Citation: Avner Friedman. PDE problems arising in mathematical biology[J]. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
[1] | Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691 |
[2] | Marie Henry . Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781 |
[3] | Kota Kumazaki, Toyohiko Aiki, Adrian Muntean . Local existence of a solution to a free boundary problem describing migration into rubber with a breaking effect. Networks and Heterogeneous Media, 2023, 18(1): 80-108. doi: 10.3934/nhm.2023004 |
[4] | Peter V. Gordon, Cyrill B. Muratov . Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7(4): 767-780. doi: 10.3934/nhm.2012.7.767 |
[5] | Danielle Hilhorst, Hideki Murakawa . Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669 |
[6] | François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275 |
[7] | Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001 |
[8] | Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009 |
[9] | Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23 |
[10] | Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004 |
[1] |
R. S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh, 137A (2007), 497-518. doi: 10.1017/S0308210506000047
![]() |
[2] |
R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal and ideal free distribution, Math Biosc. Eng., 7 (2010), 17-36. doi: 10.3934/mbe.2010.7.17
![]() |
[3] |
X. Chen, S. Cui and A. Friedman, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Trans. Amer. Math. Soc., 357 (2005), 4771-4804. doi: 10.1090/S0002-9947-05-03784-0
![]() |
[4] |
X. Chen and A. Friedman, A free boundary problem for elliptic-hyperbolic system: An application to tumor growth, SIAM J. Math. Anal., 35 (2003), 974-986. doi: 10.1137/S0036141002418388
![]() |
[5] |
X. Chen, R. Hambrock and Y. Lou, Evolution of conditional dispersal: A reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386. doi: 10.1007/s00285-008-0166-2
![]() |
[6] |
G. Craciun, A. Brown and A. Friedman, A dynamical system model of neurofilament transport in axons, J. Theoret. Biol., 237 (2005), 316-322. doi: 10.1016/j.jtbi.2005.04.018
![]() |
[7] |
S. Cui, Existence of a stationary solution for the modified Ward-King tumor growth model, Adv. in Appl. Math., 36 (2006), 421-446. doi: 10.1016/j.aam.2005.04.002
![]() |
[8] |
S. Cui and A. Friedman, A free boundary problem for a singular system of differential equations: An application to a model of tumor growth, Trans. Amer. Math. Soc, 355 (2003), 3537-3590. doi: 10.1090/S0002-9947-03-03137-4
![]() |
[9] |
J. Dockery, V. Huston, K. Mischaikow and M. Pernarowsky, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120
![]() |
[10] | M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptotic Anal., 35 (2003), 187-206. |
[11] |
A. Friedman, A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth, Interfaces & Free Bound., 8 (2006), 247-261. doi: 10.4171/IFB/142
![]() |
[12] |
A. Friedman, A multiscale tumor model, Interfaces & Free Bound., 10 (2008), 245-262. doi: 10.4171/IFB/188
![]() |
[13] |
A. Friedman, Free boundary value problems associated with multiscale tumor models, Mathematical Modeling of Natural Phenomena, 4 (2009), 134-155. doi: 10.1051/mmnp/20094306
![]() |
[14] |
A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in tumor model, Arch. Rat. Mech. Anal, 180 (2006), 293-330. doi: 10.1007/s00205-005-0408-z
![]() |
[15] |
A. Friedman and B. Hu, Asymptotic stability for a free boundary problem arising in a tumor model, J. Diff. Eqs, 227 (2006), 598-639. doi: 10.1016/j.jde.2005.09.008
![]() |
[16] |
A. Friedman and B. Hu, Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems, Indiana Univ. Math. J., 56 (2007), 2133-2158. doi: 10.1512/iumj.2007.56.3044
![]() |
[17] |
A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, Math. Anal & Appl., 327 (2007), 643-664. doi: 10.1016/j.jmaa.2006.04.034
![]() |
[18] |
A. Friedman and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194. doi: 10.1137/060656292
![]() |
[19] |
A. Friedman and B. Hu, Stability and instability of Liapounov-Schmidt and Hopf bifurcations for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc., 360 (2008), 5291-5342. doi: 10.1090/S0002-9947-08-04468-1
![]() |
[20] |
A. Friedman and B. Hu, The role of oxygen in tissue maintenance: Mathematical modeling and qualitative analysis, Math. Mod. Meth. Appl. Sci, 18 (2008), 1-33. doi: 10.1142/S021820250800308X
![]() |
[21] |
A. Friedman, B. Hu and C-Y Kao, Cell cycle control at the first restriction point and its effect on tissue growth, J. Math. Biol., 60 (2010), 881-907. doi: 10.1007/s00285-009-0290-7
![]() |
[22] | to appear. |
[23] |
A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040. doi: 10.1137/090772630
![]() |
[24] | Disc. Cont. Dynam. Syst., to appear. |
[25] |
A. Friedman and F. Reitich, Analysis of a mathematical model for growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149
![]() |
[26] |
A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634. doi: 10.1090/S0002-9947-00-02715-X
![]() |
[27] |
A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253-261. doi: 10.3934/mbe.2011.8.253
![]() |
[28] |
C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs. non-local dispersal, Disc. Cont. Dynam. Sys. Series A., 26 (2010), 551-596. doi: 10.3934/dcds.2010.26.551
![]() |
[29] |
J. S. Lowengrub, H. B. Frieboes, F. Jin, Y-L Chuang, X. Li, P. Macklin, S. M. Wise and V. Christini, Nonlinear modeling of cancer: Bridging the gap between cells and tumors, Nonlinearity, 23 (2010), 1-91. doi: 10.1088/0951-7715/23/1/001
![]() |
[30] | G. J. Pettet, C. P. Please, M. J. Tindall and D. L. S. McElwain, The migration of cells in multicell tumor spheroids, Bull. Math. Biol., 63 (2001), 231-257. |
[31] |
M. C. Reed, S. Venakides and J. J. Blum, Approximate traveling waves in linear reaction-hyperbolic equations, SIAM J. Appl. Math., 50 (1990), 167-180. doi: 10.1137/0150011
![]() |
[32] |
F. Salvarani and J. L. Vazquez, The diffusive limit for Carleman-type kinetic models, Nonlinearity, 18 (2005), 1223-1248. doi: 10.1088/0951-7715/18/3/015
![]() |
[33] | C. Xue, A. Friedmand and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787. |
1. | V. Costa, J. Límaco, A. R. Lopes, L. Prouvée, On the Controllability of a Free-Boundary Problem for 1D Heat Equation with Local and Nonlocal Nonlinearities, 2023, 87, 0095-4616, 10.1007/s00245-022-09916-6 | |
2. | Lili Wang, Yuzhen Lan, Peidong Lei, Local null controllability of a free-boundary problem for the quasi-linear 1D parabolic equation, 2022, 506, 0022247X, 125676, 10.1016/j.jmaa.2021.125676 | |
3. | Lili Wang, Peidong Lei, Qingzhe Wu, Null controllability of a 1D Stefan problem for the heat equation governed by a multiplicative control, 2023, 171, 01676911, 105417, 10.1016/j.sysconle.2022.105417 | |
4. | Jürgen Sprekels, Enrico Valdinoci, A New Type of Identification Problems: Optimizing the Fractional Order in a Nonlocal Evolution Equation, 2017, 55, 0363-0129, 70, 10.1137/16M105575X | |
5. | V. A. Litovchenko, Classical Solutions of the Equation of Local Fluctuations of Riesz Gravitational Fields and their Properties, 2022, 74, 0041-5995, 69, 10.1007/s11253-022-02048-8 | |
6. | Piermarco Cannarsa, Giuseppe Floridia, Alexander Y. Khapalov, Multiplicative controllability for semilinear reaction–diffusion equations with finitely many changes of sign, 2017, 108, 00217824, 425, 10.1016/j.matpur.2017.07.002 | |
7. | E. Fernández-Cara, F. Hernández, J. Límaco, Local Null Controllability of a 1D Stefan Problem, 2019, 50, 1678-7544, 745, 10.1007/s00574-018-0093-9 | |
8. | Mohammed El Aïdi, On the decay at infinity of solutions of fractional Schrödinger equations, 2020, 65, 1747-6933, 141, 10.1080/17476933.2019.1591383 | |
9. | E. Fernández-Cara, J. Limaco, S.B. de Menezes, On the controllability of a free-boundary problem for the 1D heat equation, 2016, 87, 01676911, 29, 10.1016/j.sysconle.2015.10.011 | |
10. | Enrique Fernández-Cara, Ivaldo Tributino de Sousa, Local Null Controllability of a Free-Boundary Problem for the Semilinear 1D Heat Equation, 2017, 48, 1678-7544, 303, 10.1007/s00574-016-0001-0 | |
11. | V. A. Litovchenko , Класичні розв’язки рівняння локальних флуктуацій гравітаційних полів Ріса та їх властивості, 2022, 74, 1027-3190, 61, 10.37863/umzh.v74i1.6879 | |
12. | Marcus R. Garvie, John Burkardt, Jeff Morgan, Simple Finite Element Methods for Approximating Predator–Prey Dynamics in Two Dimensions Using Matlab, 2015, 77, 0092-8240, 548, 10.1007/s11538-015-0062-z | |
13. | Mohamed Ouzahra, Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control, 2022, 27, 1531-3492, 1075, 10.3934/dcdsb.2021081 | |
14. | Lili Wang, Peidong Lei, Qingzhe Wu, Insensitizing Controls of a 1D Stefan Problem for the Semilinear Heat Equation, 2022, 53, 1678-7544, 1351, 10.1007/s00574-022-00308-6 | |
15. | Raul K. C. Araújo, Enrique Fernández-Cara, Juan Límaco, Diego A. Souza, Remarks on the Control of Two-Phase Stefan Free-Boundary Problems, 2022, 60, 0363-0129, 3078, 10.1137/21M1402261 | |
16. | V. Litovchenko, THE MAXIMUM PRINCIPLE FOR THE EQUATION OF LOCAL FLUCTUATIONS OF RIESZ GRAVITATIONAL FIELDS OF PURELY FRACTIONAL ORDER, 2021, 9, 23094001, 81, 10.31861/bmj2021.02.06 | |
17. | Li Chen, Kevin Painter, Christina Surulescu, Anna Zhigun, Mathematical models for cell migration: a non-local perspective, 2020, 375, 0962-8436, 20190379, 10.1098/rstb.2019.0379 | |
18. | Annalisa Massaccesi, Enrico Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, 2017, 74, 0303-6812, 113, 10.1007/s00285-016-1019-z | |
19. | Claudia Bucur, Enrico Valdinoci, 2016, Chapter 1, 978-3-319-28738-6, 1, 10.1007/978-3-319-28739-3_1 | |
20. | Matteo Cozzi, Enrico Valdinoci, Plane-like minimizers for a non-local Ginzburg-Landau-type energy in a periodic medium, 2017, 4, 2270-518X, 337, 10.5802/jep.45 | |
21. | Fazal Badshah, Kalim U. Tariq, Mustafa Inc, Rizwan Javed, On soliton solutions of Fokas dynamical model via analytical approaches, 2024, 56, 1572-817X, 10.1007/s11082-023-06198-2 | |
22. | Tanveer Akbar, Sirajul Haq, Shams Ul Arifeen, Azhar Iqbal, Numerical Solution of Third-Order Rosenau–Hyman and Fornberg–Whitham Equations via B-Spline Interpolation Approach, 2024, 13, 2075-1680, 501, 10.3390/axioms13080501 |