Loading [Contrib]/a11y/accessibility-menu.js

Modeling the effects of carriers on transmission dynamics of infectious diseases

  • Received: 01 September 2010 Accepted: 29 June 2018 Published: 01 June 2011
  • MSC : Primary: 92D40, 92D25; Secondary: 34D20.

  • An $S$-$I_c$-$I$-$R$ epidemic model is investigated for infectious diseases that can be transmitted through carriers, infected individuals who are contagious but do not show any disease symptoms. Mathematical analysis is carried out that completely determines the global dynamics of the model. The impacts of disease carriers on the transmission dynamics are discussed through the basic reproduction number and through numerical simulations.

    Citation: Darja Kalajdzievska, Michael Yi Li. Modeling the effects of carriers on transmission dynamics of infectious diseases[J]. Mathematical Biosciences and Engineering, 2011, 8(3): 711-722. doi: 10.3934/mbe.2011.8.711

    Related Papers:

    [1] Xing Zhang, Zhitao Li, Lixin Gao . Stability analysis of a SAIR epidemic model on scale-free community networks. Mathematical Biosciences and Engineering, 2024, 21(3): 4648-4668. doi: 10.3934/mbe.2024204
    [2] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019
    [3] Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390
    [4] Lusha Shi, Jianghong Hu, Zhen Jin . Dynamics analysis of strangles with asymptomatic infected horses and long-term subclinical carriers. Mathematical Biosciences and Engineering, 2023, 20(10): 18386-18412. doi: 10.3934/mbe.2023817
    [5] Cunjuan Dong, Changcheng Xiang, Wenjin Qin, Yi Yang . Global dynamics for a Filippov system with media effects. Mathematical Biosciences and Engineering, 2022, 19(3): 2835-2852. doi: 10.3934/mbe.2022130
    [6] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [7] Lili Han, Mingfeng He, Xiao He, Qiuhui Pan . Synergistic effects of vaccination and virus testing on the transmission of an infectious disease. Mathematical Biosciences and Engineering, 2023, 20(9): 16114-16130. doi: 10.3934/mbe.2023719
    [8] Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva . Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1159-1186. doi: 10.3934/mbe.2017060
    [9] Steady Mushayabasa, Drew Posny, Jin Wang . Modeling the intrinsic dynamics of foot-and-mouth disease. Mathematical Biosciences and Engineering, 2016, 13(2): 425-442. doi: 10.3934/mbe.2015010
    [10] Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286
  • An $S$-$I_c$-$I$-$R$ epidemic model is investigated for infectious diseases that can be transmitted through carriers, infected individuals who are contagious but do not show any disease symptoms. Mathematical analysis is carried out that completely determines the global dynamics of the model. The impacts of disease carriers on the transmission dynamics are discussed through the basic reproduction number and through numerical simulations.


  • This article has been cited by:

    1. Kusum Lata, S.N. Mishra, A.K. Misra, An optimal control problem for carrier dependent diseases, 2020, 187, 03032647, 104039, 10.1016/j.biosystems.2019.104039
    2. Aaron G. Lim, Philip K. Maini, HTLV-I infection: A dynamic struggle between viral persistence and host immunity, 2014, 352, 00225193, 92, 10.1016/j.jtbi.2014.02.022
    3. G.P. Samanta, Analysis of a delayed epidemic model with pulse vaccination, 2014, 66, 09600779, 74, 10.1016/j.chaos.2014.05.008
    4. Jing-Jing Xiang, Juan Wang, Li-Ming Cai, Global stability of the dengue disease transmission models, 2015, 20, 1553-524X, 2217, 10.3934/dcdsb.2015.20.2217
    5. Rebecca H. Chisholm, Patricia T. Campbell, Yue Wu, Steven Y. C. Tong, Jodie McVernon, Nicholas Geard, Implications of asymptomatic carriers for infectious disease transmission and control, 2018, 5, 2054-5703, 172341, 10.1098/rsos.172341
    6. Liming Cai, Bin Fang, Xuezhi Li, A note of a staged progression HIV model with imperfect vaccine, 2014, 234, 00963003, 412, 10.1016/j.amc.2014.01.179
    7. Tsegaye Kebede Irena, Sunita Gakkhar, Modelling the dynamics of antimicrobial-resistant typhoid infection with environmental transmission, 2021, 401, 00963003, 126081, 10.1016/j.amc.2021.126081
    8. J.B. Shukla, Ashish Goyal, Shikha Singh, Peeyush Chandra, Effects of habitat characteristics on the growth of carrier population leading to increased spread of typhoid fever: A model, 2013, 4, 2210-6014, 107, 10.1016/j.jegh.2013.10.005
    9. T. Berge, A. J. Ouemba Tassé, H. M. Tenkam, J. Lubuma, Mathematical modeling of contact tracing as a control strategy of Ebola virus disease, 2018, 11, 1793-5245, 1850093, 10.1142/S1793524518500936
    10. Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou, Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers, 2016, 13, 1551-0018, 813, 10.3934/mbe.2016019
    11. Chadi M. Saad-Roy, Ned S. Wingreen, Simon A. Levin, Bryan T. Grenfell, Dynamics in a simple evolutionary-epidemiological model for the evolution of an initial asymptomatic infection stage, 2020, 117, 0027-8424, 11541, 10.1073/pnas.1920761117
    12. Isam Al-Darabsah, Yuan Yuan, A periodic disease transmission model with asymptomatic carriage and latency periods, 2018, 77, 0303-6812, 343, 10.1007/s00285-017-1199-1
    13. Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Patricia Lopez Molano, Global stability analysis for a model with carriers and non-linear incidence rate, 2020, 14, 1751-3758, 409, 10.1080/17513758.2020.1772998
    14. S. Mushayabasa, C. P. Bhunu, E. T. Ngarakana-Gwasira, Assessing the Impact of Drug Resistance on the Transmission Dynamics of Typhoid Fever, 2013, 2013, 2314-4165, 1, 10.1155/2013/303645
    15. Steady Mushayabasa, Modeling the impact of optimal screening on typhoid dynamics, 2016, 4, 2195-268X, 330, 10.1007/s40435-014-0123-4
    16. Arvind Kumar Misra, Alok Gupta, Ezio Venturino, Modeling biological control of carrier‐dependent infectious diseases, 2020, 2577-7408, 10.1002/cmm4.1127
    17. Suli Liu, Michael Y. Li, Epidemic models with discrete state structures, 2021, 01672789, 132903, 10.1016/j.physd.2021.132903
    18. Meghadri Das, G. P. Samanta, Optimal control of a fractional order epidemic model with carriers, 2022, 10, 2195-268X, 598, 10.1007/s40435-021-00822-3
    19. Mohammed H. Alharbi, Global investigation for an "SIS" model for COVID-19 epidemic with asymptomatic infection, 2023, 20, 1551-0018, 5298, 10.3934/mbe.2023245
    20. Imelda Trejo, Nicolas W. Hengartner, Alberto d’Onofrio, A modified Susceptible-Infected-Recovered model for observed under-reported incidence data, 2022, 17, 1932-6203, e0263047, 10.1371/journal.pone.0263047
    21. Olumuyiwa James Peter, Mohammed Olanrewaju Ibrahim, Helen Olaronke Edogbanya, Festus Abiodun Oguntolu, Kayode Oshinubi, Abdullahi Adinoyi Ibrahim, Tawakalt Abosede Ayoola, John Oluwasegun Lawal, Direct and indirect transmission of typhoid fever model with optimal control, 2021, 27, 22113797, 104463, 10.1016/j.rinp.2021.104463
    22. Xin-You Meng, Tao Zhang, The impact of media on the spatiotemporal pattern dynamics of a reaction-diffusion epidemic model, 2020, 17, 1551-0018, 4034, 10.3934/mbe.2020223
    23. A Fractional Treatment to Food-Borne Disease Modeling by q- Homotopy Analysis Transform Method (q-HATM), 2023, 2581-9429, 508, 10.48175/IJARSCT-8638
    24. Meltem GÖLGELİ, Fatihcan M. ATAY, Analysis of an epidemic model for transmitted diseases in a group of adults and an extension to two age classes, 2020, 49, 2651-477X, 921, 10.15672/hujms.624042
    25. Albert Orwa Akuno, L. Leticia Ramírez-Ramírez, Jesús F. Espinoza, Inference on a Multi-Patch Epidemic Model with Partial Mobility, Residency, and Demography: Case of the 2020 COVID-19 Outbreak in Hermosillo, Mexico, 2023, 25, 1099-4300, 968, 10.3390/e25070968
    26. Miller Cerón Gómez, Eduardo Ibarguen Mondragón, Carmen A. Ramírez Bernate, Assessing the effect of migration and immigration rates on the transmission dynamics of infectious diseases, 2023, 69, 1598-5865, 3819, 10.1007/s12190-023-01903-6
    27. Lusha Shi, Jianghong Hu, Zhen Jin, Dynamics analysis of strangles with asymptomatic infected horses and long-term subclinical carriers, 2023, 20, 1551-0018, 18386, 10.3934/mbe.2023817
    28. Danni Wang, Hongli Yang, Liangui Yang, Research on nonlinear infectious disease models influenced by media factors and optimal control, 2024, 9, 2473-6988, 3505, 10.3934/math.2024172
    29. Shimli Dutta, Protyusha Dutta, Guruprasad Samanta, Modelling disease transmission through asymptomatic carriers: a societal and environmental perspective, 2024, 2195-268X, 10.1007/s40435-024-01387-7
    30. Nkuba Nyerere, Saul C. Mpeshe, Neterindwa Ainea, Abayomi A. Ayoade, Filimon A. Mgandu, GLOBAL SENSITIVITY ANALYSIS AND OPTIMAL CONTROL OF TYPHOID FEVER TRANSMISSION DYNAMICS, 2024, 29, 1392-6292, 141, 10.3846/mma.2024.17859
    31. Kalyan Kumar Pal, Rajanish Kumar Rai, Pankaj Kumar Tiwari, Influences of Media-Induced Awareness and Sanitation Practices on Cholera Epidemic: A Study of Bifurcation and Optimal Control, 2025, 35, 0218-1274, 10.1142/S0218127425500026
    32. Surasak Chiangga, Saman Mongkolsakulvong, Till Daniel Frank, Nonlinear physics perspective and essential disease dynamics of EBV infections and the dynamics of EBV-associated diseases, 2025, 51, 0092-0606, 10.1007/s10867-025-09676-8
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4018) PDF downloads(806) Cited by(32)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog