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Abstract. In this work, we propose a mixed finite element method for solv-
ing elliptic multiscale problems based on a localized orthogonal decomposition

(LOD) of Raviart–Thomas finite element spaces. It requires to solve local

problems in small patches around the elements of a coarse grid. These compu-
tations can be perfectly parallelized and are cheap to perform. Using the results

of these patch problems, we construct a low dimensional multiscale mixed fi-

nite element space with very high approximation properties. This space can
be used for solving the original saddle point problem in an efficient way. We

prove convergence of our approach, independent of structural assumptions or
scale separation. Finally, we demonstrate the applicability of our method by

presenting a variety of numerical experiments, including a comparison with an

MsFEM approach.

1. Introduction. In this work we study the mixed formulation of Poisson’s equa-
tion with a multiscale diffusion coefficient, i.e. where the diffusion coefficient is
highly varying on a continuum of different scales. For such coefficients, the solu-
tion is typically also highly varying and standard Galerkin methods fail to converge
to the correct solution, unless the features on the finest scale are resolved by the
underlying computational mesh. A classical application is the flow in a porous
medium, modeled by Darcy’s law. In this case, the multiscale coefficient describes
a permeability field, which is heterogeneous, rapidly varying and has high contrast.
Classical discretizations that involve the full fine scale often lead to a vast number
of degrees of freedom, which limits the performance and feasibility of corresponding
computations. In this paper, we address this kind of problems in the context of
mixed finite elements.

We will interpret the mixed formulation of Poisson’s equation in a Darcy flow
setting, referring to the vector component as flux, and the scalar component as
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pressure. In Darcy flow applications the flux solution is of particular interest since
it tells us how a fluid is transported through the medium. It is desirable and
common to use flux conservative discretization schemes. The proposed method is
based on the Raviart–Thomas finite element [31] which is locally flux conservative.
Concerning the mixed formulation of Poisson’s equation, corresponding multiscale
methods were for instance proposed in [1, 5, 6, 9]. These methods are based on
the Raviart–Thomas finite element and fit into the framework of the Multiscale
Finite Element Method (MsFEM, cf. [19]). Another family of multiscale meth-
ods is derived from the framework of the Variational Multiscale Method (VMS)
[20, 21, 22, 24, 29]. Multiscale methods for mixed finite elements based on VMS are
proposed and studied in [4, 25, 28]. Inspired by the results presented in [28], a new
multiscale framework arose [26]. We refer to this framework as Localized Orthog-
onal Decomposition (LOD). It is based on the idea that a finite element space is
decomposed into a low dimensional space that incorporates multiscale features and
a high dimensional remainder space which is given as the kernel of an interpolation
or quasi-interpolation operator. The multiscale space can be used for Galerkin-
approximations and allows for cheap computations. Various realizations have been
proposed so far. For corresponding formulations and rigorous convergence results
for elliptic multiscale problems, we refer to [2, 14, 15, 18, 26] for Galerkin finite
element methods, to [13, 14] for discontinuous Galerkin methods and to [17] for
Galerkin Partition of Unity methods. Among the various applications we refer to
the realizations for eigenvalue problems [27], for semilinear equations [16], for the
wave equation [3] and for the Helmholtz equation [30].

In this paper we introduce a two level discretization of the mixed problem, that is
we work with two meshes: A fine mesh (mesh size h) which resolves all the fine scale
features in the solution and a coarse mesh (mesh size H) which is of computationally
feasible size. This gives us a fine and a coarse Raviart–Thomas function space for
the flux. We denote them respectively by Vh (high dimensional) and VH (low
dimensional). The kernel of the (standard) nodal Raviart–Thomas interpolation
operator ΠH onto VH is the detail space V f

h . This space can be interpreted as
all fine scale features that cannot be captured in the coarse space VH . A low
dimensional ideal multiscale space is constructed as the orthogonal complement to
the divergence free fluxes in V f

h . We prove that this space has good approximation
properties in the sense that the energy norm of the error converges with H without
pre-asymptotic effects due to the multiscale features. However, the basis functions
of the ideal multiscale space have global support and are expensive to compute.
We show exponential decay of these basis functions allowing them to be truncated
to localized patches with a preserved order of accuracy for the convergence. The
resulting space is called the localized multiscale space. The problems that are
associated with the localized basis functions have a small number of degrees of
freedom and can be solved in parallel with reduced computational cost and memory
requirement. Once computed, the low dimensional localized multiscale space can
be reused in a nonlinear or time iterative scheme.

We prove inf-sup stability and a priori error estimates (of linear order in H)
for both the ideal and the localized method. The local L2-instability of the nodal
Raviart–Thomas interpolation operator leads to instabilities as h decreases for the
localized method. We show that these instabilities can be compensated by increas-
ing the patch size or using Clément-type interpolators instead. In the numerical
examples we verify that the localized method has the theoretically derived order
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of accuracy. We confirm our theoretical findings by performing experiments on the
unit square and an L-shaped domain, as well as using a diffusion coefficient with
high contrast noise and channel structures. The proposed method is also compared
numerically with results from an MsFEM-based approach using a permeability field
from the SPE10 benchmark problem.

2. Preliminaries. We consider a bounded Lipschitz domain Ω ⊂ Rd (dimension
d = 2 or 3) with a piecewise polygonal boundary ∂Ω and let n denote the outgoing
normal vector of ∂Ω. For any subdomain ω ⊆ Ω, we shall use standard notation
for Lebesgue and Sobolev spaces, i.e. for r ∈ [1,∞], Lr(ω) consists of measur-
able functions with bounded Lr-norm and the space H1(ω) consists of L2-bounded
weakly differentiable functions with L2-bounded partial derivatives. The full norm
on H1(ω) shall be denoted by ‖ · ‖H1(ω), whereas the semi-norm is denoted by
| · |H1(ω) := ‖∇ · ‖L2(ω).

For scalar functions p and q we denote by (p, q)ω :=
∫
ω
p q the L2-scalar product

on ω. When ω = Ω, we omit the subscript, i.e. (p, q) := (p, q)Ω. For d-dimensional
vector valued functions u and v, we define (u,v)ω :=

∫
ω

u ·v with (u,v) = (u,v)Ω.

Observe that we use the same notation for norms and scalar products in L2 without
distinguishing between scalar and vector valued functions. This is purely for sim-
plicity, since the appropriate definition is always clear from the context. We use,
however, bold face letters for vector valued quantities.

In the following, we define the Sobolev space of functions with L2-bounded weak
divergence by H(div, ω) := {v ∈ [L2(ω)]d : ∇ · v ∈ L2(ω)}. We equip this space
with the usual norm ‖ · ‖H(div,ω), where ‖v‖2H(div,ω) := ‖∇ · v‖2L2(ω) + ‖v‖2L2(ω).

Additionally, for ω = Ω, we introduce the subspace H0(div,Ω) := {v ∈ H(div,Ω) :
v · n|∂Ω = 0} of functions with zero flux on the boundary, where v · n|∂Ω should be
interpreted in the sense of traces. We denote by L2(Ω)/R := {q ∈ L2(Ω) :

∫
Ω
q = 0}

the quotient space of L2(Ω) by R. The continuous dual space of a Banach space X
is denoted by X ′.

2.1. Continuous problem. With these definitions we are ready to state the con-
tinuous problem, which is Poisson’s equation in mixed form with Neumann bound-
ary conditions on the full boundary.

Definition 1 (Continuous problem). Find u ∈ V := H0(div,Ω), p ∈ Q := L2(Ω)/R
such that (

A−1u,v
)

+ (∇ · v, p) = 0,

(∇ · u, q) = −(f, q),
(1)

for all v ∈ V , q ∈ Q.

We pose the following assumptions on the coefficient and data.

Assumption A (Assumptions on coefficients, data and domain).
(A1) A ∈ [L∞(Ω)]d×d is a diffusion coefficient, possibly with rapid fine scale vari-

ations. Its value is an almost everywhere symmetric matrix and bounded in
the sense that there exist real numbers α and β such that for almost every x
and any v ∈ Rd \ {0}

0 < α ≤ (A(x)−1v) · v
v · v ≤ β <∞.

(A2) f ∈ L2(Ω) is a source function that fulfills the compatibility condition
∫

Ω
f = 0.



1272 FREDRIK HELLMAN, PATRICK HENNING AND AXEL MÅLQVIST

(A3) The domain Ω is a bounded Lipschitz domain with polygonal (or polyhedral)
boundary.

We introduce the following bilinear forms and norms. Let

a(u,v) := (A−1u,v) and b(v, q) := (∇ · v, q)
and, further,

‖v‖V := ‖v‖H(div,Ω) and ‖q‖Q := ‖q‖L2(Ω).

The energy norm is defined as the following weighted flux L2-norm,

|||v|||2 := ‖A−1/2v‖2L2(Ω) = a(v,v)

The energy norm can be subscripted with a subdomain ω ⊆ Ω, for example |||·|||2ω,
to indicate that the integral is taken only over that subdomain.

The following lemma gives the conditions for existence and uniqueness of a solu-
tion to the mixed formulation in (1) for subspaces V ⊆ V and Q ⊆ Q. This lemma
is useful for establishing existence and uniqueness for all discretizations presented
in this paper, since all presented discretizations are conforming.

Lemma 2 (Existence and uniqueness of solution to mixed formulation). Let V ⊆ V
and Q ⊆ Q. Denote by K = {v ∈ V : b(v, q) = 0 ∀q ∈ Q}. If a(·, ·) is coercive on
K with constant α̃ > 0, i.e. a(v,v) ≥ α̃‖v‖2V for v ∈ K, and bounded with constant

β̃ > 0, i.e. |a(v,w)| ≤ β̃‖v‖V ‖w‖V for all v,w ∈ V, and additionally b(·, ·) is
inf-sup stable with constant γ̃ > 0, i.e.

inf
q∈Q

sup
v∈V

b(v, q)

‖v‖V ‖q‖Q
≥ γ̃,

then the problem a(u,v) + b(v, p) − b(u, q) = (f, q) for all (v, q) ∈ V × Q has a
unique solution (u, p) ∈ V ×Q bounded by

‖u‖V ≤
2β̃1/2

α̃1/2γ̃
‖f‖L2(Ω) and ‖p‖Q ≤

β̃

γ̃2
‖f‖L2(Ω).

Proof. See e.g. [8, Theorem 4.2.3].

Under Assumptions (A1)–(A3), the conditions for Lemma 2 are satisfied for

V = V and Q = Q with α̃ = α, β̃ = β and γ̃ being a constant that depends only
on the computational domain. The lemma then yields a unique solution to the
continuous problem (1).

2.2. Discretization with the Raviart–Thomas element. Regarding the dis-
cretization, we introduce two conforming families of simplicial (i.e. triangular or
tetrahedral) meshes {Th} and {TH} of Ω where h and H are the maximum ele-
ment diameters. Throughout the paper we refer to Th as the fine mesh and to TH
as the coarse mesh. Hence, we indirectly assume h � H. We pose the following
assumptions on the meshes.

Assumption B (Assumptions on meshes).
(B1) The fine mesh Th is the result of one or more conforming (but possibly non-

uniform) refinements of the coarse mesh TH such that Th ∩ TH = ∅.
(B2) Both meshes Th and TH are shape regular. In particular the positive shape

regularity constant ρ for the coarse mesh TH will be referred to below and is
defined as ρ = minT∈TH

diamBT

diamT where BT is the largest ball contained in the
element T ∈ TH .
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(B3) The coarse family of meshes {TH} is quasi-uniform, whereas {Th} could be
obtained from an arbitrary adaptive refinement.

Remark 3 (Quadrilateral or hexahedral elements). Affine quadrilateral (or hexa-
hedral) elements can also be used. However, the definition of the Raviart–Thomas
element presented below in this paper is based on triangular (or tetrahedral) meshes.

We denote by t and T an element of Th or TH , respectively. Similarly e and
E denote an edge (for d = 2) or a face (for d = 3) of the elements of Th and
TH . Further, ne (respectively nE) is the outward normal vector of an edge (or
face) e (respectively E). We continue this section by discussing finite element
discretizations using the two meshes.

We denote all polynomials of degree ≤ k on a subdomain ω by Pk(ω) and a d-
dimensional vector of such polynomials by [Pk(ω)]d. We introduce the H0(div,Ω)-
conforming lowest (zeroth) order Raviart–Thomas finite element. For each fine
element t ∈ Th and coarse element T ∈ TH , the spaces of Raviart–Thomas shape
functions are given by

RT h(t) = {v|t = [P0(t)]d + xP0(t)} and

RT H(T ) = {v|T = [P0(T )]d + xP0(T )},
respectively, where x = (x1, . . . , xd) is the space coordinate vector. The Raviart–
Thomas finite element spaces on Th and TH are then defined as

Vh = {v ∈ H0(div,Ω) : v|t ∈ RT h(t) ∀t ∈ Th} and

VH = {v ∈ H0(div,Ω) : v|T ∈ RT H(T ) ∀T ∈ TH}.
The degrees of freedom (in the coarse and fine Raviart–Thomas spaces) are given
by the averages of the normal fluxes over the edges (respectively faces for d = 3).
We denote the degrees of freedom by

Ne(v) :=
1

|e|

∫
e

v · ne and NE(v) :=
1

|E|

∫
E

v · nE

for the fine and coarse discretization, respectively. The direction of the normal ne
(respectively nE) can be fixed arbitrarily for each edge (respectively face). Here, Ne
and NE are bounded linear functionals on the space W := H0(div,Ω) ∩ Ls(Ω), for
some s > 2. Note, that the additional regularity (i.e. Ls(Ω) for s > 2) is necessary
for the edge integrals to be well-defined (cf. [8]). We introduce the (standard) nodal
Raviart–Thomas interpolation operators Πh : W → Vh and ΠH : W → VH by fixing
the degrees of freedom in the natural way, i.e. Πh and ΠH are defined such that

Ne(Πhv) = Ne(v) and NE(ΠHv) = NE(v).

Additionally, we let QH ⊂ Qh ⊂ Q be the space of all piecewise constant functions
on TH and Th with zero mean. We denote by Ph and PH the L2-projections onto Qh
and QH , respectively. Using the fine spaces, we define the fine scale discretization
of (1), which will be referred to as the reference problem.

Definition 4 (Reference problem). Find uh ∈ Vh and ph ∈ Qh, such that

a(uh,vh) + b(vh, ph) = 0,

b(uh, qh) = −(f, qh),
(2)

for all vh ∈ Vh and qh ∈ Qh.
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A similar problem can be stated with the coarse spaces VH and QH with flux solu-
tion uH . The remainder of this section treats only the fine discretization. However,
all results hold also for the coarse discretization.

We denote the space of divergence free functions on the fine grid by

Kh := {v ∈ Vh : ∇ · v = 0}. (3)

Remark 5 (Kernel of divergence operator). A natural definition of Kh for our
purposes is Kh = {v ∈ Vh : (∇ · v, qh) = 0 ∀qh ∈ Qh}. However, since we have
∇ · v ∈ Qh for all v ∈ Vh (due to the definition of the Raviart–Thomas element),
we can characterize Kh equivalently as done in (3).

To establish existence and uniqueness of a solution to the reference problem,
we use that Πh is divergence compatible, i.e. we have the commuting property
∇ · Πhv = Ph∇ · v for v ∈ W , and that Πh is bounded on W (but not on V !), i.e.
there exists a generic h-independent constant CW such that ‖Πhv‖V ≤ CW ‖v‖W
for v ∈ W . Using this, the inf-sup stability of b(·, ·) with respect to Vh and Qh
follows: For q ∈ Qh,

sup
v∈Vh

b(v, q)

‖v‖V
= sup

v∈W

(∇ ·Πhv, q)

‖Πhv‖V
≥ sup

v∈W

(∇ · v, q)
CW ‖v‖W

≥ (∇ ·w, q)
CW ‖w‖W

≥ (q, q)

CWCΩ‖q‖L2(Ω)
= C−1

W C−1
Ω ‖q‖L2(Ω),

(4)

where w ∈ W is chosen such that ∇ · w = q and ‖w‖W ≤ CΩ‖q‖L2(Ω). This is
possible by letting w = ∇φ for a solution φ to ∆φ = q in Ω with homogeneous
Neumann boundary conditions. Now, applying Lemma 2 with V = Vh, Q = Qh,
K = Kh, we can derive the constants α̃ = α, β̃ = β and γ̃ = γ := C−1

W C−1
Ω and

establish existence and uniqueness of a solution to the reference problem (2). Note
that the inf-sup stability constant γ is independent of h and hence also holds for
the pair of spaces VH and QH .

In the following, we are mainly interested in approximating the flux component
uh of the solution. We treat uh as a reliable reference to the exact solution. Note
that the L2-norm of the divergence error is controlled by the data

‖∇ · u−∇ · uh‖L2(Ω) ≤ ‖f − Phf‖L2(Ω).

For the energy norm of the flux error, we have the following error estimate in the
energy norm for the lowest order Raviart–Thomas element:

|||u− uh||| ≤ Ch|u|H1(Ω),

where C is independent of h. For a problem with a coefficient A that has fast
variations at a scale of size ε, we have in general that |u|H1(Ω) ≈ ε−1. Hence, we
require h � ε before we can observe the linear convergence in h numerically. We
call the regime with h ≥ ε a pre-asymptotic regime. The goal of this work is the
construction of a discrete space which does not suffer from such pre-asymptotic
effects triggered by A. In the following, we assume that the fine mesh is fine
enough (in the sense that h � ε) so that |||u− uh||| is sufficiently small and hence
uh a sufficiently accurate reference solution. With the same argument, the accuracy
of the coarse solution uH will not be satisfying as long as H > ε. Note that reference
problem (2) never needs to be solved. It just serves as a reference.

In the next section, we will construct the ideal multiscale space of the same (low)
dimension as VH , but which yields approximations that are of similar accuracy as the
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reference solution uh (in particular in the regime H � ε). Throughout the paper,
we do not consider errors that arise from numerical quadrature. For simplicity, we
assume that all integrals can be computed exactly.

3. Ideal multiscale problem. In this section, we construct a low dimensional
space that can capture the fine scale features of the true multiscale solution. We
focus on constructing a good multiscale representation of the flux solution u only.
We call it ideal since the reference flux solution is in this space for all f ∈ QH . This
should be contrasted to a localized multiscale space to be introduced in Section 4.
In addition to the spaces Vh and VH defined above we introduce the following detail
space as the intersection of the fine space and the kernel of the coarse Raviart–
Thomas interpolation operator,

V f
h = {v ∈ Vh : ΠHv = 0}.

Since V f
h is the kernel of a projection, it induces the splitting Vh = VH ⊕ V f

h , where
VH is low dimensional and V f

h is high dimensional. We refer to V f
h as the detail

space. In this section we aim at constructing a modified splitting, where VH is
replaced by a multiscale space which incorporates fine scale features.

3.1. Ideal multiscale space. We will construct the ideal multiscale space by ap-
plying fine scale correctors to all coarse functions in VH , i.e. so that (Id−Gh)(VH)
is the desired multiscale space for a linear corrector operator Gh. The corrector op-
erator is constructed using information from the coefficient A, and has divergence
free range in order to keep the flux conservation property of the coarse space.

The definition of the corrector requires us to construct the splitting Kh = KH ⊕
Kf
h with

Kf
h := {v ∈ Kh : ΠHv = 0}, and KH := Range((ΠH)|Kh

).

Next, we introduce an ideal corrector operator. We distinguish between local
(element-wise) correctors and a global corrector.

Definition 6 (Ideal corrector operators). Let aT (u,v) := (A−1u,v)T for T ∈ TH .
For each such T ∈ TH , we define an ideal element corrector operator GTh : V → Kf

h

by the equation

a(GThv,vf) = aT (v,vf) (5)

for all vf ∈ Kf
h. Furthermore, we define the ideal global corrector operator by

summing the local contributions, i.e. Gh :=
∑
T∈TH G

T
h .

The ideal corrector operators are well-defined since equation (5) is guaranteed a
unique solution by the Lax–Milgram theorem due to the coercivity and boundedness
of a(·, ·) on Kf

h. Using the ideal global corrector operator, we can define the discrete
multiscale function space by

V ms
H,h := (Id−Gh)(VH),

where Id is the identity operator. This space has the same dimension as VH . Fur-
thermore, it allows for the splitting Vh = V ms

H,h ⊕ V f
h . Note that the ideal multiscale

space is the orthogonal complement of Kf
h with respect to a(·, ·), i.e.

a(vms
H,h,v

f) = 0 (6)

for all vms
H,h ∈ V ms

H,h and vf ∈ Kf
h.
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3.2. Ideal multiscale problem formulation. In this section, we use the previ-
ously defined ideal multiscale space to define a (preliminary) multiscale approxima-
tion. The ideal multiscale problem reads as follows.

Definition 7 (Ideal multiscale problem). Find ums
H,h ∈ V ms

H,h and pH ∈ QH , such
that

a(ums
H,h,vh) + b(vh, pH) = 0,

b(ums
H,h, qH) = −(f, qH),

(7)

for all vh ∈ V ms
H,h and qH ∈ QH .

Lemma 8 (Unique solution of the ideal multiscale problem). Under Assump-
tions (A1)–(A3) and (B1)–(B3), the ideal multiscale problem (7) has a unique
solution. In particular, we have

γ(1 + α−1β)−1 ≤ inf
q∈QH

sup
v∈V ms

H,h

b(v, q)

‖q‖Q ‖v‖V
,

i.e. inf-sup stability independent of h and H.

Proof. We let Kms
H,h = {v ∈ V ms

H,h : ∇ · v = 0}. The coercivity of a(·, ·) on Kms
H,h

follows immediately from its coercivity on Kh since Kms
H,h ⊂ Kh. The operator

Id−Gh is stable in V with constant 1 + α−1β, since ∇ ·Ghv = 0 and

‖Ghv‖2L2(Ω) ≤ α−1a(Ghv, Ghv)

= α−1a(v, Ghv)

≤ α−1β ‖v‖L2(Ω) ‖Ghv‖L2(Ω)

for all v ∈ V . Combining these results with the inf-sup stability of b(·, ·) on VH and
QH , we get

γ ≤ inf
q∈QH

sup
v∈VH

b(v, q)

‖q‖Q ‖v‖V

≤ (1 + α−1β) inf
q∈QH

sup
v∈VH

(∇ · (Id−Gh)v, q)

‖q‖Q ‖(Id−Gh)v‖V

= (1 + α−1β) inf
q∈QH

sup
v∈V ms

H,h

(∇ · v, q)
‖q‖Q ‖v‖V

,

(8)

i.e. b(·, ·) is inf-sup stable with constant γ(1 + α−1β)−1 independent of H and h.
We note that Kms

H,h = {v ∈ V ms
H,h : b(v, qH) = 0 ∀q ∈ QH}, since ∇ · v ∈ QH (see

Remark 5). Finally, we apply Lemma 2 with V = V ms
H,h, Q = QH , K = Kms

H,h and

constants α̃ = α, β̃ = β and γ̃ = γ(1 + α−1β)−1.

3.3. Error estimate for ideal problem. In this section, we show that the flux
solution of the ideal multiscale problem above converges in the energy norm with
linear order in H to the reference solution. This convergence is independent of the
variations of A, i.e. we do not have any pre-asymptotic effects from the multiscale
features.

Lemma 9 (Error estimate for ideal solution). Under Assumptions (A1)–(A3) and
(B1)–(B3), let uh solve (2) and ums

H,h solve (7), then∣∣∣∣∣∣uh − ums
H,h

∣∣∣∣∣∣ ≤ β1/2CΠ̂Cρ,dH‖f − PHf‖L2(Ω)

where Cρ,d and CΠ̂ are independent of h and H.
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Proof. Parametrizing the solutions uh(f) and ums
H,h(f) by the data f , we use the

triangle inequality to obtain∣∣∣∣∣∣uh(f)− ums
H,h(f)

∣∣∣∣∣∣ ≤ |||uh(f)− uh(PHf)|||+
∣∣∣∣∣∣uh(PHf)− ums

H,h(PHf)
∣∣∣∣∣∣

+
∣∣∣∣∣∣ums

H,h(PHf)− ums
H,h(f)

∣∣∣∣∣∣.
The two last terms will be shown to equal zero.

For the first term, we proceed in several steps. Let us define ũh := uh(f) −
uh(PHf) = uh(f − PHf), which is the flux solution for the data f − PHf . The
corresponding pressure solution shall be denoted by p̃h. First, we observe

|||ũh|||2 = (f − PHf, p̃h) = (f − PHf, p̃h − PH p̃h)

≤ ‖f − PHf‖L2(Ω)‖p̃h − PH p̃h‖L2(Ω).
(9)

In order to bound the term ‖p̃h − PH p̃h‖L2(Ω), we let φ ∈ H1
0 (Ω) be the weak

solution to ∆φ = p̃h − PH p̃h. Then we have

|φ|2H1(Ω) = (p̃h − PH p̃h, φ− PHφ) ≤ Cρ,dH‖p̃h − PH p̃h‖L2(Ω)|φ|H1(Ω).

Defining w := ∇φ we get ∇ · w = p̃h − PH p̃h and ‖w‖L2(Ω) ≤ Cρ,dH‖p̃h −
PH p̃h‖L2(Ω). Next, we use a pair of projection operators Π̂h : V → Vh and

P̂h : Q → Qh that commute with respect to the divergence operator, allows for

Th to be non quasi-uniform, and where Π̂h is L2-stable, i.e. P̂h∇ · w = ∇ · Π̂hw

and ‖Π̂hw‖L2(Ω) ≤ CΠ̂‖w‖L2(Ω), with CΠ̂ independent of h. The existence of such
operators is proved in [11]. Exploiting this stability and the fact that p̃h −PH p̃h =

P̂h(∇ ·w) (since P̂h is a projection on Qh and p̃h − PH p̃h ∈ Qh), we obtain

‖p̃h − PH p̃h‖2L2(Ω) = (p̃h − PH p̃h, p̃h) = (P̂h(∇ ·w), p̃h)

= (∇ · Π̂hw, p̃h) = −(A−1ũh, Π̂hw) ≤ |||ũh|||‖A−1/2Π̂hw‖L2(Ω)

≤ β1/2CΠ̂|||ũh|||‖w‖L2(Ω) ≤ β1/2CΠ̂Cρ,dH|||ũh|||‖p̃h − PH p̃h‖L2(Ω).

Combining this estimate with (9) yields

|||ũh|||2 ≤ β1/2CΠ̂Cρ,dH‖f − PHf‖L2(Ω)|||ũh|||.
For the second term, we have ∇ · ums

H,h(PHf) ∈ QH since the correctors are

divergence free. This implies ∇ · ums
H,h(PHf) = −PHf , hence

∇ · ums
H,h(PHf)−∇ · uh(PHf) = 0,

i.e. ums
H,h(PHf) − uh(PHf) ∈ Kh. Now, from first the equations in (2) and (7) in

combination with the a(·, ·)-orthogonality between V ms
H,h and Kf

h, we get

a(uh(PHf),v) = 0, v ∈ Vh, ∇ · v = 0, and

a(ums
H,h(PHf),v) = 0, v ∈ V ms

H,h, ∇ · v = 0, and

a(ums
H,h(PHf),v) = 0, v ∈ V f

h , ∇ · v = 0.

Since Vh = V ms
H,h ⊕ V f

h , we obtain

a(uh(PHf)− ums
H,h(PHf),v) = 0,

for all v ∈ Kh. Choosing v = uh(PHf) − ums
H,h(PHf), we see that uh(PHf) =

ums
H,h(PHf), thus the second term equals zero.

To show that the third term is zero, it is sufficient to show that ums
H,h(f−PHf) =

0. The data f−PHf is L2-orthogonal to the test space QH and it enters the equation



1278 FREDRIK HELLMAN, PATRICK HENNING AND AXEL MÅLQVIST

(7) only in an L2 scalar product with test functions. Hence ums
H,h(f − PHf) =

ums
H,h(PH(f − PHf)) = 0.

4. Localized multiscale method. The ideal corrector problems (5) are at least
as expensive to solve as the original reference problem. Hence, we require to localize
these problems to very small patches, without sacrificing the good approximation
properties. If we can achieve this, the corrector problems can be solved with low
computational costs and fully in parallel. In this section, we show that this is
indeed possible. We prove that we can truncate the computational domain Ω in
the local corrector problems (5) to a small environment of a coarse element T .
This is possible, since the solutions of (5) decay with exponential rate outside the
coarse element T . We obtain a new localized corrector operator which can be used
analogously to the ideal corrector operator to construct a localized multiscale space.
This localization reduces the computational effort for assembling the multiscale
space significantly.

In addition to the assumptions (A1)–(A3) and (B1)–(B3), we require additional
assumptions on the computational domain and the mesh. More precisely we assume
the following for the analysis.

(A4) We consider d = 2 and a simply-connected domain Ω ⊂ R2.
(B4) The fine grid Th is quasi-uniform, i.e. the ratio between the maximum and the

minimum diameter of a grid element is bounded by a generic constant.

We note that assumption (A4) is crucial for our proof. Assumption (B4) on the
other hand could be dropped with a more careful analysis. In this case the estimates
(and in particular the decay) will depend on the inverse of the minimum mesh size of
the fine grid in a patch U(T ). For simplicity of the presentation, we do not elaborate
this case and restrict ourselves to quasi-uniform meshes, i.e. to (B4). Note that even
though we fix d = 2, we keep the general notation d to illustrate how the results are
influenced by the dimension. The localized method can be formulated analogously
for d = 3.

In order to localize the detail space Kf
h, we use admissible patches. We call

this restriction to patches localization. For each T ∈ TH we pick a connected
patch U(T ) consisting of coarse grid elements and containing T . More precisely,
for positive k ∈ N we define k-coarse-layer patches iteratively in the following way.
For all T ∈ TH (which are assumed to be closed sets), we define the element patch
Uk(T ) in the coarse mesh TH by

U0(T ) := T,

Uk(T ) :=
⋃
{T ′ ∈ TH : T ′ ∩ Uk−1(T ) 6= ∅} k = 1, 2, . . . .

(10)

See Figure 1 for an illustration of patches. For a given patch U(T ), we define the
restriction of V f

h to U(T ) by

V f
h(U(T )) := {w ∈ V f

h : w = 0 in Ω \ U(T )}.
Accordingly, we also define

Kf
h(U(T )) := {w ∈ V f

h(U(T )) : ∇ ·w = 0}.
Using this localized space, we define the localized corrector operators. Localized
quantities are indexed by the patch layer size k.
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(a) One-coarse-layer patch, k = 1. (b) Two-coarse-layer patch, k = 2.

Figure 1. Illustration of k-coarse-layer patches. Dark gray sub-
domain is T . Light gray subdomain is Uk(T ).

Definition 10 (Localized corrector operators). For each T ∈ TH and k ≥ 1 layers,
we define a localized element corrector operator GTh,k : V → Kf

h(Uk(T )):

a(GTh,kv,w) = aT (v,w) (11)

for all w ∈ Kf
h(Uk(T )). Further, we define the localized global corrector operator

Gh,k :=
∑
T∈TH G

T
h,k.

The localized corrector operators are again well-defined by the Lax-Milgram the-
orem, exploiting that a(·, ·) is a weighted L2-scalar product. Note that the defini-
tion of Kf

h(Uk(T )) implies Neumann boundary conditions on the localized corrector
problems (11). We define a localized multiscale function space by

V ms,k
H,h := (Id−Gh,k)(VH)

and state the localized multiscale problem as follows.

Definition 11 (Localized multiscale problem). The localized multiscale problem

reads: find ums,k
H,h ∈ V

ms,k
H,h and pH ∈ QH , such that

a(ums,k
H,h ,vh) + b(vh, pH) = 0,

b(ums,k
H,h , qH) = −(f, qH),

(12)

for all vh ∈ V ms,k
H,h and qH ∈ QH .

Definitions 10 and 11 constitute the proposed multiscale method. Next, we show
that the above stated problem is well-posed.

Lemma 12 (Unique solution of localized multiscale problem). Under Assump-
tions (A1)–(A3) and (B1)–(B3), the localized multiscale problem (12) has a unique
solution for all k, h and H.

Proof. We use similar arguments as in Lemma 8. The basic difference is that we
need to show stability for the localized corrector operator Gh,k. We start with the
stability of the localized element corrector operators. Here we have for arbitrary
v ∈ V ∣∣∣∣∣∣GTh,kv∣∣∣∣∣∣2 = a(GTh,kv, G

T
h,kv) = aT (v, GTh,kv) ≤ |||v|||T

∣∣∣∣∣∣GTh,kv∣∣∣∣∣∣. (13)
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Now, we can prove L2-stability of the localized global operator. We get

‖Gh,kv‖2L2(Ω)

=

∥∥∥∥∥ ∑
T∈TH

GTh,kv

∥∥∥∥∥
2

L2(Ω)

≤ α−1a

( ∑
T∈TH

GTh,kv,
∑
T ′∈TH

GT
′

h,kv

)

= α−1
∑
T∈TH

∑
T ′⊂Uk(T )

a(GTh,kv, G
T ′

h,kv)

≤ 1

2
α−1

∑
T∈TH

∑
T ′⊂Uk(T )

(∣∣∣∣∣∣GTh,kv∣∣∣∣∣∣2 +
∣∣∣∣∣∣∣∣∣GT ′h,kv∣∣∣∣∣∣∣∣∣2)

≤ α−1Cρk
d
∑
T∈TH

∣∣∣∣∣∣GTh,kv∣∣∣∣∣∣2 (13)

≤ α−1Cρk
d
∑
T∈TH

|||v|||2T ≤ α−1βCρk
d‖v‖2L2(Ω),

where Cρ is a constant only depending on the shape regularity constant ρ of the
coarse mesh. Similar to (8) we derive inf-sup stability with

γ ≤ inf
q∈QH

sup
v∈VH

b(v, q)

‖q‖Q ‖v‖V

≤ (1 + α−1/2β1/2C1/2
ρ kd/2) inf

q∈QH

sup
v∈V ms,k

H,h

b(v, q)

‖q‖Q ‖v‖V
.

Observe that the inf-sup stability constant γ0
k := γ(1 + α−1/2β1/2C

1/2
ρ kd/2)−1 de-

pends on k this time.

The inf-sup stability constant γ0
k depends on k due to overlapping patches. We

come back to another estimate of the inf-sup stability constant in Section 4.3 after
proving the decay of the correctors.

It is important to note that in the localized case we do not have orthogonality

between V ms,k
H,h and Kf

h as in the ideal case (cf. equation (6)). This orthogonality
was crucial in the error estimate for the ideal method presented in Lemma 9. In the
localized case, we rely on the exponential decay of the localized element correctors,
which justifies localization to patches.

4.1. Error estimate for localized problem. In this section we state the main
result of this paper, which is an a priori error estimate in the energy norm between
the reference solution and the localized multiscale approximation. We first present
a logarithmic stability result for the nodal Raviart–Thomas interpolation operator
ΠH for fine scale functions and then state a lemma on the exponential decay of the
correctors. Then the main theorem follows. The proof of the exponential decay is
contained in Section 4.2. The notation a . b stands for a ≤ Cb with some constant
C that might depend on d, Ω, α, β and coarse and fine mesh regularity constants,
but not on the mesh sizes h and H. In particular it does not depend on the possibly
rapid oscillations in A.

We recall a well known stability result for the nodal Raviart–Thomas interpola-
tion operator.

Lemma 13 (Logarithmic stability of the nodal interpolation operator for divergence
free functions). Assume (B1)–(B4). For any given element T ∈ TH there exists a
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constant C that only depends on the regularity of T and the quasi-uniformity of Th,
such that

‖ΠHvh‖2L2(T ) ≤ Cλ(H/h)2‖vh‖2L2(T ),

with λ(H/h) := (1 + log(H/h))1/2 for all vh ∈ Vh with ∇ · vh = 0.

A proof for this can be found in [34, Lemma 4.1]. This result holds for both
d = 2 and 3.

Remark 14. There exist unconditionally L2-stable Clément-type interpolation
operators for which we could define λ(H/h) := 1 for all h and H instead, see
[7, 10, 11, 32]. In particular, the operators introduced in [7, 11] are projections
and were used as a technical tool in the proof of Lemma 9 above. However, these
operators are hard to implement in practice and hence are not used in the proposed
numerical method.

Lemma 15 (Exponential decay of correctors). Under Assumptions (A1)–(A4) and
(B1)–(B4), there exists a generic constant 0 < θ < 1 depending on the contrast
β/α, but not on h or H such that for all positive k ∈ N:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣ ∑
T∈TH

(
GThv −GTh,kv

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

. kdλ(H/h)2θ2k/λ(H/h)
∑
T∈TH

∣∣∣∣∣∣GThv
∣∣∣∣∣∣2 (14)

for all v ∈ V .

Proof. The lemma is a direct consequence of Lemma 21 in Section 4.2.

Now, combining the error estimate for the ideal multiscale method in Lemma 9
and Lemma 15 we get the following a priori error estimate of the localized multiscale
method.

Theorem 16 (Error estimate for localized multiscale solution). Under Assumptions

(A1)–(A4) and (B1)–(B4), for a positive k ∈ N, let uh solve (2) and ums,k
H,h solve

(12), then∣∣∣∣∣∣∣∣∣uh − ums,k
H,h

∣∣∣∣∣∣∣∣∣ . H‖f − PHf‖L2(Ω) + kd/2λ(H/h)2θk/λ(H/h)‖f‖L2(Ω), (15)

for some 0 < θ < 1 depending on the contrast β/α, but not on k, h and H.

Before stating the proof, we discuss the role and choice of k. The second term
in the error estimate (15) is an effect of the localization. This term can be made
small by choosing large values of k, i.e. large patch sizes. A natural question is how
to choose k to make the second term of order H to some power.

We write λ = λ(H/h) for convenience. Let k̃ = 2d−1 log(θ)λ−1k = −Cθλ−1k,
where Cθ = −2d−1 log(θ) > 0 is a constant independent of H and h. We are
interested in the asymptotic behavior, so we consider H � 1. Setting the second
term in (15) equal to H‖f‖L2(Ω) yields

k̃ek̃ = −Cθλ−4/d−1H2/d,

that is k̃ = W (−Cθλ−4/d−1H2/d), where W is the Lambert W -function. In terms
of the number of layers k, we get k = −C−1

θ λW (−Cθλ−4/d−1H2/d). This equation
has two solutions for sufficiently small H. Since we require k ≥ 1, we pick the
branch W ≤ −1.

Another, more practical option is to choose k = Rλ log(1/H) for some constant
R. Then the expression kd/2λθk/λ will be asymptotically (as H → 0) dominated by
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the power H−R log θ. Choosing R sufficiently large yields arbitrary order of accuracy
of the term. The fine mesh size h is often fixed and we can choose

k = (1 + | logr(H)|)1/2 logs(1/H) (16)

for some bases r and s of the two logarithms.

Remark 17. If Clément-type interpolation operators are used, we have λ ≡ 1
independent of H/h. Choosing k = C log(1/H) makes the second term in (15)
proportional to log(1/H)d/2H−C log θ. For an appropriate C we can make the first
term in (15) dominate the error estimate.

Proof of Theorem 16. Let ũms,k
H,h := ((Id − Gh,k) ◦ ΠH)ums

H,h ∈ V ms,k
H,h , then ũms,k

H,h −
ums,k
H,h is divergence free. Hence, by Galerkin orthogonality we have

a(uh − ums,k
H,h ,uh − ums,k

H,h ) = a(uh − ums,k
H,h ,uh − ũms,k

H,h )

and obtain∣∣∣∣∣∣∣∣∣uh − ums,k
H,h

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣uh − ũms,k
H,h

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣uh − ums
H,h

∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣ums

H,h − ũms,k
H,h

∣∣∣∣∣∣∣∣∣.
The first term can be bounded by β1/2CΠ̂Cρ,dH‖f − PHf‖L2(Ω) by Lemma 9. Re-
garding the second term, using [34, Lemma 4.1] and stability of the ideal multiscale
solution, we get∑
T∈TH

∣∣∣∣∣∣GThΠHums
H,h

∣∣∣∣∣∣2 ≤ ∑
T∈TH

∣∣∣∣∣∣ΠHums
H,h

∣∣∣∣∣∣2
T

=
∣∣∣∣∣∣ΠHums

H,h

∣∣∣∣∣∣2 . λ(H/h)2‖f‖2L2(Ω)

and can combine this with Lemma 15 to get∣∣∣∣∣∣∣∣∣ums
H,h − ũms,k

H,h

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣(Gh,k −Gh)ΠHums

H,h

∣∣∣∣∣∣
=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
T∈TH

(GTh,k −GTh )ΠHums
H,h

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

. kd/2λ(H/h)θk/λ(H/h)

( ∑
T∈TH

∣∣∣∣∣∣GThΠHums
H,h

∣∣∣∣∣∣2)1/2

. kd/2λ(H/h)2θk/λ(H/h)‖f‖L2(Ω).

4.2. Proof of exponential decay of correctors. This section consists of four
lemmas, Lemma 18–21, of which the last one is the main result. The two first
lemmas are auxiliary and are motivated by steps in the proofs of the latter two.
Before starting, we need to set some notation and introduce some tools. We use the
notation W 1,2

loc (Rd) = {f : f ∈ H1(ω) ∀ compact subsets ω ⊂ Rd}. Note that we
will use the letter K to denote arbitrary triangles of the coarse mesh TH . The first
lemma says that every divergence free function w in H(div,Ω) is the divergence of
a skew-symmetric matrix.

Lemma 18. Let Ω be a simply connected domain with Lipschitz boundary and let
w ∈ H(div,Ω) with ∇ · w = 0 in Ω. Then there exists a skew-symmetric matrix

ψ ∈ [W 1,2
loc (Rd)]d×d with ∇ψij ∈ [L2(Rd)]d and

∫
Ω
ψ = 0 such that

w = ∇ · ψ in Ω and ‖∇ψij‖L2(ω) . ‖w‖L2(ω) for ω ⊂ Ω. (17)

Here, the divergence of ψ is defined along the rows.
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Note that the above lemma is the only instance, where we require the restriction
d = 2. Even though the existence of the skew-symmetric matrix is also available for
d = 3, we could not prove localized estimates of the type ‖∇ψij‖L2(ω) . ‖w‖L2(ω).

Proof. The result is a combination of well-known results. First, we extend the
divergence-free vector field w ∈ H(div,Ω) to a divergence-free vector field w̃ ∈
H(div,Rd). In particular we have w̃ ∈ [L2(Rd)]d and w̃ = w in Ω. Note that the
extension of w to Rd will be typically not zero outside of Ω. The existence of such
an extension operator was proved in [33, Proposition 3.8]. It is well known that

there exists a skew-symmetric matrix ψ ∈ [W 1,2
loc (Rd)]d×d with ∇ψij ∈ [L2(Rd)]d,

such that w̃ = ∇ · ψ (see [23, Lemma 2.3]). The matrix is only unique up to a
constant, so we fix the constant by

∫
Ω
ψ = 0 (which gives us a Poincaré inequality).

The inequality ‖∇ψij‖L2(ω) . ‖w̃‖L2(ω) (for ω ⊂ Rd) can be seen as follows for
d = 2. Obviously, if i = j we obtain ∇ψii = ∇ψjj = 0 and estimate (17) is trivial.
If i 6= j, we obtain by using the skew-symmetry

‖w‖2L2(ω) = ‖∇ · ψ‖2L2(ω) = ‖∂1ψ11 + ∂2ψ12‖2L2(ω) + ‖∂1ψ21 + ∂2ψ22‖2L2(ω)

= ‖∂2ψ12‖2L2(ω) + ‖∂1ψ21‖2L2(ω) = ‖∂2ψ12‖2L2(ω) + ‖∂1ψ12‖2L2(ω)

= ‖∇ψ12‖2L2(ω) = ‖∇ψ21‖2L2(ω),

i.e. we obtain even equality in estimate (17).

We also require suitable cut-off functions that are central for the proof. For
T ∈ TH and positive k ∈ N, we let the function ηT,k ∈ P1(TH) (globally continuous
and piecewise linear w.r.t. TH) be defined as

ηT,k(x) = 0 for x ∈ Uk−1(T ),

ηT,k(x) = 1 for x ∈ Ω \ Uk(T ).
(18)

We start with the following lemma, which enables us to approximate truncated
functions from Kf

h.

Lemma 19. Let wh ∈ Kf
h and let ψ ∈ [W 1,2

loc (Ω)]d×d with wh = ∇ · ψ denote
the corresponding skew-symmetric matrix as in Lemma 18. Let furthermore ψK :=
|K|−1

∫
K
ψ denote the average on K ∈ TH and let ψH ∈ [L2(Ω)]d×d denote the

corresponding piecewise constant matrix with ψH(x) = ψK for x ∈ K. The broken
divergence-operator ∇H · is given by ∇H · v := ∇ · v|K for K ∈ TH . The function
ηT,k ∈ P1(TH) is a given cut-off function as defined in (18) for k > 0. Then, we
have that the function w̃h := Πh (∇ · (ηT,kψ))−(ΠH ◦Πh) (∇ · (ηT,kψ)) ∈ Kf

h fulfills
the following estimate for any K ∈ TH :

‖∇ · (ηT,kψ)−∇H · (ηT,kψH)− w̃h‖L2(K)

.

{
λ(H/h)‖wh‖L2(K) K ⊂ Uk(T ) \ Uk−1(T )

0 otherwise.

Obviously we also have supp(w̃h) ⊂ Ω \ Uk−1(T ).

Proof. First, we observe that the skew-symmetric matrix ψ must be a polynomial of
maximum degree 2 on each fine grid element. We use this in the following without
mentioning.
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We fix the element T ∈ TH and k ∈ N and denote η := ηT,k. Furthermore, we
define for K ∈ TH

cK := |K|−1

∫
K

η and ψK := |K|−1

∫
K

ψ.

We define w̃h := Πh (∇ · (ηψ))−(ΠH ◦Πh) (∇ · (ηψ)) and observe that w̃h ∈ Kf
h and

wh = w̃h on Ω\Uk(T ). The property ΠH(w̃h) = 0 is clear. The property ∇·w̃h = 0
follows from the fact that ηψ is still skew symmetric and that ∇ · (ΠH ◦ Πh)(·) =
(PH ◦ Ph)(∇ · ). Since ψK and cK are constant on K we have

Πh (∇ · (cKψK)) = ∇ · (cKψK) = 0 on K. (19)

Furthermore, since ΠH(vH) = vH for all vH ∈ VH and since ∇ · (ηψK) ∈ VH we
also have

(ΠH ◦Πh)(∇ · (ηψK)) = Πh (∇ · (ηψK)) on K. (20)

Finally, we also have on K,

(ΠH ◦Πh)(∇ · (cKψ)) = cK(ΠH ◦Πh)(∇ · ψ) = cKΠH(wh) = 0. (21)

Combining (19), (20), and (21) we obtain for every K ∈ TH

‖(ΠH ◦Πh) (∇ · (ηψ))−Πh(∇ · (ηψK))‖L2(K)

= ‖(ΠH ◦Πh) (∇ · (ηψ)−∇ · (cKψ)−∇ · (ηψK) +∇ · (cKψK)) ‖L2(K)

= ‖(ΠH ◦Πh) (∇ · ((η − cK)(ψ − ψK))) ‖L2(K). (22)

Now, we consider the quantity we want to estimate. For any K ∈ TH ,

‖∇ · (ηψ)−∇H · (ηψH)− w̃h‖L2(K)

≤ ‖∇ · (η(ψ − ψK))−Πh (∇ · (η(ψ − ψK))) ‖L2(K)

+ ‖Πh (∇ · (η(ψ − ψK)))−Πh (∇ · (ηψ)) + (ΠH ◦Πh) (∇ · (ηψ)) ‖L2(K)

= ‖∇ · (η(ψ − ψK))−Πh (∇ · (η(ψ − ψK))) ‖L2(K)

+ ‖(ΠH ◦Πh) (∇ · (ηψ))−Πh(∇ · (ηψK))‖L2(K)

(22)
= ‖∇ · ((η − cK)(ψ − ψK))−Πh (∇ · ((η − cK)(ψ − ψK))) ‖L2(K)

+ ‖(ΠH ◦Πh) (∇ · ((η − cK)(ψ − ψK))) ‖L2(K)

. λ(H/h)‖∇ · ((η − cK)(ψ − ψK))‖L2(K). (23)

In the last step we used Lemma 13, the property that Πh∇ · ((η − cK)(ψ − ψK)) is
divergence free and the fact that Πh is locally L2-stable when applied to functions of
small fixed polynomial degree, i.e. for fixed t ∈ Th and r ∈ N there exists a constant
C(r) that only depends on r and the shape regularity of t such that

‖Πh(v)‖L2(t) ≤ C(r)‖v‖L2(t) for all v ∈ [Pr(t)]d.
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Continuing from (23) we obtain

‖∇ · ((η − cK)(ψ − ψK)‖2L2(K)

. ‖(η − cK)∇ · ψ‖2L2(K) + ‖(ψ − ψK)∇η‖2L2(K)

. H2‖∇η‖2L∞(K)‖∇ψ‖2L2(K)

(17)

.

{
‖w‖2L2(K) K ⊂ Uk(T ) \ Uk−1(T )

0 otherwise.
(24)

Note that we used the properties of η to obtain the Lipschitz bound ‖η−cK‖L∞(K) .
H‖∇η‖L∞(K) . 1 and that ∇η has no support outside Uk(T ) \ Uk−1(T ). We also
used the Poincaré inequality for η− cK which has a zero average on K. Combining
(23) and (24) yields the sought result.

We continue with a lemma showing the exponential decay of solutions to problems
of the form in (5).

Lemma 20. Now, let wT ∈ Kf
h be the solution of∫

Ω

A−1wT · vh = FT (vh) for all vh ∈ Kf
h (25)

where FT ∈ (Kf
h)′ is such that FT (vh) = 0 for all vh ∈ Kf

h(Ω \ T ). Then, there
exists a generic constant 0 < θ < 1 (depending on the contrast β/α) such that for
all positive k ∈ N: ∣∣∣∣∣∣wT

∣∣∣∣∣∣
Ω\Uk(T )

. θk/λ(H/h)
∣∣∣∣∣∣wT

∣∣∣∣∣∣
Ω
. (26)

Proof. The proof exploits similar arguments as in [30]. Let us fix k ∈ N. We denote
again η := ηT,k ∈ P1(TH) (as in (18)). We apply Lemma 19 to wT ∈ Kf

h. The
corresponding skew symmetric matrix shall again be denoted by ψ = ψ(wT ) and
we define

w̃T := Πh(∇ · (ηψ))− (ΠH ◦Πh) (∇ · (ηψ)) .

We obtain that ∇ · (ηψ)−∇H · (ηψH)− w̃T is zero outside Uk(T ) \ Uk−1(T ) and

‖∇·(ηψ)−∇H ·(ηψH)−w̃T ‖L2(Uk(T )\Uk−1(T )) . λ(H/h)‖wT ‖L2(Uk(T )\Uk−1(T )).
(27)

First observe that∫
Ω\Uk−1(T )

A−1wT · w̃T =

∫
Ω

A−1wT · w̃T = FT (w̃T ) = 0 (28)

and

ηwT = η∇ · ψ = ∇ · (ηψ)− ψ∇η. (29)

With that we have∫
Ω\Uk(T )

A−1wT ·wT ≤
∫

Ω\Uk−1(T )

A−1wT · (ηwT )

(29)
=

∫
Ω\Uk−1(T )

A−1wT · (∇ · (ηψ)− ψ∇η)

(28)
=

∫
Ω\Uk−1(T )

A−1wT ·
(
∇ · (ηψ)− ψ∇η − w̃T

)
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=

∫
Ω\Uk−1(T )

A−1wT ·
(
∇ · (ηψ)−∇H · (ηψH)− w̃T

)
︸ ︷︷ ︸

=:I

+

∫
Ω\Uk−1(T )

A−1wT · (∇H · (ηψH)− ψ∇η)︸ ︷︷ ︸
=:II

.

For I we use (27) to obtain

I . λ(H/h)
∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Uk(T )\Uk−1(T )

and for II we obtain

II =

∫
Ω\Uk−1(T )

A−1wT · ((ψH − ψ)∇η)

.
∑
K∈TH

K⊂Uk(T )\Uk−1(T )

∣∣∣∣∣∣wT
∣∣∣∣∣∣
K
H‖∇η‖L∞(K)‖∇ψ‖L2(K)

.
∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Uk(T )\Uk−1(T )

.

Now, denote by L := Cλ(H/h), and we get∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω\Uk(T )
≤ L

∣∣∣∣∣∣wT
∣∣∣∣∣∣2
Uk(T )\Uk−1(T )

≤ L
(∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Ω\Uk−1(T )

−
∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Ω\Uk(T )

)
where C is independent of T , k and A, but can depend on the contrast. We obtain∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Ω\Uk(T )

≤ (1 + L−1)−1
∣∣∣∣∣∣wT

∣∣∣∣∣∣2
Ω\Uk−1(T )

.

A recursive application of this inequality and
∣∣∣∣∣∣wT

∣∣∣∣∣∣
Ω\U0(T )

≤
∣∣∣∣∣∣wT

∣∣∣∣∣∣
Ω

yields∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω\Uk(T )
≤ e− log(1+L−1)k

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω
≤ e− log(1+C−1)k/λ(H/h)

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω
,

where we used Bernoulli’s inequality and that 0 < L−1 ≤ C−1 in the last step. The
choice θ := (1 + C−1)−1 proves the lemma.

The following lemma is the main result of this subsection. It can be directly
applied to the localized corrector problems (11) with FT (vh) = aT (v,vh), GTh,kv =

wT,k and GThv = wT for any v ∈ V .

Lemma 21. Let the setting of Lemma 20 hold true and let additionally wT,k ∈
Kf
h(Uk(T )) denote the solution of∫

Uk(T )

A−1wT,k · vh = FT (vh) for all vh ∈ Kf
h(Uk(T )). (30)

Then, there exists a generic constant 0 < θ < 1 (depending on the contrast) such
that for all positive k ∈ N:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣ ∑
T∈TH

(
wT −wT,k

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

Ω

. kdλ(H/h)2θ2k/λ(H/h)
∑
T∈TH

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω
. (31)
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Proof. Let ηT,k be defined according to (18) and denote z :=
∑
T∈TH (wT −wT,k) ∈

Kf
h. We obtain

|||z|||2Ω =
∑
T∈TH

(A−1(wT −wT,k), (1− ηT,k+1)z)︸ ︷︷ ︸
=:I

+ (A−1(wT −wT,k), ηT,k+1z)︸ ︷︷ ︸
=:II

.

The first term is estimated by

I ≤
∣∣∣∣∣∣wT −wT,k

∣∣∣∣∣∣
Ω
|||z(1− ηT,k+1)|||Uk+1(T ) ≤

∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣

Ω
|||z|||Uk+1(T ).

For the second term we have z ∈ Kf
h, hence there exists again a skew-symmetric

matrix ψ = ψ(z) with the properties as in Lemma 18 with

ηT,k+1z = ηT,k+1∇ · ψ = ∇ · (ηT,k+1ψ)− ψ∇ηT,k+1.

We define z̃ := Πh(∇ · (ηT,k+1ψ)) − (ΠH ◦ Πh) (∇ · (ηT,k+1ψ)). Using Lemma 19
and supp(ηT,k+1z)∩supp(wT,k) = ∅ we get

(A−1(wT −wT,k), ηT,k+1z) = (A−1wT , ηT,k+1z)

(28)
=

∫
Ω\Uk(T )

A−1wT · (∇ · (ηT,k+1ψ)− ψ∇ηT,k+1 − z̃)

=

∫
Ω\Uk(T )

A−1
(
wT −wT,k

)
· (∇ · (ηT,k+1ψ)− ψ∇ηT,k+1 − z̃) .

Now proceed as in Lemma 20 to obtain

II . λ(H/h)
∣∣∣∣∣∣wT −wT,k

∣∣∣∣∣∣
Ω
|||z|||Uk+1(T ).

Combining the estimates for I and II and applying Hölder’s inequality finally yields,
for k ≥ 1,

|||z|||2Ω . λ(H/h)
∑
T∈TH

∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣

Ω
|||z|||Uk+1(T )

. k
d
2 λ(H/h)

( ∑
T∈TH

∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣2

Ω

) 1
2

|||z|||Ω.
(32)

It remains to bound
∣∣∣∣∣∣wT −wT,k

∣∣∣∣∣∣2
Ω

. In order to do this, we use Galerkin orthog-
onality for the local problems, which gives us∣∣∣∣∣∣wT −wT,k

∣∣∣∣∣∣2
Ω
≤ inf

w̃T,k∈Kf
h(Uk(T ))

∣∣∣∣∣∣wT − w̃T,k
∣∣∣∣∣∣2

Ω
.

Again, we use Lemma 20 to show∣∣∣∣∣∣wT −wT,k
∣∣∣∣∣∣2

Ω
. θ2k/λ(H/h)

∣∣∣∣∣∣wT
∣∣∣∣∣∣2

Ω
. (33)

Combining (32) and (33) proves the lemma.

4.3. Inf-sup stability revisited. The decay results can be used to prove another
inf-sup stability constant γ1

k in addition to γ0
k from Lemma 12 for the bilinear form
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b(·, ·) with the localized multiscale space. Using Lemma 21, we obtain

‖Gh,kv −Ghv‖2L2(Ω) =

∥∥∥∥∥ ∑
T∈TH

(GTh,kv −GThv)

∥∥∥∥∥
2

L2(Ω)

. kdλ(H/h)2θ2k/λ(H/h)
∑
T∈TH

‖GThv‖2L2(Ω)

. kdλ(H/h)2θ2k/λ(H/h)‖v‖2L2(Ω).

We get the following stability

‖Gh,kv‖L2(Ω) ≤ ‖Gh,kv −Ghv‖L2(Ω) + ‖Ghv‖L2(Ω)

. (kd/2λ(H/h)θk/λ(H/h) + 1)‖v‖L2(Ω).

Using the same technique as in Lemma 12, we obtain an inf-sup stability constant
γ1
k := γ(2 + kd/2λ(H/h)θk/λ(H/h))−1.

For the nodal Raviart–Thomas interpolation operator ΠH , λ(H/h) depends on
h and H, and we cannot obtain a uniform bound on the constant for this estimate
either. However, for L2-stable Clément-type interpolation operators (discussed in
Remark 14), we have λ(H/h) ≡ 1, independently of h and H. If using such an
interpolator in place of ΠH , the inf-sup stability constant γ1

k can be bounded from

below by a positive constant independent of h and H, since kd/2θk is bounded from
above with respect to k.

5. Numerical experiments. Four numerical experiments are presented in this
section. Their purpose is to show that the error estimate for the localized multiscale
method presented in Theorem 16 is valid and useful for determining the patch sizes
and that the method is competitive.

A brief overview of the implementation of the method follows. The two dimen-
sional Raviart–Thomas finite element is used. For all free degrees of freedom e
(interior edges), the localized global corrector Gh,kΦe for the corresponding basis
function Φe is computed according to equation (11). The additional constraints on
the test and trial functions to be in the kernel to the coarse Raviart–Thomas pro-
jection operator are implemented using Lagrange multipliers (in addition to those
already there due to the mixed formulation). The corrector problems are cheap
since they are solved only on small patches. This can be done in parallel over all
basis functions. Finally, problem (12) is solved. Regarding the linear system arising
here, we compare it with the linear system arising from a standard Raviart–Thomas
discretization (using VH for the flux) of the mixed formulation on the coarse mesh:(

K BT

B 0

)
=

(
0
b

)
,

for matrices K and B and a vector b. The difference with the multiscale method
is that matrix corresponding to the bilinear form a(·, ·) is computed using the low

dimensional modified localized multiscale basis {ΦE − Gh,kΦE}E spanning V ms,k
H,h .

Since the correctors are divergence free, K is replaced by a different matrix K̃ in
the system above, whereas B and b are left intact.

In all numerical experiments below, the diffusion matrix is diagonal with identical
diagonal elements, A(x) = A(x)I, with I being the identity matrix, for a scalar-
valued function A.
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5.1. Investigation of error from localization. In this experiment, we investi-
gate how the error in energy norm of the localized multiscale solution is affected
by the localization to patches of the correctors. The error due to localization is
bounded by the second term in the estimate in Theorem 16. This term will be the
focus of this experiment.

The computational domain is the unit square Ω = [0, 1]2 and the source function
is given by

f(x) =


1 if x ∈ [0, 1/4]2,

−1 if x ∈ [3/4, 1]2,

0 otherwise.

We consider three different diffusion coefficients A:

1. Constant: A(x) = 1 in the whole domain.
2. Noise: A(x) is piecewise constant on a 27 × 27 uniform rectangular grid. In

each grid cell, the value of A is equal to a realization of exp(10ω), where ω is
a cell-specific standard uniformly distributed variable.

3. Channels: A(x) is as is shown in Figure 2. It is piecewise constant on a 27×27

uniform rectangular grid. The coefficient A(x) = 1 for x in black cells and
A(x) = exp(10) for x in white cells.

Figure 2. Coefficient A defined on a 27 × 27 grid of Ω.

(a) Coarsest mesh, h = 1. (b) One refinement, h = 1/2.

Figure 3. Family of triangulations of the unit square.

Figure 3 shows the mesh used in the experiment. Both fine and coarse meshes are
constructed as shown in the figure. A reference solution uh was computed with

the standard Raviart–Thomas spaces Vh and Qh with h = 2−8. Solutions ums,k
H,h to

the localized multiscale problem were computed using H = 2−2, 2−3, . . . , 2−6. The
patch size k was chosen as

k = C(1 + log2(H/h))1/2 log2(H−1)

rounded to the nearest integer with C = 0.25 and C = 0.5. The relative error
(using the reference solution in place of the exact solution) in energy norm, i.e.
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H,h

∣∣∣∣∣∣∣∣∣/|||uh||| was computed. See Figure 4 for the resulting convergence

of this error with respect to H for the two values of C. Note that since f ∈
QH for all examples, the first term in (15) vanishes. The error is hence bounded
by kd/2λ(H/h)2θk/λ(H/h)‖f‖L2(Ω), which allows for a careful investigation of the

influence of k, H and h. A reference line proportional to H2 is plotted for guidance.
We can see that we achieve convergence for both choices of C. However, since k
is rounded to an integer, the convergence plots have a staggered appearance. This
example shows that the error due to localization can be kept small and decreases
with H. The plots also show the relative error in energy norm for the standard
Raviart–Thomas discretization on the coarse mesh. It is evident that the localized
multiscale space has good approximation properties since it permits convergence
while the standard space of the same dimension does not.

5.2. Investigation of instability. In this experiment we show how singularity-
like features can appear in the solution, probably as a result of high contrast in
combination with the L2-instability of the nodal Raviart–Thomas interpolator.

Again, we consider the unit square Ω = [0, 1]2. The diffusion coefficient A is
chosen according to Figure 5. In other words, A is defined as

A(x) =

{
exp(10) if x2 < 1/2 or x ∈ [ 1

2 − 2−5, 1
2 + 2−5]× [ 1

2 ,
1
2 + 2−5],

1 otherwise.

The source function is chosen as

f(x) =

{
−1 if x2 < 1/2,

1 otherwise.

This particular choice of A and f yields a localized multiscale solution with a clear
singularity-like feature at x = (x1, x2) = (1/2, 1/2) in the localized multiscale solu-
tion.

We use the family of triangulations presented in Figure 3 and fix H = 1/4 so that
f is resolved on the coarse scale. Then f ∈ QH and all error stems from localization
(see Theorem 16). We let the resolution h of the fine space be h = 2−5, 2−6, . . . , 2−9.

Choosing k = 2, we compute the localized multiscale solution ums,k
H,h and reference

solution uh for the given values of h.
From the error estimate in Theorem 16, we expect to have∣∣∣∣∣∣∣∣∣uh − ums,k

H,h

∣∣∣∣∣∣∣∣∣ . kd/2λ(H/h)2θk/λ(H/h)‖f‖L2(Ω)

∝ log
(
h−1

)
as h→ 0.

The energy norm of the error is plotted in Figure 6. We can see that for this partic-
ular problem and range of h, the error increases with h and with the rate log(h−1)
as predicted by the error estimate. However, the error estimate seems not to be
sharp for this particular example. Figure 7 shows the reference and multiscale flux
solutions. The magnitude of the reference solution is in the range [0, 3], while the
multiscale solution has a spike reaching magnitude 30 at x = (1/2, 1/2). Interesting
to note is that the singularities vanish for the ideal multiscale method, i.e. without
localization, see Lemma 9.
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(a) Diffusion coefficient is constant.
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(b) Diffusion coefficient is noisy.
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(c) Diffusion coefficient has channel structures.

Figure 4. Convergence plots for localization error experiments.
Relative error in energy norm for three choices of A, for different
values of the constant C determining the patch size. The number
adjacent to a point is the actual value of k for the specific simulation
corresponding to that point.
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Figure 5. Coefficient A defined on a 25 × 25 grid of Ω where
A(x) = 1 for x in black cells and A(x) = exp(10) for x in white
cells.

5 6 7 8 9

log2 h
−1

2 · 10−2

10−2|||u
h
−
u
m
s,
k

H
,h

|||

Localization error

2 · 10−3 · log2 h−1

Figure 6. Divergence of the energy norm of the localization error
of a particular multiscale solution as h decreases.

5.3. Convergence in an L-shaped domain. Next, we consider an L-shaped
domain with noisy diffusion coefficient A (case 2. in Section 5.1) and with f /∈ QH .
In this experiment, we show that the localization error investigated in the previous
section can be dominated by errors from projecting f .

We use the domain Ω = [0, 1]2 \ [1/2, 1]× [0, 1/2] and the triangulation presented
in Figure 8. Both fine and coarse meshes are constructed as shown in the figure.
Further, we choose the source function as

f(x) =


1/2 + x1 − x2 if x2 < 1/2,

−(1/2 + x1 − x2) if x1 > 1/2,

0 otherwise.

Note that f /∈ QH and ‖f−PHf‖L2(Ω) . H. A reference solution uh was computed

with the standard Raviart–Thomas spaces Vh and Qh with h = 2−8. Solutions ums,k
H,h

to the localized multiscale problem were computed using H = 2−2, 2−3, . . . , 2−6.
The patch size k was chosen as

k = C(1 + log2(H/h))1/2 log2(H−1)
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(a) Reference solution, h = 2−9. (b) Multiscale solution, h = 2−9,
H = 2−2, k = 2.

Figure 7. Magnitude of flux at the centroid of the triangles.

(a) Coarsest mesh, h = 1/2. (b) One refinement, h = 1/4.

Figure 8. Family of triangulations of the L-shaped domain.

rounded to the nearest integer, with C = 0.25 and C = 0.5. The relative error in
energy norm was recorded for the solutions corresponding to the values of H. The
resulting convergence plot can be found in Figure 9. We expect the first term in
the error estimate,∣∣∣∣∣∣∣∣∣uh − ums,k

H,h

∣∣∣∣∣∣∣∣∣ . H‖f − PHf‖L2(Ω) + kd/2λ(H/h)θk/λ(H/h)‖f‖L2(Ω) (34)

to be of order H2. From the convergence plots we can see that C = 0.25 is not
sufficient to make the localization error of at least order H2, however, C = 0.5 is.

5.4. Comparison with MsFEM. We compare the proposed method with the
results obtained using the Multiscale Finite Element Method (MsFEM) based ap-
proach in [5]. The domain is Ω = [0, 1.2] × [0, 2.2] and the permeability coefficient
A is given in a uniform rectangular grid of size 60 × 220 by the 85th permeability
layer in model 2 of SPE10 [12].

The method proposed in [5] is based on a fine and a coarse mesh with quadrilat-
eral elements. The fine mesh is uniform 60× 220, i.e. aligned with the permeability
data, and the coarse mesh is 6× 22, so that each coarse element is subdivided into
10 × 10 fine elements. The implementation of the method proposed in this work
uses triangular meshes, which is why we divide each of the rectangular elements
into two triangular elements by a diagonal line drawn from the upper left corner
to the lower right corner. As coarse mesh, we use a similar triangular mesh that is
constructed from a 6×22 rectangular mesh such that the fine mesh is a conforming
refinement of the coarse mesh.
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Figure 9. Convergence plot for experiment with L-shaped do-
main. Shows relative error in energy norm for two values of C and
a series of values of H. The number adjacent to a point is the
actual value of k for the specific simulation corresponding to that
point.

The (quasi-singular) source data f is equal to 1 in the lower left and −1 in
the upper right fine quadrilateral element. Note that such f is a discretization
of point sources that model production wells. In particular, the source terms on
the continuous level are mathematically described by Dirac delta functions. Hence,
for h → 0, we only have f ∈ W−m,2(Ω) for m > d

2 , opposed to f ∈ L2(Ω) as is
required for our analysis. To account for this difference, we follow [28] and compute

the localized source corrections FT,`h f ∈ V f
h(U`(T )) on `-coarse-layer patches for

T ∈ TH ,

a(FT,`h f,vf
h) + b(vf

h, F̃
T,`
h f) + b(FT,`h f, qf

h) = −(f, qf
h)T ,

for all vf
h ∈ V f

h(U`(T )) and qf
h ∈ Qf

h(U`(T )), where Qf
h(U`(T )) is the restriction

of Qf
h to U`(T ), analogous to the definition of V f

h(U`(T )). (The pressure solution

F̃T,`h f is not needed for correcting the flux and is discarded after its use as Lagrange
multiplier). Since f is non-zero only for the two triangles T1 and T2 in the lower
left and upper right corners, only two such corrector problems need to be solved.

The total localized source correction is F `hf = FT1,`
h f + FT2,`

h f ∈ V f
h .

The localized corrector problems (11) are unaffected by the source correction.
The right hand side of the localized multiscale problem (12) is appended with the

localized source corrections and instead reads: find ums,k,`
H,h such that

a(ums,k,`
H,h ,vh) + b(vh, pH) + b(ums,k,`

H,h , qH) = −(f, qH)− a(F `hf,vh).

Using a value of ` = 0 will be referred to as an ad-hoc source correction, since we
do not expect to have any decay of the correction already within the source triangle

itself. The source corrected solution is ums,k,`
H,h + F `hf .

We emphasize that the need for source correctors for singular source terms is not
an exclusive drawback for our approach, but it is a common necessity shared by all
comparable multiscale methods in this setting. In particular they are also used for
the MsFEM-based approach in [5] that we use for our comparative study.

The proposed localized multiscale method was used to solve for the flux in the
described problem for three corrector patch sizes: k = 1, 2, and 3. Three variants of
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Table 1. Relative error in energy norm and L2-norm for the
SPE10-85 problem.

Method k ` Energy norm L2-norm

Proposed method
without source
correction

1 − 0.7863 0.4069
2 − 0.7856 0.3369
3 − 0.7855 0.3325

Proposed method
with ad-hoc source
correction (` = 0)

1 0 0.1541 0.2700
2 0 0.1515 0.1467
3 0 0.1537 0.1379

Proposed method
with source correction
(` = k, k + 1,∞)

1 1 0.1090 0.8292
1 2 0.0459 0.2703
1 ∞ 0.0350 0.2504

2 2 0.0549 0.7453
2 3 0.0185 0.0517
2 ∞ 0.0150 0.0490

3 3 0.0080 0.0178
3 4 0.0051 0.0424
3 ∞ 0.0041 0.0088

HE0-OS [5] − − − 0.3492

source correction were used: i) without source correction, i.e. ums,k
H,h , ii) with ad-hoc

source correction, i.e. ums,k,`
H,h +F `hf for ` = 0 (without interpolation constraint), and

iii) with source correction, i.e. ums,k,`
H,h +F `hf for ` = k, k+1,∞. A reference solution

uh was computed on the fine mesh. Table 1 shows the relative energy norm and L2-
norm of the difference between the localized multiscale solution and the reference
solution for the different values of k and `. The corresponding L2-norm of the error
for the MsFEM method with oversampling HE0-OS proposed in [5] is also presented
in the table. Note that HE0-OS is based on a discretization with roughly 33% less
degrees of freedom than the proposed method, since it uses quadrilaterals instead
of triangles (however, since this holds for both the fine and the coarse mesh, the
relative change in the amount of degrees of freedom with respect to the reference
solution is the same). The flux solutions are plotted in Figure 10.

The results show that the proposed method even without error correction com-
pares favorably with the homogenization based approach. Ad-hoc error correction
gives small errors for this problem in both norms. For source correction with patch
size ` = k, instabilities similar to that studied in Section 5.2 cause the error to
increase. However, letting ` = k+ 1 is enough to get errors that compare favorably
with [5].

Acknowledgments. We gratefully acknowledge the anonymous reviewers for their
careful reading and insightful suggestions that improved the manuscript.
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[28] A. Målqvist, Multiscale methods for elliptic problems, Multiscale Model. Simul., 9 (2011),

1064–1086.
[29] J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods

for elliptic problems, Multiscale Model. Simul., 7 (2008), 171–196.

http://www.ams.org/mathscinet-getitem?mr=MR2084227&return=pdf
http://dx.doi.org/10.1137/S0036142902406636
http://dx.doi.org/10.1137/S0036142902406636
http://www.ams.org/mathscinet-getitem?mr=MR2818414&return=pdf
http://dx.doi.org/10.1137/100788677
http://dx.doi.org/10.1137/100788677
http://www.ams.org/mathscinet-getitem?mr=MR2231859&return=pdf
http://dx.doi.org/10.1137/050631811
http://www.ams.org/mathscinet-getitem?mr=MR2269741&return=pdf
http://dx.doi.org/10.1017/S0962492906210018
http://dx.doi.org/10.1017/S0962492906210018
http://www.ams.org/mathscinet-getitem?mr=MR3097958&return=pdf
http://dx.doi.org/10.1007/978-3-642-36519-5
http://www.ams.org/mathscinet-getitem?mr=MR1954956&return=pdf
http://dx.doi.org/10.1090/S0025-5718-02-01441-2
http://dx.doi.org/10.1090/S0025-5718-02-01441-2
http://www.ams.org/mathscinet-getitem?mr=MR2317829&return=pdf
http://dx.doi.org/10.1007/s00211-007-0081-2
http://dx.doi.org/10.1007/s00211-007-0081-2
http://www.ams.org/mathscinet-getitem?mr=MR2373181&return=pdf
http://dx.doi.org/10.1090/S0025-5718-07-02081-9
http://www.ams.org/mathscinet-getitem?mr=MR3141754&return=pdf
http://dx.doi.org/10.1137/120900113
http://dx.doi.org/10.1137/120900113
http://www.ams.org/mathscinet-getitem?mr=MR3422449&return=pdf
http://dx.doi.org/10.1007/s00211-015-0703-z
http://dx.doi.org/10.1007/s00211-015-0703-z
http://www.ams.org/mathscinet-getitem?mr=MR3240855&return=pdf
http://dx.doi.org/10.1137/130933198
http://dx.doi.org/10.1137/130933198
http://www.ams.org/mathscinet-getitem?mr=MR3264356&return=pdf
http://dx.doi.org/10.1051/m2an/2013141
http://dx.doi.org/10.1051/m2an/2013141
http://dx.doi.org/10.1007/978-3-319-06898-5_10
http://www.ams.org/mathscinet-getitem?mr=MR3123820&return=pdf
http://dx.doi.org/10.1137/120900332
http://www.ams.org/mathscinet-getitem?mr=MR1455261&return=pdf
http://dx.doi.org/10.1006/jcph.1997.5682
http://dx.doi.org/10.1006/jcph.1997.5682
http://www.ams.org/mathscinet-getitem?mr=MR2300286&return=pdf
http://dx.doi.org/10.1137/050645646
http://dx.doi.org/10.1137/050645646
http://www.ams.org/mathscinet-getitem?mr=MR1365381&return=pdf
http://dx.doi.org/10.1016/0045-7825(95)00844-9
http://dx.doi.org/10.1016/0045-7825(95)00844-9
http://www.ams.org/mathscinet-getitem?mr=MR1660141&return=pdf
http://dx.doi.org/10.1016/S0045-7825(98)00079-6
http://dx.doi.org/10.1016/S0045-7825(98)00079-6
http://www.ams.org/mathscinet-getitem?mr=MR3291800&return=pdf
http://dx.doi.org/10.1112/jlms/jdu052
http://dx.doi.org/10.1112/jlms/jdu052
http://www.ams.org/mathscinet-getitem?mr=MR2319044&return=pdf
http://dx.doi.org/10.1016/j.cma.2006.08.019
http://dx.doi.org/10.1016/j.cma.2006.08.019
http://www.ams.org/mathscinet-getitem?mr=MR2553176&return=pdf
http://dx.doi.org/10.1142/S021820250900370X
http://dx.doi.org/10.1142/S021820250900370X
http://www.ams.org/mathscinet-getitem?mr=MR3246801&return=pdf
http://dx.doi.org/10.1090/S0025-5718-2014-02868-8
http://www.ams.org/mathscinet-getitem?mr=MR3343928&return=pdf
http://dx.doi.org/10.1007/s00211-014-0665-6
http://www.ams.org/mathscinet-getitem?mr=MR2831590&return=pdf
http://dx.doi.org/10.1137/090775592
http://www.ams.org/mathscinet-getitem?mr=MR2399542&return=pdf
http://dx.doi.org/10.1137/070693230
http://dx.doi.org/10.1137/070693230


1298 FREDRIK HELLMAN, PATRICK HENNING AND AXEL MÅLQVIST
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