Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings

  • Received: 01 May 2009 Revised: 01 October 2009
  • 35B27, 35Q74, 34B15, 74Q05.

  • In quasi-periodic homogenization of elliptic equations or nonlinear periodic homogenization of systems, the cell problem must be in general set on the whole space. Numerically computing the homogenization coefficient therefore implies a truncation error, due to the fact that the problem is approximated on a bounded, large domain. We present here an approach that improves the rate of convergence of this approximation.

    Citation: Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings[J]. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1

    Related Papers:

    [1] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
    [2] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [3] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [4] Fabio Camilli, Claudio Marchi . On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6(1): 61-75. doi: 10.3934/nhm.2011.6.61
    [5] Patrick Henning . Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7(3): 503-524. doi: 10.3934/nhm.2012.7.503
    [6] Ben Schweizer, Marco Veneroni . The needle problem approach to non-periodic homogenization. Networks and Heterogeneous Media, 2011, 6(4): 755-781. doi: 10.3934/nhm.2011.6.755
    [7] Grigor Nika, Adrian Muntean . Hypertemperature effects in heterogeneous media and thermal flux at small-length scales. Networks and Heterogeneous Media, 2023, 18(3): 1207-1225. doi: 10.3934/nhm.2023052
    [8] Mogtaba Mohammed, Mamadou Sango . Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014
    [9] Rémi Goudey . A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022, 17(4): 547-592. doi: 10.3934/nhm.2022014
    [10] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
  • In quasi-periodic homogenization of elliptic equations or nonlinear periodic homogenization of systems, the cell problem must be in general set on the whole space. Numerically computing the homogenization coefficient therefore implies a truncation error, due to the fact that the problem is approximated on a bounded, large domain. We present here an approach that improves the rate of convergence of this approximation.


  • This article has been cited by:

    1. Xavier Blanc, Claude Le Bris, 2022, Chapter 5, 978-3-031-12800-4, 283, 10.1007/978-3-031-12801-1_5
    2. Assyr Abdulle, Doghonay Arjmand, Edoardo Paganoni, Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems, 2019, 357, 1631073X, 545, 10.1016/j.crma.2019.05.011
    3. François Bignonnet, Karam Sab, Luc Dormieux, Sébastien Brisard, Antoine Bisson, Macroscopically consistent non-local modeling of heterogeneous media, 2014, 278, 00457825, 218, 10.1016/j.cma.2014.05.014
    4. Doghonay Arjmand, Olof Runborg, A time dependent approach for removing the cell boundary error in elliptic homogenization problems, 2016, 314, 00219991, 206, 10.1016/j.jcp.2016.03.009
    5. Eric Cancès, Virginie Ehrlacher, Frédéric Legoll, Benjamin Stamm, Shuyang Xiang, An Embedded Corrector Problem for Homogenization. Part I: Theory, 2020, 18, 1540-3459, 1179, 10.1137/18M120035X
    6. Doghonay Arjmand, 2022, Chapter 30, 978-3-031-17819-1, 689, 10.1007/978-3-031-17820-7_30
    7. J.-C. Mourrat, Efficient Methods for the Estimation of Homogenized Coefficients, 2019, 19, 1615-3375, 435, 10.1007/s10208-018-9389-9
    8. Ivo Babuška, Mohammad Motamed, A fuzzy-stochastic multiscale model for fiber composites, 2016, 302, 00457825, 109, 10.1016/j.cma.2015.12.016
    9. Antti Hannukainen, Jean-Christophe Mourrat, Harmen T. Stoppels, Computing homogenized coefficientsviamultiscale representation and hierarchical hybrid grids, 2021, 55, 0764-583X, S149, 10.1051/m2an/2020024
    10. Julian Fischer, The Choice of Representative Volumes in the Approximation of Effective Properties of Random Materials, 2019, 234, 0003-9527, 635, 10.1007/s00205-019-01400-w
    11. Assyr Abdulle, Doghonay Arjmand, Edoardo Paganoni, A parabolic local problem with exponential decay of the resonance error for numerical homogenization, 2021, 31, 0218-2025, 2733, 10.1142/S0218202521500603
    12. Matti Schneider, Marc Josien, Felix Otto, Representative volume elements for matrix-inclusion composites - a computational study on the effects of an improper treatment of particles intersecting the boundary and the benefits of periodizing the ensemble, 2022, 158, 00225096, 104652, 10.1016/j.jmps.2021.104652
    13. Antoine Gloria, Zakaria Habibi, Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation, 2016, 16, 1615-3375, 217, 10.1007/s10208-015-9246-z
    14. Ronan Costaouec, Claude Le Bris, Frédéric Legoll, Variance reduction in stochastic homogenization: proof of concept, using antithetic variables, 2010, 50, 1575-9822, 9, 10.1007/BF03322539
    15. ANTOINE GLORIA, REDUCTION OF THE RESONANCE ERROR — PART 1: APPROXIMATION OF HOMOGENIZED COEFFICIENTS, 2011, 21, 0218-2025, 1601, 10.1142/S0218202511005507
    16. Assyr Abdulle, Doghonay Arjmand, Edoardo Paganoni, An Elliptic Local Problem with Exponential Decay of the Resonance Error for Numerical Homogenization, 2023, 21, 1540-3459, 513, 10.1137/21M1452123
    17. Xavier Blanc, Claude Le Bris, 2023, Chapter 5, 978-3-031-21832-3, 257, 10.1007/978-3-031-21833-0_5
    18. Sean P. Carney, Milica Dussinger, Björn Engquist, On the Nature of the Boundary Resonance Error in Numerical Homogenization and Its Reduction, 2024, 22, 1540-3459, 811, 10.1137/23M1594492
    19. Nicolas Clozeau, Marc Josien, Felix Otto, Qiang Xu, Bias in the Representative Volume Element method: Periodize the Ensemble Instead of Its Realizations, 2024, 24, 1615-3375, 1305, 10.1007/s10208-023-09613-y
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4044) PDF downloads(153) Cited by(19)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog