Research article

Solitonic effect on relativistic string cloud spacetime attached with strange quark matter

  • Received: 28 February 2024 Revised: 29 March 2024 Accepted: 02 April 2024 Published: 22 April 2024
  • MSC : 53B30, 53C44, 53C50, 53C80

  • In this research paper, we discussed some geometric axioms of a relativistic string cloud spacetime attached with strange quark matter. We determined the conformal $ \eta $-Ricci soliton on a relativistic string cloud spacetime attached with strange quark matter with a $ \varphi(\mathcal{R}ic) $-vector field. In addition, we illustrated some physical significance of conformal pressure $ P $ in terms of conformal $ \eta $-Ricci soliton with the same vector field. Besides this, we deduced a generalized Liouville equation from the conformal $ \eta $-Ricci soliton. Furthermore, we examine the harmonic relevance of conformal $ \eta $-Ricci soliton on string cloud spacetime attached with strange quark matter with a potential function $ \psi $. Finally, we turned up a necessary and sufficient condition for the 1-form $ \eta $, which is the $ {g} $-dual of the vector field $ \gamma $ on a string cloud spacetime attached with strange quark matter to be a solution for the Schrödinger-Ricci equation.

    Citation: Yanlin Li, Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Maged Zakaria Youssef. Solitonic effect on relativistic string cloud spacetime attached with strange quark matter[J]. AIMS Mathematics, 2024, 9(6): 14487-14503. doi: 10.3934/math.2024704

    Related Papers:

  • In this research paper, we discussed some geometric axioms of a relativistic string cloud spacetime attached with strange quark matter. We determined the conformal $ \eta $-Ricci soliton on a relativistic string cloud spacetime attached with strange quark matter with a $ \varphi(\mathcal{R}ic) $-vector field. In addition, we illustrated some physical significance of conformal pressure $ P $ in terms of conformal $ \eta $-Ricci soliton with the same vector field. Besides this, we deduced a generalized Liouville equation from the conformal $ \eta $-Ricci soliton. Furthermore, we examine the harmonic relevance of conformal $ \eta $-Ricci soliton on string cloud spacetime attached with strange quark matter with a potential function $ \psi $. Finally, we turned up a necessary and sufficient condition for the 1-form $ \eta $, which is the $ {g} $-dual of the vector field $ \gamma $ on a string cloud spacetime attached with strange quark matter to be a solution for the Schrödinger-Ricci equation.



    加载中


    [1] B. O'Nill, Semi-Riemannian geometry with applications to relativity, Londan: Academic Press Limited, 1983.
    [2] S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory of relativity, Hoboken: Willy, 1972.
    [3] L. Jäntschi, Eigenproblem basics and algorithms, Symmetry, 15 (2023), 2046. https://doi.org/10.3390/sym15112046 doi: 10.3390/sym15112046
    [4] L. Euler, Du mouvement d'un corps solide quelconque lorsqu'il tourne autour d'un axe mobile, Mémoires de l'académie des sciences de Berlin, 16 (1767), 176–227.
    [5] J. Lagrange, Nouvelle solution du problème du mouvement de rotation d'un corps de figure quelconque qui n'est animé par aucune force accélératrice, In: Œuvres de Lagrange [Tome 3], Beijing: Higher Education Press, 1869,577–616.
    [6] P. S. Laplace, Mémoire sur les solutions particulières des équations différentielles et sur les inégalités séculaires des planètes, In: Dans Œuvres complètes de Laplace, tome huitième, Paris: Gauthier-Villars et fils, 1891,325–366.
    [7] J. B. Fourier, Thèorie cnalytique de la chaleur, Cambridge: Cambridge University Press, 1822. https://doi.org/10.1017/CBO9780511693229
    [8] A. Cauchy, Sur 1'équation à l'aide de laquelle on determine les inégalités séculaires des mouvements des planètes, In: Oeuvres complètes, Cambridge: Cambridge University Press, 1891,174–195. https://doi.org/10.1017/CBO9780511702686.009
    [9] S. H. Tye, Brane inflation: String theory viewed from the cosmos, Lect. Notes Phys., 737 (2008), 949–974.
    [10] P. S. Letelier, Clouds of strings on general relativity, Phys. Rev. D, 20 (1979), 1294–1302. https://doi.org/10.1103/PhysRevD.20.1294 doi: 10.1103/PhysRevD.20.1294
    [11] M. D. Siddiqi, M. A. Khan, I. Al-Dayel, K. Masood, Geometrization of string cloud spacetime in general relativity, AIMS Mathematics, 8 (2023), 29042–29057. https://doi.org/10.3934/math.20231487 doi: 10.3934/math.20231487
    [12] E. Herscovich, M. G. Richarte, Black holes in Einstein-Gauss-Bonnet gravity with a string cloud background, Phys. Lett. B, 689 (2010), 192–200. https://doi.org/10.1016/j.physletb.2010.04.065 doi: 10.1016/j.physletb.2010.04.065
    [13] S. G. Ghosh, U. Papnoi, S. D. Maharaj, Cloud of strings in third order Lovelock gravity, Phys. Rev. D, 90 (2014), 044068. https://doi.org/10.1103/PhysRevD.90.044068 doi: 10.1103/PhysRevD.90.044068
    [14] M. G. Richarte, C. Simeone, Traversable wormholes in a string cloud, Int. J. Mod. Phys. D, 17 (2008), 1179–1196. https://doi.org/10.1142/S0218271808012759 doi: 10.1142/S0218271808012759
    [15] A. K. Yadav, V. K. Yadav, L. Yadav, Cylindrically symmetric inhomogeneous universes with a cloud of strings, Int. J. Theor. Phys., 48 (2009), 568–578. https://doi.org/10.1007/s10773-008-9832-9 doi: 10.1007/s10773-008-9832-9
    [16] A. Ganguly, S. G. Ghosh, S. D. Maharaj, Accretion onto a black hole in a string cloud background, Phys. Rev. D, 90 (2014), 064037. https://doi.org/10.1103/PhysRevD.90.064037 doi: 10.1103/PhysRevD.90.064037
    [17] M. Novello, M. J. Reboucas, The stability of a rotating universe, Astrophys. J., 225 (1978), 719–724.
    [18] R. Jackiw, V. P. Nair, S. Y. Pi, A. P. Polychronakos, Perfect fluid theory and its extensions, J. Phys. A: Math. Gen., 37 (2004), R327. https://doi.org/10.1088/0305-4470/37/42/R01 doi: 10.1088/0305-4470/37/42/R01
    [19] S. Guler, S. A. Demirbağ, A study of generalized quasi-Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys., 55 (2016), 548–562. https://doi.org/10.1007/s10773-015-2692-1 doi: 10.1007/s10773-015-2692-1
    [20] M. C. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen, 58 (2001), 683–691.
    [21] L. O. Pimental, Energy-momentum tensor in the general scalar-tensor theory, Class. Quantum Grav., 6 (1989), L263. https://doi.org/10.1088/0264-9381/6/12/005 doi: 10.1088/0264-9381/6/12/005
    [22] V. Faraoni, J. Cote, Imperfect fluid description of modified gravity, Phys. Rev., 98 (2018), 084019. https://doi.org/10.1103/PhysRevD.98.084019 doi: 10.1103/PhysRevD.98.084019
    [23] I. Sawicki, I. D. Saltas, L. Amendola, M. Kunz, Consistent perturbations in an imperfect fluid, J. Cosmol. Astropart. P., 2013 (2013), 004. https://doi.org/10.1088/1475-7516/2013/01/004 doi: 10.1088/1475-7516/2013/01/004
    [24] K. L. Duggal, Almost Ricci solitons and physical applications, International Electronic Journal of Geometry, 10 (2017), 1–10.
    [25] R. S. Hamilton, The Ricci flow on surfaces, mathematics and general relativity, Contemp. Math., 7 (1988), 237–261.
    [26] A. E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav., 21 (2004), S171. https://doi.org/10.1088/0264-9381/21/3/011 doi: 10.1088/0264-9381/21/3/011
    [27] N. Basu, A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern Geometries, 4 (2015), 15–21.
    [28] M. D. Siddiqi, Conformal $\eta$-Ricci solitons in $\delta$-Lorentzian Trans Sasakian manifolds, International Journal of Maps in Mathematics, 1 (2018), 15–34.
    [29] M. Ali, Z. Ahsan, Ricci solitons and symmetries of spacetime manifold of general relativity, Journal of Advanced Research on Classical and Modern Geometries, 1 (2014), 75–84.
    [30] A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41
    [31] Venkatesha, H. A. Kumara, Ricci solitons and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat., 30 (2019), 725–736. https://doi.org/10.1007/s13370-019-00679-y doi: 10.1007/s13370-019-00679-y
    [32] M. D. Siddiqi, S. A. Siddiqui, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods M., 17 (2020), 2050083. https://doi.org/10.1142/s0219887820500838 doi: 10.1142/s0219887820500838
    [33] A. N. Siddiqui, M. D. Siddiqi, Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect fluid spacetime, Balk. J. Geom. Appl., 26 (2021), 126–138.
    [34] M. D. Siddiqi, F. Mofarreh, A. N. Siddiqui, S. A. Siddiqui, Geometrical structure in a relativistic thermodynamical fluid spacetime, Axioms, 12 (2023), 138. https://doi.org/10.3390/axioms12020138 doi: 10.3390/axioms12020138
    [35] M. D. Siddiqi, F. Mofarreh, S. K. Chaubey, Solitonic aspect of relativistic Magneto-fluid spacetime with some specific vector fields, Mathematics, 11 (2023), 1596. https://doi.org/10.3390/math11071596 doi: 10.3390/math11071596
    [36] M. D. Siddiqi, A. H. Alkhaldi, M. A. Khan, A. N. Siddiqui, Conformal $\eta$-Ricci solitons on riemannian submersions under canonical variation, Axioms, 11 (2022), 594. https://doi.org/10.3390/axioms11110594 doi: 10.3390/axioms11110594
    [37] A. H. Alkhaldi, M. D. Siddiqi, M. A. Khan, L. S. Alqahtani, Imperfect fluid generalized robertson walker spacetime admitting Ricci-Yamabe metric, Adv. Math. Phys., 2021 (2021), 2485804. https://doi.org/10.1155/2021/2485804 doi: 10.1155/2021/2485804
    [38] K. A. Bronnikov, S. W. Kim, M. V. Skvortsova, The Birkhohff theorem and string clouds, Class. Quantum Grav., 33 (2016), 195006. https://doi.org/10.1088/0264-9381/33/19/195006 doi: 10.1088/0264-9381/33/19/195006
    [39] C. Alcock, E. Farhi, A. Olinto, Strange stars, Astrophys. J., 310 (1986), 261. https://doi.org/10.1086/164679 doi: 10.1086/164679
    [40] P. Haensel, J. L. Zdunik, R. Sehaffer, Strange quark stars, Astron. Astrophys., 160 (1986), 121–128.
    [41] K. S. Cheng, Z. G. Dai, T. Lu, Strange stars and related astrophysical phenomena, Int. J. Mod. Phys. D, 7 (1998), 139–176. https://doi.org/10.1142/S0218271898000139 doi: 10.1142/S0218271898000139
    [42] I. Yavuz, I. Yilmaz, H. Baysal, Strange quark matter attached to the string cloud in the spherically symmetric space-time admitting conformal motion, Int. J. Mod. Phys. D, 14 (2005), 1365–1372. https://doi.org/10.1142/S0218271805007061 doi: 10.1142/S0218271805007061
    [43] K. Johnson, The M.I.T bag model, Acta Phys. Pol., B6 (1975), 865–892.
    [44] J. I. Kapusta, Finite-temperature field theory, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1088/0954-3899/15/3/005
    [45] Z. H. Liu, J. C. Niu, Vibrational energy flow model for functionally graded beams, Compos. Struct., 186 (2018), 17–28. https://doi.org/10.1016/j.compstruct.2017.11.026 doi: 10.1016/j.compstruct.2017.11.026
    [46] J. Satish, R. Venkateswarlu, Bulk viscous fluid cosmological models in $f(R, T)$ gravity, Chinese J. Phys., 54 (2016), 830–838. https://doi.org/10.1016/j.cjph.2016.08.008 doi: 10.1016/j.cjph.2016.08.008
    [47] H. Sotani, K. Kohri, T. Harada, Restriction quark matter models by gravitational wave observation, Phys. Rev. D, 69 (2004), 084008. https://doi.org/10.1103/PhysRevD.69.084008 doi: 10.1103/PhysRevD.69.084008
    [48] I. Hinterleither, V. A. Kiosak, $\varphi(\mathcal{R}ic)$-Vector field in Riemannian spaces, Arch. Math., 44 (2008), 385–390. http://eudml.org/doc/250510
    [49] M. Katz, Liouville's equation for curvature and systolic defect, 2011, arXiv: 1105.0553.
    [50] A. G. Popov, Exact formula for constructing solutions of the Liouville equation $\Delta_{2}u = e^{u}$ from solutions of the Laplace equation $\Delta_{2}v = 0$, Dokl. Akad. Nauk., 333 (1993), 440–441.
    [51] B. Chow, S. C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, et al., The Ricci flow: techniques and applications, part Ⅰ: geometric aspects, Rhode Island: American Mathematical Society, 2007. http://doi.org/10.1090/surv/163
    [52] A. M. Blaga, Harmonic aspects in an $\eta$-Ricci soliton, Int. Electron. J. Geom., 13 (2020), 41–49. https://doi.org/10.36890/iejg.573919 doi: 10.36890/iejg.573919
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(572) PDF downloads(29) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog