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ABSTRACT. An S-I.-I-R epidemic model is investigated for infectious diseases
that can be transmitted through carriers, infected individuals who are conta-
gious but do not show any disease symptoms. Mathematical analysis is carried
out that completely determines the global dynamics of the model. The im-
pacts of disease carriers on the transmission dynamics are discussed through
the basic reproduction number and through numerical simulations.

1. Introduction. For certain infectious diseases, there are individuals who are able
to transmit their illness but do not exhibit any symptoms. These individuals are
called “carriers” and they play an important role in the transmission of the disease.
There are two types of carriers. Genetic carriers carry the illness on their recessive
genes. They can only pass on their disease to their children and are not contagious.
The focus of our study is on infectious disease carriers. These individuals are
asymptomatic and are likely unaware of their conditions, and therefore are more
likely to infect others. An infectious disease that produces long-term asymptotic
carriers is the Typhoid fever caused by the bacteria Salmonella Typhi. Typhoid fever
reached public notoriety at the beginning of the 20th century with the cases of “Mr.
N the milker” in England and Typhoid Mary in the US. These individuals infected
hundreds of people over the decades while they worked in the food production
industry and private homes. Even today, Typhoid fever infects 21 million people and
kills 200,000 worldwide every year. Asymptomatic carriers are believed to play an
essential role in the evolution and global transmission of Typhi, and their presence
greatly hinders the eradication of Typhoid fever using treatment and vaccination
[13].

Another major infectious disease that causes long-term asymptomatic carriage
is hepatitis B, a liver disease caused by the HBV virus of the Hepadnavirus family.
Most people infected with HBV recover completely and develop a lifelong immunity
to the virus. However, about 5-10% of adults will develop chronic HBV infection,
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and 15-25% of these will develop liver disease. Hepatitis B’s symptoms include
jaundice, abdominal pain, nausea, fatigue and joint pain. About 30% of people with
the disease do not show any of these symptoms. A major public-health challenge in
the control of hepatitis B infection in many countries is the existence of a large pool
of chronic carriers who are responsible for transmitting most of the new infections.
Infections of other pathogens are also know to produce asymptomatic carriers. The
Epstein-Barr Virus (EBV) of the herpes family is one of the most common viruses
in humans. EBV infection commonly causes infectious mononucleosis, also known
as glandular fever. Most people infected with EBV are asymptomatic, as it remains
dormant in those who have had it for the rest of their lives in the cells of the
throat and the immune system. Clostridium difficile is a bacterium that causes
Clostridium difficile-associated diseases (CDAD). CDAD remains the most common
cause of acute hospital-acquired diarrhea, responsible for more than 300,000 cases
of diarrhea annually in acute-care facilities in the United States. Asymptomatic
carriage rates of up to 30% have been reported in long-term care facilities. It is
believed that carriers are responsible for transmission and large outbreaks of CDAD
in Europe and North America [12].

Despite their public health significance, the effects of carriers on the transmis-
sion dynamics of the disease have not received adequate research attention in the
mathematical modeling literature. One of the earlier attempts was Kemper [7], in
which a general mathematical model that incorporates disease carriers was devel-
oped and analyzed. Medley et al. [10] used a mathematical model for hepatitis
B with carriers to discussed the effects of HBV vaccination. Several other studies
using large-scale computational models with carriers are specifically aimed at hep-
atitis B and other diseases [15, 1, 2, 14, 11]. In the present paper, we propose a
general mathematical model for infectious diseases with asymptomatic carriers to
investigate the effects of carriers on the transmission dynamics. We have derived
the basic reproduction number Ry and show that the global dynamics of the model
are completely determined by the values of Ry. Since Ry explicitly involves pa-
rameters related to disease carriage, we are able to discuss the impact of disease
carriage on Ry. We have also carried out numerical simulations of the model using
parameter values that are pertinent to hepatitis B infection, and investigated the
effects of carriers on the HBV transmission dynamics. Mathematically, our proof
of the global stability of the unique endemic equilibrium when Ry > 1 nontrivially
utilizes the method of global Lyapunov functions.

The model derivation is given in the next section. The basic reproduction number
is derived and discussed in Section 3. Global stability of the disease-free and endemic
equilibrium is proved in Section 4 and 5, respectively. In Section 6, effects of carriers
on the transmission of chronic hepatitis B infection are discussed.

2. A general epidemic model with asymptomatic carriers.

2.1. Model formulation. We formulate an S-I.-I-R compartmental model where
S,I.,I, and R represent the susceptible, carrier, symptomatically infectious or in-
fectious for short, and removed classes, respectively. A susceptible individual can be
infected through direct contact with an infectious individual or a carrier. A newly
infected individual can become a carrier with probability p, or shows disease symp-
toms with probability 1 —p. We assume that the rate of transmission S for carriers
is higher than the rate v of symptomatically infected individuals due to the fact
that they are more likely to be unaware of their condition, and therefore continue
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with their regular behaviours. Carriers may become symptomatic at a rate a. For
infections such as HBV for which carriage can remain life-long, o can be regarded as
rate of diagnosis. We assume a constant influx b of susceptibles, and let dy, d2, d3, dy
denote the death rates of those in the susceptible, carrier, infectious, and removed
classes, respectively. Here d,d4 can be considered as natural death rates, while do
and dz may include both natural and disease-related death. We incorporate a simple
vaccination strategy in which a fraction 6 of the susceptible population is vaccinated
and is fully protected by the vaccine. Symptomatically infected individual recover
with rate 7, and we assume that recovered individuals are permanently immune.
Parameters in the model are summarized and explained in Table 1, and the model
is depicted in the transfer diagram in Figure 1. We assume that all parameters in
the model are nonnegative and that b > 0,d; > 0,¢=1,2,3,4.

Table 1. Parameters in the Model

b: Rate of influx of susceptibles

dy,dy : Natural death rates

da,ds : Death rates for I. and I compartments, respectively,
including both natural and disease-caused death

B Transmission coefficient for the carrier compartment I,

v Transmission coefficient for the symptomatically infected

compartment [

a: Rate at which carriers develop symptoms
T Rate of recovery
p: Probability of a newly infected individual is asymptomatic
0: Vaccination rate
A
d2I c
A
1
‘ dsR
b R
al,
Y
I wl
dsl
Y

0S

Figure 1. Transfer diagram of model (1).
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Based on our assumptions and the transfer diagram, we can derive the following
system of differential equations that govern our model.

S =b—diS— S(BL. +~I) — 6S

1L = pS(BIL + 1) — (d5 + ),
I'=(1—-p)S(BL. +~1I) — (d3 + ) + al.
R =7l +0S — dyR.

We note that disease carriage is different from disease latency in that individuals in
the carrier state are infectious while those in the latent period are not. Our model
(1) is thus different from the traditional SEIR models that incorporate disease la-
tency. In the special case when § = 0, the I, class is not infectious and can be
considered as latent, and our model becomes a modified SEIR model in which new
infections can be either latent or infectious. While both I. and I are infectious,
model (1) is different from the differential infectivity models considered in [5], since
new infections from I. or I may enter either compartment with certain probability.
Our model is more general than the carrier model in [7] in that we incorporate de-
mography and disease-caused death. We also allow carriers to become symptomatic
over their life time. Our model is different from the carrier model in [10] in that
we allow new infections to be either symptomatic or asymptomatic with certain
probabilities.

(1)

2.2. Feasible region and equilibria. From (1) we have that S’ <b— (dy +6)S,
and thus limsup,_, . S(t) < ﬁ along each solution. Also from (1) we see that

N =b—dyS —dol. — dsI — dyR < b — dN,

where d = min{d;, ds, d3,ds}. Therefore limsup, ,., N(t) < b/d. The equation for
R can be omitted in our analysis as R does not appear in the other equations. This
shows that the model can be studied in the feasible region

D= {(SL,I)eR} : S<b/(di+0), S+I.+1<b/d}.

It can be verified that T' is positively invariant with respect to (1). Once the
dynamics of (S, I, I) are understood, those of R can then be determined from the
equation R’ =l 4+ 6S — d4R.

The first step in our analysis is to find equilibria (S*, I, I'*) from equations

0=0b—d\S* — S*(BI: +~I*) — 05,
0 =pS*(BI; +~I") = (do + )T}, (2)
0=(1—p)S*(BIF +~I") — (ds + 7)* + oI,

Model (1) always has a disease-free equilibrium Py = (fl;e, 0,0). An endemic equi-

librium P* = (S*, I}, I*) satisfies S*, I, I* > 0. From the equilibrium equations

we can show that a unique P* exists with
o _ (ds +7)(ds + @)
pdsB + (d2 + )y +p(rf — d2)

For P* to exist in the feasible region I'; it is necessary and sufficient that 0 < .§* <
or equivalently, m > 1. Define

_ 1 b b pdsf+(dr+ )y +p(rf = day)
S*d1—|—0 d1+9 (d3+7T)(d2+OZ)

b
d1+6°

Ry

(3)
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Then Ry is a threshold parameter that determines the number of equilibria. We
will show in Section 3 that Ry is the basic reproduction number.

Proposition 1. If Ry < 1 then Py is the only equilibrium in I'; if Ry > 1, then
there are two equilibria, Py and a unique endemic equilibrium P*.

3. The basic reproduction number. Rewrite Ry in (3) as

1 1 a 1 b
= ]__ ! 4
Ry ( p)’yd3+ﬂ-+p(ﬁd2—|—a+d2+04’yd3+77)}d1+6 )

In the following, we show that Ry is the basic reproduction number, namely, it
represents the average number of secondary infections caused by a single infective
in an entirely susceptible population during its entire infectious period.

When a single infective is introduced into the population, with probability 1—p it
is a non-carrier, hence makes -y effective contacts per unit time. This is multiplied by
the average infectious period ﬁ for non-carriers; with probability p the infective
is a carrier, and hence makes 3 effective contacts per unit time during the average
period d;_a it remains a carrier. This number should be augmented by the number
of infections y dsi_ﬂ caused by this infective after it becomes a non-carrier, with
probability d;ﬁ to survive the carrier stage. Therefore, the expression in the big

square brackets in (4) is the per capita average number of secondary infections. This
number multiplied by the number of susceptibles at the disease-free equilibrium,
_b 5 R,

7o gives Ro.

The carriers in our system can have a great effect on Ry. The parameters 3, «,
and p are all related to the carrier class and all appear in the basic reproductive
number. It is straightforward from (3) that Ry increases as 3 increases. This agrees
with the intuition that higher transmissibility increases the basic reproduction num-
ber.

To see the effect of p on Ry we note

@:[7 v, B a b
dp ds+7m dota dz3+mwdy+ald +6
:b(dg—&-a)[ sy }
di+0 ds+ 70
and thus &% > 0 if
dy
. 5
B>d3+7r7 (5)

We see that a greater probability to develop carriage will increase the basic repro-
duction number under the condition (5).

We can also analyze the effect of diagnosis rate o on Ry. Straightforward com-
putation gives

ORy _ [_ B da } b
foJe! (de+@)?  dy+m(de+a)?ldi +0
_ bp dy
" (o +a)2(dy +0) [5 ds +7ﬂ}’
and thus % > 0 if the same condition (5) holds.

From these analysis we see that parameter p and a have opposite effects on Ry:
while a higher probability p of carriage increases Ry, a higher diagnosis rate a of
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carriage decreases Ry. The latter aspect can be a very useful control strategy and
will be further explored in Section 6 through numerical simulations. Biologically,
condition (5) only requires that the transmissibility § of carriers is not too small
compared to that of the symptomatically infected. This is likely to hold for many
diseases with carriers since carriers can unknowingly infect many people.

4. Stability of the disease-free equilibrium. To examine the local stability of
the disease-free equilibrium Py we evaluate the Jacobian matrix at Py = (52, 0,0)

d1+0°
~dy — 0 —B(7%7) —(755)
J(Py) = 0 pB(7%5) — (d2 + a) »(7:55)
0 (1-p)B(zhg) +a  (1—p)y(zhs) — (ds+m)

We have the following stability result that shows Ry is a sharp threshold.

Proposition 2. Py is locally asymptotically stable if Ry < 1 and is unstable if
Ry > 1.

Proof. One eigenvalue of J(Fy) is A\; = —(dy + 0) < 0. The other two eigenvalues
A2, A3 are eigenvalues of the 2 x 2 matrix

. [ PB(g%) — (d2+ ) PY(z5%5) }
(1—p)5(ﬁ)+a (1_]9)7((1119)_ (d3—|—71')

We want to show, when Ry < 1, that the Routh-Hurwitz conditions hold, namely,
tr(A) < 0 and det(A) > 0. Simple calculations show that

b
PRz Te

1-pvzts _1}
d2+0& )

tr(A)Z(dz'Fa){ _1}+(d3+ﬂ)[( ds+m

Using our assumption that Ry = dlie[(dff-a) + Gmrem + E}i;’_’;’;} < 1 we have
b b
ez RO Gt Dkl rez R
ds + « ds+m
Therefore ) ,
b 1 — p)y_b_
2[M_1<0 and %_1<0_
d2 + « d3 + 7
This shows that tr(A) < 0. Now we calculate
b
det(4) = | ~(d2+a)][(1 - —(d
et(4) = [0 — @+ )] (1= Py = s+ )
(VSIS B
L i L Ay
b
= (d d —(d —do(1 —
(dg + )(d3 + ) (3+7T)p5d1+9 2( p>7d1+0
= (d2 + Ck)(dg +7T)[]. — Ro}
Therefore, det(A) > 0 if and only if Ry < 1. This proves the proposition. O

Theorem 4.1. Py is globally asymptotically stable in the feasible region ' if Ry < 1.

Proof. To prove the global asymptotic stability of Py we use the method of Lyapunov
functions. Define
s o Y
" } I+ I
d2+0l (d3—|—7r)(d2+a) d3+7T

|
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Then
dL B va / v
E_[d2+a+(d3+ﬂ-)(d2+a)i|l d3+7rl
_ pB pya (1—p)y
a [d2+a+(d3+7r)(d2+a) &5+ ] (Bl + 1) = (BL. + 1)

_ [dl : O Ros - 1810+,

Using S < ﬁ:e we know

dL

o < Bo = 1)(Ble+91) <0.
SOE<01fRO<1 Furthermore, W—O@I —I—OorRo—landS d+0
Therefore the largest invariant set in the closure I' of T Where = 0 is the singleton
{Py}. By LaSalle’s Invariance Principle [9], Py is globally asymptotlcally stable in
I", completing the proof. O

5. Stability of the endemic equilibrium P*.

Theorem 5.1. If Ry > 1, then P* is globally asymptotically stable with respect to
the interior of T'.

Proof. To study the global stability of the endemic equilibrium, we make use of a
Lyapunov function V of form

V(S I.,I) =21(S—=S"InS) +as(Il. — I Inl.)+ax5(I —I"InT), (6)

where x1,x2,x3 > 0 are constants to be specified. Note that V has a global min-
imum at P* = (8*,I*,I*) and V(S,I.,I) — V(P*) is positive definite. We show
that suitable constants z1, 2, x3 can be chosen such that the Lyapunov derivative
of V' is negative definite with respect to P*. Direct calculation and applying the

identity b = d1.5* 4+ 0S* + BI1}S* + vI*S™* lead to

+22(1 = p)BSI: + x2(1 — p)

ICSI % OCICI*
b 7 + z3pySI* — x5 Fi }

dl _ o S / ’r Q / 7 5 /
a —.’171(5 SS)+x2(Ic ICIC)-i-.’L‘g(I II)
S*
=21 [b— (d1 +0)S = (Bl +7D)S - b+ (1 +0)S™ + (B + 0S|
1,SI IST
s [(1 =D (BL DS ~ (o + )~ (1 p) e — (1) I
1.SI*
+ (dy + Q)7 ] +a:3[ (BL, +4D)S — al, — (ds + =) — p° -
NIST*  al.I*
B +(d3+7r)l*}
LS8 8
[1:1( 1+6)S*(2— < §)}
+ { (BI* +4I*)S* + wa(ds + a)I* + 23(ds +7r)1*]
{ (BI* +7[* )6*2 ~IST*

I
+ z3p
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Positive constants x1, x2, and x3 are chosen as

o1 g A+ MBS 4 yaST 48T
! ’ 2 (d2+a)(d3—|—7r) ’ 3 (dg-l—ﬂ').

