1.
|
Xavier Blanc, Claude Le Bris,
2022,
Chapter 5,
978-3-031-12800-4,
283,
10.1007/978-3-031-12801-1_5
|
|
2.
|
Assyr Abdulle, Doghonay Arjmand, Edoardo Paganoni,
Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems,
2019,
357,
1631073X,
545,
10.1016/j.crma.2019.05.011
|
|
3.
|
François Bignonnet, Karam Sab, Luc Dormieux, Sébastien Brisard, Antoine Bisson,
Macroscopically consistent non-local modeling of heterogeneous media,
2014,
278,
00457825,
218,
10.1016/j.cma.2014.05.014
|
|
4.
|
Doghonay Arjmand, Olof Runborg,
A time dependent approach for removing the cell boundary error in elliptic homogenization problems,
2016,
314,
00219991,
206,
10.1016/j.jcp.2016.03.009
|
|
5.
|
Eric Cancès, Virginie Ehrlacher, Frédéric Legoll, Benjamin Stamm, Shuyang Xiang,
An Embedded Corrector Problem for Homogenization. Part I: Theory,
2020,
18,
1540-3459,
1179,
10.1137/18M120035X
|
|
6.
|
Doghonay Arjmand,
2022,
Chapter 30,
978-3-031-17819-1,
689,
10.1007/978-3-031-17820-7_30
|
|
7.
|
J.-C. Mourrat,
Efficient Methods for the Estimation of Homogenized Coefficients,
2019,
19,
1615-3375,
435,
10.1007/s10208-018-9389-9
|
|
8.
|
Ivo Babuška, Mohammad Motamed,
A fuzzy-stochastic multiscale model for fiber composites,
2016,
302,
00457825,
109,
10.1016/j.cma.2015.12.016
|
|
9.
|
Antti Hannukainen, Jean-Christophe Mourrat, Harmen T. Stoppels,
Computing homogenized coefficientsviamultiscale representation and hierarchical hybrid grids,
2021,
55,
0764-583X,
S149,
10.1051/m2an/2020024
|
|
10.
|
Julian Fischer,
The Choice of Representative Volumes in the Approximation of Effective Properties of Random Materials,
2019,
234,
0003-9527,
635,
10.1007/s00205-019-01400-w
|
|
11.
|
Assyr Abdulle, Doghonay Arjmand, Edoardo Paganoni,
A parabolic local problem with exponential decay of the resonance error for numerical homogenization,
2021,
31,
0218-2025,
2733,
10.1142/S0218202521500603
|
|
12.
|
Matti Schneider, Marc Josien, Felix Otto,
Representative volume elements for matrix-inclusion composites - a computational study on the effects of an improper treatment of particles intersecting the boundary and the benefits of periodizing the ensemble,
2022,
158,
00225096,
104652,
10.1016/j.jmps.2021.104652
|
|
13.
|
Antoine Gloria, Zakaria Habibi,
Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation,
2016,
16,
1615-3375,
217,
10.1007/s10208-015-9246-z
|
|
14.
|
Ronan Costaouec, Claude Le Bris, Frédéric Legoll,
Variance reduction in stochastic homogenization: proof of concept, using antithetic variables,
2010,
50,
1575-9822,
9,
10.1007/BF03322539
|
|
15.
|
ANTOINE GLORIA,
REDUCTION OF THE RESONANCE ERROR — PART 1: APPROXIMATION OF HOMOGENIZED COEFFICIENTS,
2011,
21,
0218-2025,
1601,
10.1142/S0218202511005507
|
|
16.
|
Assyr Abdulle, Doghonay Arjmand, Edoardo Paganoni,
An Elliptic Local Problem with Exponential Decay of the Resonance Error for Numerical Homogenization,
2023,
21,
1540-3459,
513,
10.1137/21M1452123
|
|
17.
|
Xavier Blanc, Claude Le Bris,
2023,
Chapter 5,
978-3-031-21832-3,
257,
10.1007/978-3-031-21833-0_5
|
|
18.
|
Sean P. Carney, Milica Dussinger, Björn Engquist,
On the Nature of the Boundary Resonance Error in Numerical Homogenization and Its Reduction,
2024,
22,
1540-3459,
811,
10.1137/23M1594492
|
|
19.
|
Nicolas Clozeau, Marc Josien, Felix Otto, Qiang Xu,
Bias in the Representative Volume Element method: Periodize the Ensemble Instead of Its Realizations,
2024,
24,
1615-3375,
1305,
10.1007/s10208-023-09613-y
|
|