Research article

Oscillation criteria for mixed neutral differential equations

  • Received: 09 February 2024 Revised: 07 April 2024 Accepted: 11 April 2024 Published: 22 April 2024
  • MSC : 34C10, 34K11

  • In this study, we aim to contribute to the increasing interest in functional differential equations by obtaining new theorems for the oscillation of second-order neutral differential equations of mixed type in a non-canonical form. The results obtained here improve and extend those reported in the literature. The applicability of the results is illustrated by several examples.

    Citation: Abdulaziz khalid Alsharidi, Ali Muhib. Oscillation criteria for mixed neutral differential equations[J]. AIMS Mathematics, 2024, 9(6): 14473-14486. doi: 10.3934/math.2024703

    Related Papers:

  • In this study, we aim to contribute to the increasing interest in functional differential equations by obtaining new theorems for the oscillation of second-order neutral differential equations of mixed type in a non-canonical form. The results obtained here improve and extend those reported in the literature. The applicability of the results is illustrated by several examples.



    加载中


    [1] E. Braverman, B. Karpuz, On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput., 218 (2011), 3880–3887. https://doi.org/10.1016/j.amc.2011.09.035 doi: 10.1016/j.amc.2011.09.035
    [2] P. L. Chow, G. Yin, B. Mordukhovich, Topics in stochastic analysis and nonparametric estimation, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75111-5
    [3] K. Gopalsamy, B. G. Zhang, On a neutral delay logistic equation, Dyn. Stabil. Syst., 2 (1987), 183–195. https://doi.org/10.1080/02681118808806037 doi: 10.1080/02681118808806037
    [4] A. Bellen, N. Guglielmi, A. E. Ruehli, Methods for linear systems of circuit delay differential equations of neutral type, IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 46 (1999), 212–215. https://doi.org/10.1109/81.739268 doi: 10.1109/81.739268
    [5] T. X. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0
    [6] T. X. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 1–18. https://doi.org/10.1007/s00033-019-1130-2 doi: 10.1007/s00033-019-1130-2
    [7] Y. Z. Tian, Y. L. Cai, Y. L. Fu, T. X. Li, Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments, Adv. Differ. Equ., 2015 (2015), 1–14.
    [8] B. Baculikova, Properties of third-order nonlinear functional differential equations with mixed arguments, Abstr. Appl. Anal., 2011 (2011), 1–15. https://doi.org/10.1155/2011/857860 doi: 10.1155/2011/857860
    [9] H. D. Liu, F. W. Meng, P. C. Liu, Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation, Appl. Math. Comput., 219 (2012), 2739–2748. https://doi.org/10.1016/j.amc.2012.08.106 doi: 10.1016/j.amc.2012.08.106
    [10] H. Ramos, O. Moaaz, A. Muhib, J. Awrejcewicz, More effective results for testing oscillation of non-canonical neutral delay differential equations, Mathematics, 9 (2021), 1–10. https://doi.org/10.3390/math9101114 doi: 10.3390/math9101114
    [11] J. Dzurina, B. Baculikova, Oscillation of third-order quasi-linear advanced differential equations, Differ. Equ. Appl., 4 (2012), 411–421. https://doi.org/10.7153/dea-04-23 doi: 10.7153/dea-04-23
    [12] R. P. Agarwal, M. Bohner, T. X. Li, C. H. Zhang, Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), 1–6.
    [13] O. Moaaz, I. Dassios, W. Muhsin, A. Muhib, Oscillation theory for non-linear neutral delay differential equations of third order, Appl. Sci., 10 (2020), 1–16. https://doi.org/10.3390/app10144855 doi: 10.3390/app10144855
    [14] B. Baculikova, J. Dzurina, On the oscillation of odd order advanced differential equations, Bound. Value Probl., 2014 (2014), 1–9. https://doi.org/10.1186/s13661-014-0214-3 doi: 10.1186/s13661-014-0214-3
    [15] B. Almarri, A. H. Ali, A. M. Lopes, O. Bazighifan, Nonlinear differential equations with distributed delay: some new oscillatory solutions, Mathematics, 10 (2022), 1–10. https://doi.org/10.3390/math10060995 doi: 10.3390/math10060995
    [16] O. Bazighifan, O. Moaaz, R. A. El-Nabulsi, A. Muhib, Some new oscillation results for fourth-order neutral differential equations with delay argument, Symmetry, 12 (2020), 1–10. https://doi.org/10.3390/sym12081248 doi: 10.3390/sym12081248
    [17] R. P. Agarwal, M. Bohner, T. X. Li, C. H. Zhang, Even-order half-linear advanced differential equations: improved criteria in oscillatory and asymptotic properties, Appl. Math. Comput., 266 (2015), 481–490. https://doi.org/10.1016/j.amc.2015.05.008 doi: 10.1016/j.amc.2015.05.008
    [18] B. Qaraad, O. Bazighifan, A. H. Ali, A. A. Al-Moneef, A. J. Alqarni, K. Nonlaopon, Oscillation results of third-order differential equations with symmetrical distributed arguments, Symmetry, 14 (2022), 1–14. https://doi.org/10.3390/sym14102038 doi: 10.3390/sym14102038
    [19] C. Cesarano, O. Moaaz, B. Qaraad, N. A. Alshehri, S. K. Elagan, M. Zakarya, New results for oscillation of solutions of odd-order neutral differential equations, Symmetry, 13 (2021), 1–12. https://doi.org/10.3390/sym13061095 doi: 10.3390/sym13061095
    [20] O. Moaaz, R. A. El-Nabulsi, A. Muhib, S. K. Elagan, M. Zakarya, New improved results for oscillation of fourth-order neutral differential equations, Mathematics, 9 (2021), 1–12. https://doi.org/10.3390/math9192388 doi: 10.3390/math9192388
    [21] T. X. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. https://doi.org/10.1016/j.aml.2016.11.007 doi: 10.1016/j.aml.2016.11.007
    [22] O. Moaaz, C. Cesarano, A. Muhib, Some new oscillation results for fourth-order neutral differential equations, Eur. J. Pure Appl. Math., 13 (2020), 185–199. https://doi.org/10.29020/nybg.ejpam.v13i2.3654 doi: 10.29020/nybg.ejpam.v13i2.3654
    [23] A. Almutairi, A. H. Ali, O. Bazighifan, L. F. Iambor, Oscillatory properties of fourth-order advanced differential equations, Mathematics, 11 (2023), 1–11. https://doi.org/10.3390/math11061391 doi: 10.3390/math11061391
    [24] M. F. Aktas, A. Tiryaki, A. Zafer, Oscillation criteria for third-order nonlinear functional differential equations, Appl. Math. Lett., 23 (2010), 756–762. https://doi.org/10.1016/j.aml.2010.03.003 doi: 10.1016/j.aml.2010.03.003
    [25] G. E. Chatzarakis, T. X. Li, Oscillation criteria for delay and advanced differential equations with nonmonotone arguments, Complexity, 2018 (2018), 1–18. https://doi.org/10.1155/2018/8237634 doi: 10.1155/2018/8237634
    [26] S. S. Santra, K. M. Khedher, O. Moaaz, A. Muhib, S. W. Yao, Second-order impulsive delay differential systems: necessary and sufficient conditions for oscillatory or asymptotic behavior, Symmetry, 13 (2021), 1–12. https://doi.org/10.3390/sym13040722 doi: 10.3390/sym13040722
    [27] J. Dzurina, I. Jadlovska, A note on oscillation of second-order delay differential equations, Appl. Math. Lett., 69 (2017), 126–132. https://doi.org/10.1016/j.aml.2017.02.003 doi: 10.1016/j.aml.2017.02.003
    [28] J. Dzurina, I. Jadlovska, A sharp oscillation result for second-order half-linear noncanonical delay differential equations, Electron. J. Qual. Theory Differ. Equ., 2020 (2020), 1–14. https://doi.org/10.14232/ejqtde.2020.1.46 doi: 10.14232/ejqtde.2020.1.46
    [29] J. Dzurina, S. R. Grace, I. Jadlovska, T. X. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
    [30] T. X. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162. https://doi.org/10.1002/mana.201300029 doi: 10.1002/mana.201300029
    [31] T. X. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489–500. https://doi.org/10.1007/s00605-017-1039-9 doi: 10.1007/s00605-017-1039-9
    [32] G. E. Chatzarakis, I. Jadlovska, Improved oscillation results for second-order half-linear delay differential equations, Hacet. J. Math. Stat., 48 (2019), 170–179. https://doi.org/10.15672/HJMS.2017.522 doi: 10.15672/HJMS.2017.522
    [33] S. R. Grace, J. Dzurina, I. Jadlovska, T. X. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl., 2018 (2018), 1–13. https://doi.org/10.1186/s13660-018-1767-y doi: 10.1186/s13660-018-1767-y
    [34] I. Jadlovska, New criteria for sharp oscillation of second-order neutral delay differential equations, Mathematics, 9 (2021), 1–23. https://doi.org/10.3390/math9172089 doi: 10.3390/math9172089
    [35] O. Moaaz, M. Anis, D. Baleanu, A. Muhib, More effective criteria for oscillation of second-order differential equations with neutral arguments, Mathematics, 8 (2020), 1–13. https://doi.org/10.3390/math8060986 doi: 10.3390/math8060986
    [36] I. Jadlovska, Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations, Appl. Math. Lett., 106 (2020), 106354. https://doi.org/10.1016/j.aml.2020.106354 doi: 10.1016/j.aml.2020.106354
    [37] G. E. Chatzarakis, J. Dzurina, I. Jadlovska, New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput., 347 (2019), 404–416. https://doi.org/10.1016/j.amc.2018.10.091 doi: 10.1016/j.amc.2018.10.091
    [38] Y. S. Qi, J. W. Yu, Oscillation of second order nonlinear mixed neutral differential equations with distributed deviating arguments, Bull. Malays. Math. Sci. Soc., 38 (2015), 543–560. https://doi.org/10.1007/s40840-014-0035-7 doi: 10.1007/s40840-014-0035-7
    [39] C. H. Zhang, B. Baculikova, J. Dzurina, T. X. Li, Osillation results for second-order mixed neutral differential equations with distributed deviating arguments, Math. Slovaca, 66 (2016), 615–626. https://doi.org/10.1515/ms-2015-0165 doi: 10.1515/ms-2015-0165
    [40] H. W. Shi, Y. Z. Bai, Oscillatory behavior of a second order nonlinear advanced differential equation with mixed neutral terms, Adv. Differ. Equ., 2019 (2019), 468. https://doi.org/10.1186/s13662-019-2393-9 doi: 10.1186/s13662-019-2393-9
    [41] R. Arul, V. S. Shobha, Oscillation of second order nonlinear neutral differential equations with mixed neutral term, J. Appl. Math. Phys., 3 (2015), 1080–1089. https://doi.org/10.4236/jamp.2015.39134 doi: 10.4236/jamp.2015.39134
    [42] E. Thandapani, S. Padmavathi, P. Pinelas, Oscillation criteria for even-order nonlinear neutral differential equations of mixed type, Bull. Math. Anal. Appl., 6 (2014), 9–22.
    [43] O. Moaaz, A. Muhib, S. S. Santra, An oscillation test for solutions of second-order neutral differential equations of mixed type, Mathematics, 9 (2021), 1634. https://doi.org/10.3390/math9141634 doi: 10.3390/math9141634
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(563) PDF downloads(65) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog