋)
(33)

with s(0, β, k) = 0.

Proof. Let n = ni, m = ni−1. Since in (30) q · n = 0, q = λn⊥ for some λ ∈
R. Then solving (q − w) · m = 0 for λ gives q as in the second of (32). Let
w̄ = w/ gcd(w) = (w̄1, w̄2) and suppose u = (u1, u2) ∈ Z2 solves u · w̄⊥ = 1, or
w̄2u1− w̄1u2 = 1. This is solvable by Bezout’s Lemma since gcd(w̄1, w̄2) = 1. Then
the matrix A = col(u, w̄) has unit determinant u · w̄⊥ = 1 and integer entries, hence
so does A−1 = row(w̄⊥, u⊥). As a result {u, w̄} is a lattice basis for Z2, while the
linear transformation with matrix A−1 is lattice invariant . Now T ′ = A−1T has
vertices 0, (0, k) ∈ Z2 and p = (α, β), where

k = gcd(w), (α, β) = (q · w̄⊥, q · u⊥); (34)

in general p is not a lattice point. Suppose for the moment that α > 0. Then

T̊ ′ ∩ L =

{
(x1, x2) ∈ Z2 : 0 < x1 < α,

β

α
x1 < x2 < k +

β − k
α

x1

}
.

For x ∈ R let bxc′ be the greatest integer strictly less than x and dxe′ the least
integer strictly greater than x. Then the number of lattice points on a segment
{(x1, x2) : x1 = j, µ < x2 < ν}, where j ∈ Z and µ < ν ∈ R equals bνc′ − dµe′ + 1.
Hence,

#(T̊ ′ ∩ L) =

bαc′∑
j=1

(⌊
k +

β − k
α

j

⌋′
−
⌈
β

α
j

⌉′
+ 1

)
.

Since bxc′ = dxe − 1 and dxe′ = bxc + 1, the above reduces to s(α, β, k) in (33).

It then follows from (34) and (32) that #(T̊ ′ ∩ L) = NT (w, n,m). The linear

transformation with matrix A is lattice invariant and thus #(AT̊ ′ ∩L) = #(T̊ ′ ∩L)
[2], while AT ′ = T . In case α < 0, reflect T ′ by replacing α by |α|. If α = 0 then

T̊ ′ = ∅.

This together with (31) gives

#T ‡w(Ω) =
∑

1≤i≤N
(w·ni)(w·ni−1)<0

[gcd(w)− 1 +NT (w, ni, ni−1)]. (35)

To obtain an expression for the w-bond number of Ω, merely substitute (18), (27)
and (35) into (17) and rearrange. Observe that for a given bond vector w, Nw(Ω)
is completely determined by the area |Ω|, the lengths |Si| of the facets, and their
orientations through the Miller normals n̄i:
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Lemma 2.3. Suppose |w| < δ, cf. (29). Then the w-bond number of Ω is given by

Nw(Ω) = |Ω|+ 1

2

N∑
i=1

|Si|
|n̄i|

(1− 2〈w · n̄i〉) + 1− gcd(w)

+
∑

1≤i≤N
(w·ni)(w·ni−1)<0

[gcd(w)− 1 +NT (w, ni, ni−1)].
(36)

Remark 4. The above can readily be written in a form similar to (19):

Nw(Ω) =

∫
Ω

1dx+

∫
∂Ω

g(w, n̄)ds+

N∑
i=1

h(w, ni, ni−1), w ∈ L,

as a bulk integral, plus a “surface” integral, plus corner contributions, for suitable
normal-dependent densities g and h. See also Remark 3.

The present approach of counting bonds has certain similarities with the bond
density lemma of Shapeev [18].

3. Surface energy of lattice polygons. We are now in a position to compute
the energy. Consider first a finite-range potential that only involves bonds within
a bounded set. Let the bond range R ⊂ L \ {0} be symmetric, so that w ∈ R =⇒
−w ∈ R. Allow the interatomic potential ϕw(·) to depend explicitly on w, require

ϕw(·) = ϕ−w(·) ∀w ∈ L, ϕw(·) ≡ 0 ∀w ∈ L \R, (37)

and define the energy of the homogeneous deformation y(x) = Fx, x ∈ Ω,

E{Ω, y} =
1

2

∑
x∈Ω∩L

∑
w∈R

x+w∈Ω∩L

ϕw(|Fw|), (38)

where ϕw : (0,∞)→ R is not restricted to be regular in any way.

Proposition 3.1. For F ∈ M2×2
+ , m̄ ∈ Z2 and unit n,m ∈ R2 define the stored

energy function

W (F ) =
1

2

∑
w∈R

ϕw(|Fw|), (39)

the surface energy density function

γ�(F, m̄) = −1

4

∑
w∈R

1

|m̄|
(|w · m̄| − 1)ϕw(|Fw|) (40)

and the vertex energy function

τ(F, n,m) =

1

2

∑
w∈R

{[
Hn,m(w)− 1

2π
θ(n,m)

]
(gcd(w)− 1) +Hn,m(w)NT (w, n,m)

}
ϕw(|Fw|),

(41)

where the sector step function

Hn,m(w) =

{
1 if (w · n)(w ·m) < 0,

0 if (w · n)(w ·m) ≥ 0,
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and θ(n,m) is the angle between n and m, while NT is defined in Lemma 2.2.
Suppose the bond range R is bounded with maxw∈R |w| < δ, cf. (29). Let n̄ = n̄i on
Si. Then the following expression is exact:

E{Ω, y} =

∫
Ω

W (F )dx+

∫
∂Ω

γ�(F, n̄)ds+

N∑
i=1

τ(F, ni, ni−1). (42)

Proof. As in the argument leading to (12), one can write (38) as

E{Ω, y} =
1

2

∑
w∈R

Nw(Ω)ϕw(|Fw|).

By the hypothesis on R, Lemma 2.3 holds for all w ∈ R. Multiply (36) by ϕw(|Fw|)
and sum the result over w ∈ R. Interchange the order of summations, noting that∑

w∈R
〈w · n̄i〉ϕw(|Fw|) =

1

2

∑
w∈R
|w · n̄i|ϕw(|Fw|)

by the symmetry of R and the first of (37), also that the sum of the (dihedral) angles

between normals of facets meeting at vertices
∑N
i=1 θ(ni, ni−1) = 1, and finally that

summation over w in the sector of R where (w · n)(w ·m) < 0 can be replaced by
summation over R provided the summand is multiplied by Hn,m(w).

Remark 5. The above result is not asymptotic but exact, since we have made no
use of asymptotics so far. It applies to convex lattice polygons that are arbitrary
apart from the restriction that the bond range is smaller than the characteristic size
δ of (29).

Next we consider infinite-range potentials, where R = L \ {0}. We seek the
energy of the kth dilation kΩ of the region Ω, k ∈ Z+. Here we have no choice
but to let k be an integer; otherwise kΩ is not a lattice polygon in general. The
following will be useful.

Lemma 3.2. Let M be a positive integer. For ρ > 0 sufficiently large and p > 0,∑
w∈ZM , |w|>ρ

|w|−(M+p) < Cρ−p

(where C > 0 is independent of ρ and p).

Proof. Let x̂ : RM → ZM be the map x̂(
∑M
i=1 xiei) =

∑M
i=1bxicei, xi ∈ R, with ei

standard basis vectors for RM . Thus |x− x̂(x)| ≤ D, the unit cell diameter. Write
x̂(x) = x + (x̂(x) − x) and invoke the triangle inequality to conclude |x| − D ≤
|x̂(x)| ≤ |x| + D. Then also |x̂(x)| ≥ ρ implies |x| > ρ −D, while |x̂(x)|−(M+p) ≤
||x| −D|−(M+p). Thus Aρ = {x ∈ RM : |x̂(x)| ≥ ρ} ⊂ RM \Bρ−D(0).

0 <
∑

w∈ZM\Bρ(0)

|w|−(M+p) =

∫
Aρ

|x̂(x)|−(M+p)dx ≤ C
∫ ∞
ρ−D

(r −D)−(M+p)rM−1dr

≤ C
∫ ∞
αρ

(αr)−(M+p)rM−1dr = C

∫ ∞
ρ

r−(1+p)dr = Cρ−p,

where α ∈ (0, 1) is such that αρ = ρ−D, so that α ∈ (1/2, 1) for ρ > 2D and C is
a generic constant with possibly different values each time it appears.

For convenience we suppose that the interatomic potential ϕw(·) = ϕ(·) (does
not explicitly depend on w), although this is not essential.
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Proposition 3.3. Suppose the interatomic potential ϕ : (0,∞) → R satisfies the
following: for each r0 > 0 and for some constants C = C(r0) and d > 2,

|ϕ(r)| < Cr−(2+d) for r ∈ [r0,∞). (43)

Let the bond range R = L \ {0} in (38) and in the definitions (39) of W , (40) of
γ� and (41) of τ . Then as k →∞, k ∈ Z+,

E{kΩ, y} = k2

∫
Ω

W (F )dx+ k

∫
∂Ω

γ�(F, n̄)ds+

N∑
i=1

τ(F, ni, ni−1) +O(k2−d). (44)

Proof. Note that δ(kΩ) = kδ(Ω) = kδ in (29), so that Lemma 2.3 for kΩ holds
provided

w ∈ Rk = (L \ {0}) ∩Bkδ(0) = (L ∩Bkδ(0)) \ {0}. (45)

Split the energy as follows:

E{kΩ, y} =
1

2

∑
w∈Rk

Nw(kΩ)ϕ(|Fw|) +
1

2

∑
w∈L\Rk

Nw(kΩ)ϕ(|Fw|). (46)

Now it is clear that for any w ∈ L and k ∈ Z+,

0 ≤ Nw(kΩ) ≤ #(kΩ ∩ L) < Ck2

for some constant C > 0, since all bonds within kΩ start in kΩ and by Lemma 2.1
applied to kΩ (the dominant term in (18) would be |kΩ| = k2Ω). This provides a
bound for the second term in (46):∣∣∣∣∣∣

∑
w∈L\Rk

Nw(kΩ)ϕ(|Fw|)

∣∣∣∣∣∣ <Ck2
∑

w∈L\Rk

|ϕ(|Fw|)|

< Ck2
∑

w∈Z2, |w|>kδ

|αw|−(2+d) < Ck2−d,

(47)

where we invoked (43), α > 0 is such that |Fz| > α|z| for all z ∈ R2 and we used
Lemma 3.2 with ρ = kδ and p = d; and C is a generic constant with possibly
different values each time it appears.

The first term in (46) is covered by Proposition 3.1 applied to kΩ, since w ∈ Rk
means |w| < kδ = δ(kΩ). Noting that |kΩ| = k2|Ω|, |kSi| = k|Si|, Proposition 3.1
implies

1

2

∑
w∈Rk

Nw(kΩ)ϕ(|Fw|) = k2|Ω|Wk(F ) + k

N∑
i=1

|Si|γk(F, n̄i) +

N∑
i=1

τk(F, ni, ni−1),

(48)
where Wk, γk and τk are given by (39), (40) and (41) with Rk in place of R; see (45).
Recalling that W , γ� and τ are defined by the same equations with R = L \ {0},
using Lemma 3.2 with M = 2, we may estimate (omitting arguments)

|W −Wk| < Ck−d, |γ − γk| < Ck1−d, |τ − τk| < Ck2−d. (49)

We only demonstrate the third of these, the others being easier. Recall that in (41),
NT is the number of lattice points in the interior of a certain triangle T whose area
is bounded above by C|w|2, cf. Lemma 2.2. By Pick’s Theorem (20) (applied to the
lattice parallelogram of smallest area A containing T , and having the same base)
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the area A exceeds NT hence NT < C|w|2. Also gcd(w) ≤ |w|, |Hn,m| ≤ 1, hence
we have from (41),

|τ − τk| <
∑

w∈Z2, |w|>kδ

C|w|2|ϕ(|Fw|)| < C
∑

w∈Z2, |w|>kδ

|w|−d < Ck2−d

proceeding as in (47). By (49), replacing W , γ� and τ by Wk, γk and τk in (48)
produces an error of O(k2−d). Combine this with (47) and (46) to obtain (44).

4. Surface energy for more general boundaries. We examine the surface en-
ergy density function γ� in (40) more closely, paying attention to its dependence on
the surface normal. Due to its construction, γ�(F, ·) : M̄ → R is defined only for
“rational directions”, that is, on the set of Miller normals

M̄ = {n̄ : n̄ = (ν1, ν2) ∈ Z2, gcd(ν1, ν2) = 1}. (50)

Using (39), we rewrite γ� in (40) as

γ�(F, n̄) = −1

4

∑
w∈R
|w · n|ϕ(|Fw|) +

1

2|n̄|
W (F ), n = n̄/|n̄|, n̄ ∈ M̄. (51)

The first term (involving the sum) reduces to a function of the unit normal n, and
trivially admits a unique continuous extension onto the whole of the unit circle S1.
There is no such extension for the second term. Define the rational and irrational
direction sets as

S1
R = {n : n ∈ S1, n = n̄/|n̄|, n̄ ∈ M̄}, S1

I = S1 \ S1
R, (52)

respectively, where M̄ is defined in (50). Thus a vector is rational (irrational) if the
tangent of the angle it makes with the usual basis vectors is rational (irrational).
Since facets of lattice polygons have rational normals, the surface energy density
γ� is defined only for such directions. Note that for each n ∈ S1

R there is a unique
n̄ = n̄(n) ∈ M̄ with n̄/|n̄| = n. The question arises as to how one can extend the
definition of γ̃�(F, n) = γ�(F, |n̄(n)|n), n ∈ S1

R, to the whole of S1. This is related
to another question: what is the surface energy when ∂Ω is smooth, for example
∂Ω = S1? It turns out that this question can be answered, at least partially, using
the present approach. The basic idea is that even if ∂Ω is not polygonal, but smooth,
the convex hull of all lattice points inside Ω is a convex lattice polygon.

Proposition 4.1. Let Ω ⊂ R2 be strictly convex and ∂Ω be C2 with positive curva-
ture. Suppose ϕ is as in Proposition 3.3, but with d > 3. Define the reduced surface
energy density γ◦ : M2×2

+ × S1 → R by

γ◦(F,m) = −1

4

∑
w∈L\{0}

|w ·m|ϕ(|Fw|), F ∈M2×2
+ , m ∈ S1. (53)

Then for any sequence r = rk →∞ as k →∞ (rk ∈ R+, k ∈ Z+),

E{rΩ, y} = r2

∫
Ω

W (F )dx+ r

∫
∂Ω

γ◦(F, n)ds+O(r2/3), (54)

where n : ∂Ω→ S1 is the unit outward normal to ∂Ω.

Remark 6. This asymptotic result for inflated regions rΩ, is sequence-independent ;
that is, the sequence of r →∞ is not restricted to be integer but is arbitrary. This
occurs because the lattice point remainder R(r) = O(r2/3) [6, 11] is of lower order
than the surface energy. In contrast, the surface energy for lattice polygons, or
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the more general regions considered in Proposition 4.3 depends on the sequence of
dilation factors. The dependence on the dilation sequence is thoroughly studied in
one dimension in [13].

Proof. For each r > 0, let Ωr = conv(rΩ ∩ L). Then Ωr ⊂ rΩ is a convex lattice
polygon, while rΩ ∩ L = Ωr ∩ L. Hence, in view of (11),

E{rΩ, y} = E{Ωr, y}, (55)

where y(x) = Fx for x ∈ rΩ. The calculation of E{Ωr, y} proceeds as above with
one exception. For any w ∈ L, the condition |w| < δ(Ωr) (see (29)) may be violated
for large enough r, since facets may become as small as the shortest lattice bonds.
This affects Nw(Ωr), but only the part regarding #T ‡w(Ωr)—see (17), (28)—which
we merely need to estimate. Given any convex body D ⊂ R2, let

Q̂w(D) = (b0 ⊕D) \ [D ∪ (w +D)], Qw(D) = Q̂w(D) ∩ L,

where b0 = conv{0, w}. Then by (28) and (25), #T ‡w(Ωr) = #Q(Ωr). Since Ωr ⊂
rΩ, and rΩ \ Ωr contains no lattice points, (28) and (25) imply

Qw(Ωr) ⊂ Qw(rΩ). (56)

Let q, q′ ⊂ ∂(rΩ) be the two points of ∂(rΩ) where the tangent vector is w, and
Brρ ⊂ rΩ be a disk with ∂Brρ tangent to ∂(rΩ) at q, where ρ is the smallest radius
of curvature of ∂Ω. Also let B′rρ ⊂ rΩ be a similar disk tangent to ∂(rΩ) at q′.
Then for r large enough it is easy to see that

Qw(rΩ) ⊂ Qw(Brρ) ∪Qw(B′rρ). (57)

The connected component of Q̂w(Brρ) containing q is contained inside an isosceles
triangle with base a w-bond (with length |w|), and height the distance from the base
middle to the intersection of the two circles ∂Brρ and w + ∂Brρ; these are tangent
to the base at its endpoints. The triangle height is thus bounded by C(r)|w|, where
C(r) approaches zero for large r. A crude but sufficient upper bound of the lattice
point count of this set, hence also of the right hand of (57), is C|w|2, with C inde-
pendent of r. In view of of (56), #T ‡w(Ωr) is also bounded by C|w|2. This estimate
replaces the sum over vertices (second sum) in (36). Since

∑
w∈L\{0} |w|pϕ(|Fw|)

are absolutely convergent for p = 0, 1, 2 as one infers from Lemma 3.2, it follows
that

E{Ωr, y} =|Ωr|W (F ) +

∫
∂Ωr

γ�(F, n̄)ds+O(1)

=

[
|Ωr|+

∫
∂Ωr

1

2|n̄|
ds

]
W (F ) +

∫
∂Ωr

γ◦(F, n)ds+O(1)

=# (rΩ ∩ L)W (F ) +

∫
∂Ωr

γ◦(F, n)ds+O(1). (58)

Here we have used (51) and (53), then (19), in which the last term (sum) equals 1,
together with the fact rΩ∩L = Ωr ∩L. We turn to

∫
∂Ωr

γ◦(F, n)ds. Recalling (53),

a typical term involves ∫
∂Ωr

|w · n|ds = 2|Projw⊥∂Ωr||w|, (59)

|Projw⊥∂Ωr| being the length of the projection of ∂Ωr onto a line perpendicular to
w. This follows after splitting ∂Ωr into two pieces, over which w ·n is ≥ 0 and ≤ 0,
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and using the Divergence Theorem on each. Next, we show that

0 < |Projw⊥∂(rΩ)| − |Projw⊥∂Ωr| < C|w|2, (60)

where the constant C is independent of r > 1 and w. There are lattice points z−

and z+ ∈ ∂Ωr∩L, such that Ωr lies entirely between lattice lines l−, l+ with normal
w⊥ and containing z−, z+, respectively. Consider the part of ∂(rΩ) that lies outside
the strip bounded by l+ and l−. It consists of two disjoint arcs, one to the “right”
of l+ and the other to the “left” of l−. The length of the projections of these two
arcs onto the w⊥ axis equals the difference in (60). Let c+ be the arc to the right
of l+ (with endpoints in l+). Let s be the region bounded by c+ and l+. The only
lattice points it contains are in l+. This is true since rΩ\Ωr is free of lattice points.
By the strict convexity of rΩ, there is a unique q ∈ c+ where the normal to c+

is w⊥. Consider the osculating circle of c+ at q. Let s′ ⊂ s be the portion of the
osculating disc contained in s; it is a circular segment whose height (in the direction
w⊥) equals the thickness of s (the length of its projection onto a line along w⊥).
The radius of the circle is rρ for some ρ > 0. There are two possibilities. Either
s′ lies between l+ and the next lattice line l′ with normal w⊥ to the right of l+, or
it extends beyond l′ to the right. In the first case the height of the segment s′ is
1/|w̄|, the distance between adjacent lattice lines with normal w⊥. In the second
case, let s′′ be the portion of s′ to the right of l′. Then s′′ is also a circular segment
and free of lattice points. Suppose its chord length is c and height is h. Since the
radius of the circular arc is rρ, we have h2 − 2rρh + c2/4 = 0. Solving this for
h/(rρ) and using the inequality 1−

√
1− x < x for 0 < x < 1 yields h < c2/(4rρ).

Now since the circular segment s′′ is free of lattice points and its chord is in l′, the
chord length c < |w̄| ≤ |w| (since the distance between adjacent lattice points in l′

is |w̄|.) Hence h < |w|2/(4rρ). The total height of the larger circular segment s′

is h + 1/|w̄| which is thus bounded by C|w|2 for r ≥ 1. The thickness of s in the
direction normal to w is the same as this height. This shows (60).

Combining (60) with (59) shows∣∣∣∣∣
∫
∂(rΩ)

|w · n|ds−
∫
∂Ωr

|w · n|ds

∣∣∣∣∣ < C|w|3. (61)

In view of (53) and since the sum
∑
w∈L\{0} |w|3ϕ(|Fw|) converges absolutely by

hypothesis, one deduces∫
∂Ωr

γ◦(F, n)ds =

∫
∂(rΩ)

γ◦(F, n)ds+O(1) = r

∫
∂Ω

γ◦(F, n)ds+O(1). (62)

Our hypotheses on ∂Ω ensure that #(rΩ∩L) = r2|Ω|+O(r2/3), e.g. [11, 12]. This
together with (62) in (58) and (55) proves (54).

According to Proposition 4.1, when ∂Ω is smooth and strictly convex, so that
the normal vector is irrational almost everywhere on ∂Ω, the surface energy density
is given by (53); in contrast, for lattice polygons (with rational normal a.e. on ∂Ω),
the surface energy density is given by (51). This suggests that we combine the two
expressions in defining a surface energy density for all values of the unit normal.
That will allow us to treat a more general case with Ω a (not necessarily strictly)
convex body. We do place some restrictions on ∂Ω: flat parts of ∂Ω must be lattice
segments (with rational normals). Corners have to be lattice points.

We will need the following auxiliary result:
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Lemma 4.2. Let D ⊂ R2 be a strictly convex body and ∂D be C2 with positive
curvature. For r > 0 define the convex lattice polygon Dr = conv(rD ∩ L) with
Miller normal n̄ : ∂Dr → M̄ . Then as r →∞,∫

∂Dr

1

|n̄|
ds = O(r2/3).

Proof. By Pick’s Theorem (Lemma 2.1), and since #(Dr ∩ L) = #(rD ∩ L),∫
∂Dr

1

2|n̄|
ds = #(Dr ∩ L)− |Dr| − 1 = #(rD ∩ L)− |rD|+ |rD| − |Dr| − 1.

Now #(rD∩L)− |rD| = o(r2/3) by [6, 11]. In view of Theorem 4 and Remark 2 of
[1], and since Dr ⊂ rD,

0 < |rD| − |Dr| < Cr2/3 (63)

for some constant C. The result follows.

We now state the main result of this section:

Proposition 4.3. Assume that Ω is a convex body with ∂Ω Lipschitz, and that
there is a finite set of lattice points {v1, . . . , vN} ⊂ ∂Ω ∩ L, that partitions ∂Ω into

N curves Si, ∂Ω =
⋃N
i=1 Si, each with endpoints vi and vi+1 (vN+1 = v1), such that

Si ∩ Si+1 = vi+1, Si is a C2 curve and one of the following two alternatives holds:
(i) For i ∈ Jc ⊂ {1, . . . , N}, Si ⊂ Γi, where Γi is a simple closed C2 curve with
positive curvature, or
(ii) For i ∈ Jf = {1, . . . , N} \ Jc, Si is a straight segment.
Suppose ϕ is as in Proposition 3.3, but with d > 3. Define the extended surface
energy density γ̂(F, ·) : S1 → R as follows:

γ̂(F, n) =



−1

4

∑
w∈L\{0}

|w · n|ϕ(|Fw|) +
1

2|n̄|
W (F ), n ∈ S1

R, n̄ ∈ M̄, n̄/|n̄| = n,

−1

4

∑
w∈L\{0}

|w · n|ϕ(|Fw|) = γ◦(F, n), n ∈ S1
I ,

(64)
with γ◦ defined in (53) and S1

R, S1
I defined in (52). Then as k →∞, k ∈ Z+,

E{kΩ, y} = k2

∫
Ω

W (F )dx+ k

∫
∂Ω

γ̂(F, n)ds+O(k2/3), (65)

where n : ∂Ω→ S1 is the unit outward normal to ∂Ω.

Proof. We now choose r = k ∈ Z+ and let Ωk = conv(kΩ ∩ L). The part of the
proof of Proposition 4.1 prior to (58) is easily adapted to the present setting, so
that once again, as k →∞, with γ� as in (51),

E{Ωk, y} = |Ωk|W (F ) +

∫
∂Ωk

γ�(F, n̄)ds+O(1). (66)

Let ∂Ωf be the union of those Si that are straight segments and ∂Ωc the union of
the Si with positive curvature, so that ∂Ω = ∂Ωf ∩ ∂Ωc. By hypothesis, for k ∈ Z+

we have kvi ∈ ∂(kΩ) ∩ L, hence also kvi ∈ ∂(Ωk) ∩ L. Then k∂Ωf ⊂ ∂Ωk = ∂(Ωk).
Let ∂Ωck = ∂Ωk \ k∂Ωf . Then

E{Ωk, y} = |Ωk|W (F ) +

∫
∂Ωck

γ�(F, n̄)ds+

∫
k∂Ωf

γ�(F, n̄)ds+O(1).
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Our hypotheses regarding ∂Ωc, specifically alternative (i), ensure that n ∈ S1
I a.e.

on k∂Ωc, while (ii) implies that n ∈ S1
R a.e. on k∂Ωf . Using (64), rewrite the above

as

E{Ωk, y} = |kΩ|W (F ) +

∫
k∂Ωc

γ◦(F, n)ds+

∫
k∂Ωf

γ̂(F, n)ds+ R̂(k), (67)

where

R̂(k) =

[
|Ωk| − |kΩ|+

∫
∂Ωck

1

2|n̄|
ds

]
W (F )

+

∫
∂Ωck

γ◦(F, n)ds−
∫
k∂Ωc

γ◦(F, n)ds+O(1).

(68)

It remains to show that R̂(k) = O(k2/3) as k →∞, k ∈ Z+. Let i ∈ Jc, so that Si
satisfies alternative (i) in the statement of Proposition 4.3. Let Sik be the portion of
∂Ωck between kvi and kvi+1, i.e., terminating at these two points and containing no
other kvj . Let the strictly convex body Di be such that ∂Di = Γi. Let Gik be the
bounded region whose boundary is kSi ∪ Sik; this is well defined since both curves
terminate at kvi and kvi+1. Then Gik ⊂ kDi \Di

k, where Di
k = conv(kDi ∩L), and

|kΩ \ Ωk| =
∑
i∈Jc

|Gik| ≤
∑
i∈Jc

|kDi \Di
k| < Ck2/3 (69)

in view of (63) applied to Di for r = k ∈ Z+.
Next, note that Sik ⊂ ∂Di

k. As a result,

0 <

∫
∂Ωck

1

2|n̄|
ds =

∑
i∈Jc

∫
Sik

1

2|n̄|
ds ≤

∑
i∈Jc

∫
∂Dik

1

2|n̄|
ds < Ck2/3 (70)

by Lemma 4.2 with D = Di.
Next, we turn to the difference of the last two integrals in (68). Recalling (53),

we write this as follows:∑
i∈Jc

∑
w∈L\{0}

ϕ(Fw)Iik(w), Iik(w) =

∫
kSi

|w · n|ds−
∫
Sik

|w · n|ds =

∫
∂Gik

|w · ñ|ds,

where n is the outward unit normal to k∂Ω and ∂Ωk in the first two integrals, while
ñ is outward unit normal to ∂Gik. Hence Iik(w) > 0, and since Gik ⊂ kDi \Di

k,

0 < Iik(w) ≤
∫
∂(kDi)

|w · n|ds−
∫
∂Dik

|w · n|ds < C|w|3,

where the estimate follows from (61) by replacing Ω of Proposition 4.1 by Di; the
constant C is independent of k. Since the sum

∑
w∈L\{0} |w|3ϕ(|Fw|) converges

absolutely by hypothesis, so does the double sum in the previous equation; therefore∫
∂Ωck

γ◦(F, n)ds−
∫
k∂Ωc

γ◦(F, n)ds = O(1).

This together with (69) and (70) shows that R̂(k) = O(k2/3). The normal is irra-
tional a.e. on ∂Ωc. Consequently

∫
k∂Ωc

γ◦ds =
∫
k∂Ωc

γ̂ds = k
∫
∂Ωc

γ̂ds, and (65)

follows from (67), since (55) holds.
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Remark 7. It is interesting that in cases where the normal is rational on a subset of
∂Ω of positive measure, the dilation factors are required to be integers. In contrast,
the result of Proposition 4.1 (where the normal is irrational almost everywhere on
∂Ω) is independent of the sequence of dilation factors. In one dimension it is known
[13] that the coefficients in the asymptotic expansion of the energy depend on this
sequence. It should be kept in mind that there is no counterpart in one dimension of
an irrational surface, which is purely a higher-dimensional occurrence. The reason
for the difference between the rational and irrational cases is the different order of
the lattice point remainder term.

Proofs of the Wulff theorem associated with surface energy minimization [9] over
domains with given measure typically rely on continuity of the surface energy density
with respect to the unit normal; see [7] and Remark 8 for a weaker alternative.
Perhaps surprisingly, the extended surface energy density γ̂(F, ·) : S1 → R exhibits
a dense set of discontinuities as we show next.

Proposition 4.4. Suppose ϕ is as in Proposition 3.3 and fix F ∈M2×2
+ . Then

(i) γ◦(F, ·) : S1 → R in (53) is Lipschitz continuous on S1.
(ii) γ̂(F, ·) : S1 → R defined in (64) is continuous at n ∈ S1

I , discontinuous at
n ∈ S1

R and differentiable at most on a subset of S1
I of measure zero.

Proof. Arrange the elements of L \ {0} in a sequence: {wj}, j = 1, 2, . . . , such
that |wj+1| ≥ |wj |, and define gj(n) = (−1/4)ϕ(|Fwj |)|wj · n| for n ∈ S1. Then
clearly gj : S1 → R is Lipschitz on S1 and (formally for the moment) γ◦(F, n) =∑∞
j=1 gj(n). Now since |gj | ≤Mj = |ϕ(|Fwj |)| |wj | on S1 and the series

∑∞
j=1Mj =∑

w∈L\{0} |ϕ(|Fw|)| |w| converges in view of Lemma 3.2, then Gk(n) =
∑k
j=1 gj(n)

converge uniformly as k → ∞ to γ◦(F, n) on S1 by the Weierstrass M test. Since
n 7→ |w · n|, n ∈ S1 is Lipschitz with constant |w|, the Lipschitz constant of Gk is
bounded above by

k∑
j=1

|ϕ(|Fwj |)| |wj | <
∑

w∈L\{0}

|ϕ(|Fw|)| |w| <∞.

The uniform convergence of the Gk together with the uniform bound on their Lip-
schitz constants guarantee that the limit function γ◦(F, ·) is also Lipschitz on S1

and (i) holds.
To show (ii), consider the function

h(n) =


1
|n̄| , n ∈ S1

R (n̄ ∈ M̄, n̄/|n̄| = n),

0, n ∈ S1
I .

In other words, letting n = (ν1, ν2) ∈ S1,

h(ν1, ν2) =


1√
p2+q2

, ν2/ν1 = p/q, (p, q) ∈ Z2, gcd(p, q) = 1,

0, ν1 = 0,

0, otherwise.

(71)

Then one has

γ̂(F, n) = γ◦(F, n) +
1

2
W (F )h(n) ∀n ∈ S1. (72)



472 PHOEBUS ROSAKIS

By (i), it suffices to prove that h is continuous at irrational n and discontinuous
at rational n to show the continuity part of (ii). In fact, h is very similar to the
Thomae function T (x) = 1/q for x = p/q, p, q coprime integers (x rational), and
zero for x irrational; see e.g. Proposition 4.1 in [17]. Adapting these results to h
is trivial in view of (71). Thus h is continuous at irrational n and discontinuous at
rational n and so is γ̂(F, ·). Also h is nowhere differentiable by a simple adaptation
of Proposition 6.1, [17]. Since by part (i) γ◦ is Lipschitz, it is differentiable a.e. on
S1 by the Rademacher theorem. Then γ̂(F, ·) fails a.e. to be differentiable by (72).
Also it is not differentiable at rational n as it is not continuous there.

5. A continuous surface energy density. There are two issues associated with
the surface energy density γ̂. The first issue is the lack of continuity of γ̂(F, ·).
This suggests that the surface energy minimization problem, that of minimizing the
integral

∫
∂Ω
γ̂(F, n)ds over a suitable class of regions Ω with |Ω| fixed, may actually

be ill posed.

Remark 8. The standard hypothesis for surface energy minimization in three di-
mensions is continuity of γ̂(F, ·) [9]. However, in two dimensions, as shown by
Dacorogna and Pfister [7], lower semicontinuity of γ̂(F, ·) suffices. It is easy to show
from (64) and Proposition 4.4 that γ̂(F, ·) is indeed lower semicontinuous provided
W (F ) ≤ 0. The latter inequality is not unreasonable; for example, it is satisfied for
values of F near the minimum of W (F ), when the latter is given by (5) with ϕ a
standard Lennard-Jones potential.

The second issue is that the surface energy minimization problem with density
γ̂(F, ·) is not physically appropriate, since fixing |Ω| is not the same as fixing the
total mass, or equivalently, the number #(Ω ∩ L) of lattice points of Ω. If the
minimization were over the class of lattice polygons with fixed lattice point number,
the appropriate constraint would fix |Ω| +

∫
∂Ω

1/(2|n̄|)ds instead of |Ω|, by virtue
of Lemma 2.1. For a lattice polygon, the lattice point remainder R(k) = #(kΩ ∩
L)− |kΩ| can be written as

R(k) = k

∫
∂Ω

1/(2|n̄|)ds+ 1, k ∈ Z. (73)

using Lemma 2.1. It seems that R is implicated in both issues raised above. Being
O(k), it contributes to the surface energy and gives rise to the term 1

2|n̄|W (F )

in (64), (72), which is the one responsible for the lack of continuity of γ̂. Also,
surface energy minimization over domains with fixed measure would seem to make
physical sense only if their lattice point remainder #(Ω∩L)− |Ω| vanishes, so that
constraining |Ω| fixes the lattice point number, hence the mass (see also Remark
10 below). One way to ensure this might be to seek a sequence of dilation factors
rk ∈ R satisfying condition (6) imposed by [3], i.e., R(rk) = 0. It is not clear for
what choices of Ω this is possible, and we consider two ways to modify this approach.

First, we relax the condition R(rk) = 0 and require instead that there is a sequence
rk such that

R(rk) = o(rk), rk →∞, (74)

so that the lattice point remainder is of lower order than the surface energy, which
is O(rk). This is satisfied for the smooth regions with positive boundary curvature
of Section 4, where the fact that R(r) = O(r2/3) for any real sequence r →∞ was
exploited in proving Proposition 4.1. As a result, the density γ◦ in (54) is continuous
in the unit normal by extension to the whole of S1; see Proposition 4.4 (i).
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Second, in case Ω is a lattice polygon, or the “mixed” region of Proposition 4.3,
we rewrite the energy in terms of an “equivalent” region Ω(k) containing the same
lattice points as the scaled region kΩ. Accordingly, from (11) it is clear that
E{kΩ, y} = E{Ω(k), y}. Observe that, given the set of atoms that are within a
convex region kΩ, there is some freedom in choosing an alternative convex region
Ω(k) containing precisely the same atoms. By choosing Ω(k) in a specific way, we
can ensure that the lattice point remainder of Ω(k) is of lower order than the surface
energy. In effect, this is equivalent to (74) apart from the fact that Ω(k) need not
be a dilation of Ω. For lattice polygons, Ω(k) can be constructed as follows. The
“interplanar” distance between adjacent parallel lattice lines with Miller normal n̄
is 1/|n̄|. If Ω is a lattice polygon, construct Ω′ by moving each side with Miller
normal n̄i of ∂Ω outward by 1/(2|n̄i|), half the interplanar distance. Then extend
the translated sides, so that they once more intersect in the same order as before.
Thus Ω′ is a rational polygon [4] (not a lattice polygon) that contains the same
atoms as Ω, with sides parallel to those of Ω and vertex angles the same as those
of Ω. In general though, it is not a dilation of Ω, although Ω ⊂ Ω′. Performing
the same operation on kΩ for each k ∈ Z yields Ω(k). Since the layers added to
kΩ have measure equal to k

∫
∂Ω

1/(2|n̄|)ds to dominant order, it follows from (73)
that the lattice point remainder #(Ω(k) ∩ L) − |Ω(k)| = o(k). Writing the energy
in terms of the modified region Ω(k), one arrives at the following representation:

Proposition 5.1. Let ϕ be as in Proposition 3.3, with d > 3. Suppose Ω ⊂ R2

is (a) a lattice polygon, or (b) a smooth region as in Proposition 4.1, or (c) the
piecewise smooth region of Proposition 4.3. In case (c) assume further that straight
and curved sides of ∂Ω are not tangent at their common points. Then for k ∈ Z+,
there exists a convex Ω(k) ⊂ R2 containing the same lattice points as kΩ and whose
measure equals the lattice point number of kΩ to order O(k) as k →∞:

Ω(k)∩L = kΩ∩L, |Ω(k)| = #(kΩ∩L)+o(k), |∂Ω(k)| = |k∂Ω|+O(1), (75)

such that

E{kΩ, y} =

∫
Ω(k)

W (F )dx+

∫
∂Ω(k)

γ◦(F, n)ds+ o(k). (76)

Moreover, in case (a) the o(k) terms above are O(1), while in cases (b), (c), they
are O(k2/3). Finally, in case (b), (76) holds with Ω(k) = kΩ and for all k ∈ R+

(not merely integers).

Proof. Case (a). Suppose Ω is a lattice polygon. Then

kΩ = {x ∈ R2 : x · n̄i ≤ kdi, i = 1, . . . , N},
is the intersection of N half-planes of the form x · n̄i ≤ kdi, where n̄i ∈ M̄ is the
Miller normal of the ith side and di are integers independent of k. Let

Ω(k) = {x ∈ R2 : x · n̄i ≤ kdi + 1/2, i = 1, . . . , N}. (77)

Thus to construct Ω(k), each straight line containing a side of Ω with Miller normal
n̄i is translated outward (in the direction n̄i) by a k-independent distance 1/(2|n̄i|).
The intersection of the half-planes of the translated lines is Ω(k) This adds to kΩ a
layer whose thickness equals 1/(2|n̄i|) on the ith side, hence

|Ω(k)| = |kΩ|+ k

∫
∂Ω

1

2|n̄|
ds+O(1) = #(kΩ ∩ L) +O(1). (78)

The O(1) term is a correction due to intersection, in the neighborhood of corners,
of layers corresponding to adjacent sides, since directions and thicknesses of layers
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are k-independent. The second equality above follows from (19) of Lemma 2.1. The
O(1) terms in (78) are actually constant (depend only on Ω and not on k) as is easily
shown. This establishes the middle assertion in (75). Since the distance of adjacent
lattice lines with normal n̄i is 1/|n̄i|, the added layers (whose thickness is half that
distance) contain no new lattice points; thus the first assertion of (75) holds true,
while the last is trivial. The first of (75) ensures that E{kΩ, y} = E{Ω(k), y}. Now
(76) follows immediately from Proposition 3.3, (78) and the definitions (40) and
(53).

Case (b). Suppose Ω is a smooth region as in Proposition 4.1. Then choose
Ω(k) = kΩ, to that (75) follows from [11] and note that (76) is the same as (54)
with k = r ∈ R+.

Case (c). Let Ω comply with Proposition 4.3 . For each k let Ω(k) be the set
obtained by moving only the flat sides kSi ⊂ ∂Ωf , i ∈ Jf of kΩ outwards by
1/(2|n̄i|) (and discarding portions of the added layers that lie outside the curves Γj
near the endpoints where Si join curved sides of ∂Ω). Thus

|Ω(k)| = |kΩ|+ k

∫
∂Ωf

1

2|n̄|
ds+O(1) = #(kΩ ∩ L) +O(k2/3) (79)

The second equality follows from (69) and (70). Hence (75) holds (the last assertion
is easy). Once again, (76) follows easily from (66) and (79).

Remark 9. Proposition 5.1 indicates that the appropriate problem of surface en-
ergy minimization over regions of fixed mass involves minimizing

∫
∂Ω′

γ◦(F, n)ds
over a suitable class of domains Ω′ with |Ω′| fixed. The integrand γ◦ is now Lip-
schitz continuous in the unit normal as guaranteed by Proposition 4.4. Thus γ◦
can be used to determine the Wulff shape of the crystal. We must remark, how-
ever, that while (76) has the aforementioned advantages as regards surface energy
minimization, it is not appropriate as an asymptotic series in k, since the domains
of integration depend on the latter variable. The appropriate asymptotic series
remains (65).

Remark 10. There is additional motivation for the construction of the auxiliary
domain Ω(k) satisfying the second of (76). Letting each lattice point represent an
atom with unit mass, the total (discrete) mass of Ω is M(Ω) = #(Ω∩L). From the
continuum viewpoint we expect to be able to write M(Ω) =

∫
Ω
ρdx for some mass

density ρ > 0, which must be independent of Ω. Unfortunately, this is not possible
for general piecewise C1 domains. Instead we have

M(rΩ) = |rΩ|+O(r) =

∫
rΩ

1dx+R(r), R(r) = O(r)

as r → ∞. The only possible choice would be ρ = 1 (as expected from the unit
atomic mass and unit lattice cell measure), but the lattice point remainder term R
causes problems since the continuum mass |rΩ| is not equal to the discrete mass
unless R = 0. This term is of lower order than the mass, but of the same order as
the surface energy. In the case of lattice polygons, R is known explicitly, see (19)
and (73). Based on (19), one could perhaps modify the concept of mass density.
One could include a surface mass (second term in (19)) with a corresponding surface
mass density, and corner masses (third term). On the other hand for more general
Ω it is not even possible to express R explicitly, so the concept of mass density
would still be be in question. It seems the only choice is to somehow choose the
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continuum domain properly. In this spirit, Blanc et al. assume that there a sequence
of dilation factors rk such that R(rk) = 0; this would resolve the mass density
issue. Since the existence of such a sequence is open in general, we construct the
auxiliary domains Ω(k) of Proposition 5.1. One might note that these still involve
a lattice point remainder of order o(k), but this can easily be fixed, for example
by adding a suitable term εk to the right hand side of the inequality in (77). One
then may choose εk to eliminate the o(k) remainder so that |Ω(k)| = #(Ω(k) ∩ L).
This eliminates the need for surface and corner masses. The corrected domains so
obtained have a well defined continuum mass density ρ = 1, while their discrete and
continuum masses coincide.

Remark 11. An anonymous reviewer has suggested that it would be advantageous
to use the alternative approach of Theil [19], who defines the surface energy as the
dominant term of

E{rΩ, yr} −
#(rΩ ∩ L)

|Ω|

∫
Ω

W (∇y)dx, (80)

as r → ∞, where yr = ry( ·r ) (in case y is not affine). We briefly reexamine some
of our conclusions from this viewpoint. If we assume Ω is a lattice polygon and
restrict r to integer values, then it follows easily from our results (Proposition 3.3
and Lemma 2.1) that for affine y

E{kΩ, y} =
#(kΩ ∩ L)

|Ω|

∫
Ω

W (F )dx+ k

∫
∂Ω

γ◦(F, n)ds+ o(k), (81)

k ∈ Z. This is consistent with the alternative approach (80). The advantage is
that the surface energy density in (81) is the continuous one γ◦, as opposed to the
problematic function γ� in (44). On the other hand, the aim of this paper is to
write the discrete energy (1) in the canonical form of continuum mechanics, where
the bulk term is

∫
Ω
W (∇y)dx as in (2) or (3), without the factor #(rΩ ∩ L)/|Ω|.

Moreover, for general piecewise C1 domains, the lattice point number #(rΩ ∩ L)
cannot be obtained explicitly3, hence a drawback of (80) is that the bulk energy is
not explicitly characterized. The issue is once again with the lattice point remainder
R(r) = #(rΩ∩L)−|Ω|. When R(r) is not suitably controlled, either the bulk energy
in (80), or the surface energy in our approach, will not be explicitly determined.
Blanc et al. write the energy as E{rΩ, yr}

/
M(rΩ), where M(rΩ) = #(rΩ∩L) [3].

In order to obtain a surface energy, they also need to control the lattice remainder
by assuming a sequence rk such that R(rk) = 0; see (6). If such a sequence exists,
the factor #(rkΩ ∩ L)/|Ω| becomes 1 and the two approaches coincide. Since it is
not known for which Ω this holds true, our strategy for controlling R is to redefine
the continuum domain (keeping the discrete set of lattice points) so that R is of
order lower than the surface energy. This has the advantage that the discrete
and continuum mass of the body are the same (modulo lower order terms). Once
this is done (Proposition 5.1), the approach of Theil and the present one become
equivalent. Specifically, under the hypotheses of Proposition 5.1, for the auxiliary
domain Ω(k), the bulk energy in (80) reduces to

∫
Ω(k)

W (F )dx since #(kΩ ∩ L) =

|Ω(k)| + o(k); cf. (75). The auxiliary domain construction thus eliminates the
difficulties associated with the lattice point remainder and yields explicit expressions
for both the bulk and surface energy, in addition to a notion of mass density (see
Remark 10) in a form consistent with continuum mechanics.

3An example of an explicit characterization of #(rΩ ∩ L) in terms of geometrical aspects of Ω
is (19), valid for lattice polygons.
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