It can be verified that they satisfy relations

—z1 +x2(1 —p) +23p =0,
218" — x3(ds +7) =0, (8)
x185* — xo(dy + @) + 2300 = 0.

We re-group terms in % such that % =V + V5 + V3, where
s s
Vi=di+0)S*"(2— — — —
1=(di+0)57(2 - o7 — =),

Vo =a1(BS™I +4I*S™) + xa(de + @) I} + x5(ds + m) 17,
x1(BLIS* + 1" S*)S* . .
Rk 57 = _ x(1 = p)BSI — x3pySI
x2(1 — p)yISI} _ x3pBSILT wsald”
I. 1 I

We see that V; < 0 from the inequality x + % > 2 for all x > 0, and that V; = 0 if
and only if S = S*. We are left to show that V5 4+ V3 < 0. We begin by examining
Va. Using the values for z1,x2, and x3 in (7), relations in (8), and the equilibrium
relation

Vo= -

(pde + o) I = (1 — p)(ds + m)I7, (9)
we can rewrite V5 as
* Qrk * Q% * Q% 3(1 —p)Oé * Q%
Vo = 2pesyI™S™ + 2(1 — p)xoBIS* + dpxsBI;S* + —————=~I"S™. (10)
(pd2 + a)
Similarly, we can rewrite V3 as
. 1 — p)xoBS*21Ix
S IR
. p.’I}g’YI*S*Q
+ | aansr - ]
xo(1 — p)yISTF  zzal.I* (1 — p)zoyl*S*2
+ { y I, 1 Y S
xo(l —p)yISIF  xspBl.SI* (1 — p)axgyl*S*2
t[-0-p=F o = (L -y
AfpxsﬁSWQI:}
S Y

where
(1-pa (1 —p)pBS*

bl ta)l-pn T ht o)1

Write V3 =V, + Vi, + V. + V, with each term representing the expression enclosed
in a pair of big square brackets. We will estimate each term in V3 by applying the
inequality

ay+az+---+ay
n

> (a1 ~ag-~-an)1/”7 for a; > 0.
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We obtain
vo  (L—p)zafSIy
Vo = —aa(1 — p)BIES — 20200 Lo
z2(1—p)B 5 (11)
< —2y/(22(1 = p))2(BL;5%)? = =2(1 — p)x2BI;S™,
and
* Q*2
Vp = —z3pyST* — % < —2+/(z3p)?(yI*S5*)? = —2pa3yI*S™. (12)
Similarly,
V. = 7yac2(1 —pISI  wzal y(l — p)agyl*S*2
I, T S a3)
1 3(1 - pa
< —3[(za(1 — p))2asal y2(4I*S*)?]F = — 2/ 5%,
< =3[(22(1 — p)) msal ly”(yIS)7] vt a)
and
za(l — ISTY  x3pBI.ST* 1 — p)zoy[*S*?
1. I S
| prsfSL (14)
S
* Qrk * Ik * %711 * Qi
< —A[(a2(1 = p))*(p23)* (L — y)* 2 [*S*2BL; S B IT]T = —dpasBIZS™.
Therefore, (11) - (14) imply
3(1 -pa
Vs < —2(1— 135" -2 I"S* —4 I:S* — ———_~I*S*. 15
5 < —2(1 = p)rafLe P37y pr3fl; odta)) (15)
It follows from (10) and (15) that V2 + V3 < 0 and thus %% < 0. Furthermore,

4¥ =0 if and only if V; = 0 and V3 + V3 = 0. Using (10) - (15), we can show that
% =0 & (S,I.,I) = (S*, I}, I"), and thus % is negative definite with respect
to P*. The global stability of P* follows from the classical stability theorem of

Lyapunov. O

We remark that the form of Lyapunov function in (6) was motivated by those
used in Korobeinikov and Maini [8], Guo [3], and Guo and Li [4].

6. Impact of carriers on the transmission dynamics: chronic hepatitis B
infection. To further illustrate the impact of disease carriers on the transmission
dynamics, we use chronic hepatitis B infection as an example. Hepatitis B is a
liver disease caused by the HBV virus. It is transmitted through sexual contact,
the sharing of infected needles, or from mother to infant. Chronic HBV infection is
more common: children infected with HBV rarely develop acute illness and up to
90% of infected children become chronically infected; adults infected with HBV usu-
ally recover from acute illness, but 5-10% will become chronically infected. About
30% of people infected with HBV do not show any symptoms. These people are
the asymptomatic carriers. According to WHO statistics, about 2 billion people
worldwide have been infected with HBV and about 350 million live with chronic
infection. An estimated 600,000 persons die each year due to the acute or chronic
consequences of hepatitis B. Safe and effective hepatitis B vaccines became available
in 1982. Integration of the HBV vaccines into childhood immunization programs
since 1991 has produced a great decline in the amount of children infected. In
many countries where 8% to 15% of children used to become chronically infected
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with HBV, vaccination has reduced the rate of chronic infection to less than 1%
among immunized children [18, 16, 17].

Our model (1) can be used as a crude approximation for the transmission dynam-
ics of chronic hepatitis B infection among an adult population. The compartment S
contains individuals who are susceptible to HBV infection, compartment I contains
individuals who are chronically infected with HBV and are symptomatic or have
been tested and are aware of their condition, and compartment I. contains individ-
uals who are asymptomatic carriers of HBV and have no knowledge that they are
infected. Recall that in this model, « represents the rate of diagnosis - the rate at
which people carrying the disease are made aware of their infection, either through
testing or through appearance of symptoms. Based on epidemiological data from
WHO, CDC (US), and PHAC (Canada) [18, 16, 17], we have estimated the the
values of our model parameters as follows:

b=90,000, d; = 1/80, dy = dy +0.004, d3 = dp, =15y, 7 =0.75.  (16)

We carry out numerical simulations of our model (1) in a hypothetical population
of size 200,000. We will vary key parameters to investigate the impact of asymp-
tomatic carriers and HBV vaccinations.

1000 1000

800 800
600 600
400 400

200 200

0 10 20 30 40 50
@
Figure 2. Simulation results showing the impact of testing and diagnosis of
carriers. In (a), diagnosis rate @ = 0.1. In (b), @ = 0.5. Other parameter values
are the same as in (16)

In the first set of simulations, we fix a vaccination coverage rate at 70% where
the vaccine has a success rate of 85%. This means that § = 0.85 x 0.7 = 0.585. We
vary the parameter « to see the effects of diagnosis rate at which carriers move into
the infected class.

We see in Figure 2 that, if only 1% of chronic carriers become aware of their
disease, the number of symptomatically infected individuals decreases significantly,
but the number of carriers is still high. This is not a desirable result as it is the
carriers that are responsible for most of the new infections. If we increase a from
1% to 5%, a more dramatic change occurs in the disease dynamics: the number of
carriers shows a much greater decline while the number of symptomatically infected
remains low. This demonstrates that testing and diagnosis of carriers can be an
effective control measure in high HBV prevalence countries.

In the second set of simulations, we will fix @ = 0.01 and vary 6 to see the effect of
increasing the vaccination rate. If we set § = 0.1, we see in Figure 3 that though the
number of symptomatically infected reduces rapidly, the number of carriers remains
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high. Increasing 6 to 0.6 only slightly alters the disease dynamics; the number of
carriers only shows a moderate decline.

1000 1000

800 < 800

600 600

400 400

200 200 |

0 ! ! ! ! |t 0 : . :
0 10 20 30 40 50 0 10 20 30 40 50
@) (b)

Figure 3. Simulation results showing the impact of vaccination. In (a), vacci-
nation rate # = 0.1. In (b), § = 0.6. Other parameter values are the same as in
(16)

Our model simulations demonstrate the challenges of chronic HBV infection: the
existence of a large number of carriers who are infectious but show no symptoms.
Because carriers do not show symptoms, they will not be part of any treatment
program. Comparing our simulation results in Figures 2 and 3, we conclude that,
in high HBV prevalence countries, testing and increasing awareness of carriers will
have a much greater impact on the disease burden than increasing vaccination
rates. While this conclusion may have practical implications for the control of
chronic HBV infections, more realistic models that are specific for HBV infection
and more detailed data need to be employed to further explore its significance in
future studies.
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