PDE problems arising in mathematical biology

  • Received: 01 March 2012 Revised: 01 September 2012
  • Primary: 49J10, 35Q92, 35R35, 92C50; Secondary: 35J47, 35K57, 35L40, 35M30.

  • This article reviews biological processes that can be modeled by PDEs, it describes mathematical results, and suggests open problems. The first topic deals with tumor growth. This is modeled as a free boundary problem for a coupled system of elliptic, hyperbolic and parabolic equations. Existence theorems, stability of radially symmetric stationary solutions, and symmetry-breaking bifurcation results are stated. Next, a free boundary problem for wound healing is described, again involving a coupled system of PDEs. Other topics include movement of molecules in a neuron, modeled as a system of reaction-hyperbolic equations, and competition for resources, modeled as a system of reaction-diffusion equations.

    Citation: Avner Friedman. PDE problems arising in mathematical biology[J]. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691

    Related Papers:

    [1] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [2] Marie Henry . Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781
    [3] Kota Kumazaki, Toyohiko Aiki, Adrian Muntean . Local existence of a solution to a free boundary problem describing migration into rubber with a breaking effect. Networks and Heterogeneous Media, 2023, 18(1): 80-108. doi: 10.3934/nhm.2023004
    [4] Peter V. Gordon, Cyrill B. Muratov . Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7(4): 767-780. doi: 10.3934/nhm.2012.7.767
    [5] Danielle Hilhorst, Hideki Murakawa . Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669
    [6] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
    [7] Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001
    [8] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [9] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [10] Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004
  • This article reviews biological processes that can be modeled by PDEs, it describes mathematical results, and suggests open problems. The first topic deals with tumor growth. This is modeled as a free boundary problem for a coupled system of elliptic, hyperbolic and parabolic equations. Existence theorems, stability of radially symmetric stationary solutions, and symmetry-breaking bifurcation results are stated. Next, a free boundary problem for wound healing is described, again involving a coupled system of PDEs. Other topics include movement of molecules in a neuron, modeled as a system of reaction-hyperbolic equations, and competition for resources, modeled as a system of reaction-diffusion equations.


    [1] R. S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh, 137A (2007), 497-518. doi: 10.1017/S0308210506000047
    [2] R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal and ideal free distribution, Math Biosc. Eng., 7 (2010), 17-36. doi: 10.3934/mbe.2010.7.17
    [3] X. Chen, S. Cui and A. Friedman, A hyperbolic free boundary problem modeling tumor growth: Asymptotic behavior, Trans. Amer. Math. Soc., 357 (2005), 4771-4804. doi: 10.1090/S0002-9947-05-03784-0
    [4] X. Chen and A. Friedman, A free boundary problem for elliptic-hyperbolic system: An application to tumor growth, SIAM J. Math. Anal., 35 (2003), 974-986. doi: 10.1137/S0036141002418388
    [5] X. Chen, R. Hambrock and Y. Lou, Evolution of conditional dispersal: A reaction-diffusion-advection model, J. Math. Biol., 57 (2008), 361-386. doi: 10.1007/s00285-008-0166-2
    [6] G. Craciun, A. Brown and A. Friedman, A dynamical system model of neurofilament transport in axons, J. Theoret. Biol., 237 (2005), 316-322. doi: 10.1016/j.jtbi.2005.04.018
    [7] S. Cui, Existence of a stationary solution for the modified Ward-King tumor growth model, Adv. in Appl. Math., 36 (2006), 421-446. doi: 10.1016/j.aam.2005.04.002
    [8] S. Cui and A. Friedman, A free boundary problem for a singular system of differential equations: An application to a model of tumor growth, Trans. Amer. Math. Soc, 355 (2003), 3537-3590. doi: 10.1090/S0002-9947-03-03137-4
    [9] J. Dockery, V. Huston, K. Mischaikow and M. Pernarowsky, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83. doi: 10.1007/s002850050120
    [10] M. A. Fontelos and A. Friedman, Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptotic Anal., 35 (2003), 187-206.
    [11] A. Friedman, A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth, Interfaces & Free Bound., 8 (2006), 247-261. doi: 10.4171/IFB/142
    [12] A. Friedman, A multiscale tumor model, Interfaces & Free Bound., 10 (2008), 245-262. doi: 10.4171/IFB/188
    [13] A. Friedman, Free boundary value problems associated with multiscale tumor models, Mathematical Modeling of Natural Phenomena, 4 (2009), 134-155. doi: 10.1051/mmnp/20094306
    [14] A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem arising in tumor model, Arch. Rat. Mech. Anal, 180 (2006), 293-330. doi: 10.1007/s00205-005-0408-z
    [15] A. Friedman and B. Hu, Asymptotic stability for a free boundary problem arising in a tumor model, J. Diff. Eqs, 227 (2006), 598-639. doi: 10.1016/j.jde.2005.09.008
    [16] A. Friedman and B. Hu, Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems, Indiana Univ. Math. J., 56 (2007), 2133-2158. doi: 10.1512/iumj.2007.56.3044
    [17] A. Friedman and B. Hu, Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, Math. Anal & Appl., 327 (2007), 643-664. doi: 10.1016/j.jmaa.2006.04.034
    [18] A. Friedman and B. Hu, Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194. doi: 10.1137/060656292
    [19] A. Friedman and B. Hu, Stability and instability of Liapounov-Schmidt and Hopf bifurcations for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc., 360 (2008), 5291-5342. doi: 10.1090/S0002-9947-08-04468-1
    [20] A. Friedman and B. Hu, The role of oxygen in tissue maintenance: Mathematical modeling and qualitative analysis, Math. Mod. Meth. Appl. Sci, 18 (2008), 1-33. doi: 10.1142/S021820250800308X
    [21] A. Friedman, B. Hu and C-Y Kao, Cell cycle control at the first restriction point and its effect on tissue growth, J. Math. Biol., 60 (2010), 881-907. doi: 10.1007/s00285-009-0290-7
    [22] to appear.
    [23] A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040. doi: 10.1137/090772630
    [24] Disc. Cont. Dynam. Syst., to appear.
    [25] A. Friedman and F. Reitich, Analysis of a mathematical model for growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149
    [26] A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634. doi: 10.1090/S0002-9947-00-02715-X
    [27] A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253-261. doi: 10.3934/mbe.2011.8.253
    [28] C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs. non-local dispersal, Disc. Cont. Dynam. Sys. Series A., 26 (2010), 551-596. doi: 10.3934/dcds.2010.26.551
    [29] J. S. Lowengrub, H. B. Frieboes, F. Jin, Y-L Chuang, X. Li, P. Macklin, S. M. Wise and V. Christini, Nonlinear modeling of cancer: Bridging the gap between cells and tumors, Nonlinearity, 23 (2010), 1-91. doi: 10.1088/0951-7715/23/1/001
    [30] G. J. Pettet, C. P. Please, M. J. Tindall and D. L. S. McElwain, The migration of cells in multicell tumor spheroids, Bull. Math. Biol., 63 (2001), 231-257.
    [31] M. C. Reed, S. Venakides and J. J. Blum, Approximate traveling waves in linear reaction-hyperbolic equations, SIAM J. Appl. Math., 50 (1990), 167-180. doi: 10.1137/0150011
    [32] F. Salvarani and J. L. Vazquez, The diffusive limit for Carleman-type kinetic models, Nonlinearity, 18 (2005), 1223-1248. doi: 10.1088/0951-7715/18/3/015
    [33] C. Xue, A. Friedmand and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787.
  • This article has been cited by:

    1. V. Costa, J. Límaco, A. R. Lopes, L. Prouvée, On the Controllability of a Free-Boundary Problem for 1D Heat Equation with Local and Nonlocal Nonlinearities, 2023, 87, 0095-4616, 10.1007/s00245-022-09916-6
    2. Lili Wang, Yuzhen Lan, Peidong Lei, Local null controllability of a free-boundary problem for the quasi-linear 1D parabolic equation, 2022, 506, 0022247X, 125676, 10.1016/j.jmaa.2021.125676
    3. Lili Wang, Peidong Lei, Qingzhe Wu, Null controllability of a 1D Stefan problem for the heat equation governed by a multiplicative control, 2023, 171, 01676911, 105417, 10.1016/j.sysconle.2022.105417
    4. Jürgen Sprekels, Enrico Valdinoci, A New Type of Identification Problems: Optimizing the Fractional Order in a Nonlocal Evolution Equation, 2017, 55, 0363-0129, 70, 10.1137/16M105575X
    5. V. A. Litovchenko, Classical Solutions of the Equation of Local Fluctuations of Riesz Gravitational Fields and their Properties, 2022, 74, 0041-5995, 69, 10.1007/s11253-022-02048-8
    6. Piermarco Cannarsa, Giuseppe Floridia, Alexander Y. Khapalov, Multiplicative controllability for semilinear reaction–diffusion equations with finitely many changes of sign, 2017, 108, 00217824, 425, 10.1016/j.matpur.2017.07.002
    7. E. Fernández-Cara, F. Hernández, J. Límaco, Local Null Controllability of a 1D Stefan Problem, 2019, 50, 1678-7544, 745, 10.1007/s00574-018-0093-9
    8. Mohammed El Aïdi, On the decay at infinity of solutions of fractional Schrödinger equations, 2020, 65, 1747-6933, 141, 10.1080/17476933.2019.1591383
    9. E. Fernández-Cara, J. Limaco, S.B. de Menezes, On the controllability of a free-boundary problem for the 1D heat equation, 2016, 87, 01676911, 29, 10.1016/j.sysconle.2015.10.011
    10. Enrique Fernández-Cara, Ivaldo Tributino de Sousa, Local Null Controllability of a Free-Boundary Problem for the Semilinear 1D Heat Equation, 2017, 48, 1678-7544, 303, 10.1007/s00574-016-0001-0
    11. V. A. Litovchenko , Класичні розв’язки рівняння локальних флуктуацій гравітаційних полів Ріса та їх властивості, 2022, 74, 1027-3190, 61, 10.37863/umzh.v74i1.6879
    12. Marcus R. Garvie, John Burkardt, Jeff Morgan, Simple Finite Element Methods for Approximating Predator–Prey Dynamics in Two Dimensions Using Matlab, 2015, 77, 0092-8240, 548, 10.1007/s11538-015-0062-z
    13. Mohamed Ouzahra, Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control, 2022, 27, 1531-3492, 1075, 10.3934/dcdsb.2021081
    14. Lili Wang, Peidong Lei, Qingzhe Wu, Insensitizing Controls of a 1D Stefan Problem for the Semilinear Heat Equation, 2022, 53, 1678-7544, 1351, 10.1007/s00574-022-00308-6
    15. Raul K. C. Araújo, Enrique Fernández-Cara, Juan Límaco, Diego A. Souza, Remarks on the Control of Two-Phase Stefan Free-Boundary Problems, 2022, 60, 0363-0129, 3078, 10.1137/21M1402261
    16. V. Litovchenko, THE MAXIMUM PRINCIPLE FOR THE EQUATION OF LOCAL FLUCTUATIONS OF RIESZ GRAVITATIONAL FIELDS OF PURELY FRACTIONAL ORDER, 2021, 9, 23094001, 81, 10.31861/bmj2021.02.06
    17. Li Chen, Kevin Painter, Christina Surulescu, Anna Zhigun, Mathematical models for cell migration: a non-local perspective, 2020, 375, 0962-8436, 20190379, 10.1098/rstb.2019.0379
    18. Annalisa Massaccesi, Enrico Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition?, 2017, 74, 0303-6812, 113, 10.1007/s00285-016-1019-z
    19. Claudia Bucur, Enrico Valdinoci, 2016, Chapter 1, 978-3-319-28738-6, 1, 10.1007/978-3-319-28739-3_1
    20. Matteo Cozzi, Enrico Valdinoci, Plane-like minimizers for a non-local Ginzburg-Landau-type energy in a periodic medium, 2017, 4, 2270-518X, 337, 10.5802/jep.45
    21. Fazal Badshah, Kalim U. Tariq, Mustafa Inc, Rizwan Javed, On soliton solutions of Fokas dynamical model via analytical approaches, 2024, 56, 1572-817X, 10.1007/s11082-023-06198-2
    22. Tanveer Akbar, Sirajul Haq, Shams Ul Arifeen, Azhar Iqbal, Numerical Solution of Third-Order Rosenau–Hyman and Fornberg–Whitham Equations via B-Spline Interpolation Approach, 2024, 13, 2075-1680, 501, 10.3390/axioms13080501
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7302) PDF downloads(429) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog