In this research paper, we discussed some geometric axioms of a relativistic string cloud spacetime attached with strange quark matter. We determined the conformal $ \eta $-Ricci soliton on a relativistic string cloud spacetime attached with strange quark matter with a $ \varphi(\mathcal{R}ic) $-vector field. In addition, we illustrated some physical significance of conformal pressure $ P $ in terms of conformal $ \eta $-Ricci soliton with the same vector field. Besides this, we deduced a generalized Liouville equation from the conformal $ \eta $-Ricci soliton. Furthermore, we examine the harmonic relevance of conformal $ \eta $-Ricci soliton on string cloud spacetime attached with strange quark matter with a potential function $ \psi $. Finally, we turned up a necessary and sufficient condition for the 1-form $ \eta $, which is the $ {g} $-dual of the vector field $ \gamma $ on a string cloud spacetime attached with strange quark matter to be a solution for the Schrödinger-Ricci equation.
Citation: Yanlin Li, Mohd Danish Siddiqi, Meraj Ali Khan, Ibrahim Al-Dayel, Maged Zakaria Youssef. Solitonic effect on relativistic string cloud spacetime attached with strange quark matter[J]. AIMS Mathematics, 2024, 9(6): 14487-14503. doi: 10.3934/math.2024704
In this research paper, we discussed some geometric axioms of a relativistic string cloud spacetime attached with strange quark matter. We determined the conformal $ \eta $-Ricci soliton on a relativistic string cloud spacetime attached with strange quark matter with a $ \varphi(\mathcal{R}ic) $-vector field. In addition, we illustrated some physical significance of conformal pressure $ P $ in terms of conformal $ \eta $-Ricci soliton with the same vector field. Besides this, we deduced a generalized Liouville equation from the conformal $ \eta $-Ricci soliton. Furthermore, we examine the harmonic relevance of conformal $ \eta $-Ricci soliton on string cloud spacetime attached with strange quark matter with a potential function $ \psi $. Finally, we turned up a necessary and sufficient condition for the 1-form $ \eta $, which is the $ {g} $-dual of the vector field $ \gamma $ on a string cloud spacetime attached with strange quark matter to be a solution for the Schrödinger-Ricci equation.
[1] | B. O'Nill, Semi-Riemannian geometry with applications to relativity, Londan: Academic Press Limited, 1983. |
[2] | S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory of relativity, Hoboken: Willy, 1972. |
[3] | L. Jäntschi, Eigenproblem basics and algorithms, Symmetry, 15 (2023), 2046. https://doi.org/10.3390/sym15112046 doi: 10.3390/sym15112046 |
[4] | L. Euler, Du mouvement d'un corps solide quelconque lorsqu'il tourne autour d'un axe mobile, Mémoires de l'académie des sciences de Berlin, 16 (1767), 176–227. |
[5] | J. Lagrange, Nouvelle solution du problème du mouvement de rotation d'un corps de figure quelconque qui n'est animé par aucune force accélératrice, In: Œuvres de Lagrange [Tome 3], Beijing: Higher Education Press, 1869,577–616. |
[6] | P. S. Laplace, Mémoire sur les solutions particulières des équations différentielles et sur les inégalités séculaires des planètes, In: Dans Œuvres complètes de Laplace, tome huitième, Paris: Gauthier-Villars et fils, 1891,325–366. |
[7] | J. B. Fourier, Thèorie cnalytique de la chaleur, Cambridge: Cambridge University Press, 1822. https://doi.org/10.1017/CBO9780511693229 |
[8] | A. Cauchy, Sur 1'équation à l'aide de laquelle on determine les inégalités séculaires des mouvements des planètes, In: Oeuvres complètes, Cambridge: Cambridge University Press, 1891,174–195. https://doi.org/10.1017/CBO9780511702686.009 |
[9] | S. H. Tye, Brane inflation: String theory viewed from the cosmos, Lect. Notes Phys., 737 (2008), 949–974. |
[10] | P. S. Letelier, Clouds of strings on general relativity, Phys. Rev. D, 20 (1979), 1294–1302. https://doi.org/10.1103/PhysRevD.20.1294 doi: 10.1103/PhysRevD.20.1294 |
[11] | M. D. Siddiqi, M. A. Khan, I. Al-Dayel, K. Masood, Geometrization of string cloud spacetime in general relativity, AIMS Mathematics, 8 (2023), 29042–29057. https://doi.org/10.3934/math.20231487 doi: 10.3934/math.20231487 |
[12] | E. Herscovich, M. G. Richarte, Black holes in Einstein-Gauss-Bonnet gravity with a string cloud background, Phys. Lett. B, 689 (2010), 192–200. https://doi.org/10.1016/j.physletb.2010.04.065 doi: 10.1016/j.physletb.2010.04.065 |
[13] | S. G. Ghosh, U. Papnoi, S. D. Maharaj, Cloud of strings in third order Lovelock gravity, Phys. Rev. D, 90 (2014), 044068. https://doi.org/10.1103/PhysRevD.90.044068 doi: 10.1103/PhysRevD.90.044068 |
[14] | M. G. Richarte, C. Simeone, Traversable wormholes in a string cloud, Int. J. Mod. Phys. D, 17 (2008), 1179–1196. https://doi.org/10.1142/S0218271808012759 doi: 10.1142/S0218271808012759 |
[15] | A. K. Yadav, V. K. Yadav, L. Yadav, Cylindrically symmetric inhomogeneous universes with a cloud of strings, Int. J. Theor. Phys., 48 (2009), 568–578. https://doi.org/10.1007/s10773-008-9832-9 doi: 10.1007/s10773-008-9832-9 |
[16] | A. Ganguly, S. G. Ghosh, S. D. Maharaj, Accretion onto a black hole in a string cloud background, Phys. Rev. D, 90 (2014), 064037. https://doi.org/10.1103/PhysRevD.90.064037 doi: 10.1103/PhysRevD.90.064037 |
[17] | M. Novello, M. J. Reboucas, The stability of a rotating universe, Astrophys. J., 225 (1978), 719–724. |
[18] | R. Jackiw, V. P. Nair, S. Y. Pi, A. P. Polychronakos, Perfect fluid theory and its extensions, J. Phys. A: Math. Gen., 37 (2004), R327. https://doi.org/10.1088/0305-4470/37/42/R01 doi: 10.1088/0305-4470/37/42/R01 |
[19] | S. Guler, S. A. Demirbağ, A study of generalized quasi-Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys., 55 (2016), 548–562. https://doi.org/10.1007/s10773-015-2692-1 doi: 10.1007/s10773-015-2692-1 |
[20] | M. C. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen, 58 (2001), 683–691. |
[21] | L. O. Pimental, Energy-momentum tensor in the general scalar-tensor theory, Class. Quantum Grav., 6 (1989), L263. https://doi.org/10.1088/0264-9381/6/12/005 doi: 10.1088/0264-9381/6/12/005 |
[22] | V. Faraoni, J. Cote, Imperfect fluid description of modified gravity, Phys. Rev., 98 (2018), 084019. https://doi.org/10.1103/PhysRevD.98.084019 doi: 10.1103/PhysRevD.98.084019 |
[23] | I. Sawicki, I. D. Saltas, L. Amendola, M. Kunz, Consistent perturbations in an imperfect fluid, J. Cosmol. Astropart. P., 2013 (2013), 004. https://doi.org/10.1088/1475-7516/2013/01/004 doi: 10.1088/1475-7516/2013/01/004 |
[24] | K. L. Duggal, Almost Ricci solitons and physical applications, International Electronic Journal of Geometry, 10 (2017), 1–10. |
[25] | R. S. Hamilton, The Ricci flow on surfaces, mathematics and general relativity, Contemp. Math., 7 (1988), 237–261. |
[26] | A. E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav., 21 (2004), S171. https://doi.org/10.1088/0264-9381/21/3/011 doi: 10.1088/0264-9381/21/3/011 |
[27] | N. Basu, A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern Geometries, 4 (2015), 15–21. |
[28] | M. D. Siddiqi, Conformal $\eta$-Ricci solitons in $\delta$-Lorentzian Trans Sasakian manifolds, International Journal of Maps in Mathematics, 1 (2018), 15–34. |
[29] | M. Ali, Z. Ahsan, Ricci solitons and symmetries of spacetime manifold of general relativity, Journal of Advanced Research on Classical and Modern Geometries, 1 (2014), 75–84. |
[30] | A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41 |
[31] | Venkatesha, H. A. Kumara, Ricci solitons and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Mat., 30 (2019), 725–736. https://doi.org/10.1007/s13370-019-00679-y doi: 10.1007/s13370-019-00679-y |
[32] | M. D. Siddiqi, S. A. Siddiqui, Conformal Ricci soliton and geometrical structure in a perfect fluid spacetime, Int. J. Geom. Methods M., 17 (2020), 2050083. https://doi.org/10.1142/s0219887820500838 doi: 10.1142/s0219887820500838 |
[33] | A. N. Siddiqui, M. D. Siddiqi, Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect fluid spacetime, Balk. J. Geom. Appl., 26 (2021), 126–138. |
[34] | M. D. Siddiqi, F. Mofarreh, A. N. Siddiqui, S. A. Siddiqui, Geometrical structure in a relativistic thermodynamical fluid spacetime, Axioms, 12 (2023), 138. https://doi.org/10.3390/axioms12020138 doi: 10.3390/axioms12020138 |
[35] | M. D. Siddiqi, F. Mofarreh, S. K. Chaubey, Solitonic aspect of relativistic Magneto-fluid spacetime with some specific vector fields, Mathematics, 11 (2023), 1596. https://doi.org/10.3390/math11071596 doi: 10.3390/math11071596 |
[36] | M. D. Siddiqi, A. H. Alkhaldi, M. A. Khan, A. N. Siddiqui, Conformal $\eta$-Ricci solitons on riemannian submersions under canonical variation, Axioms, 11 (2022), 594. https://doi.org/10.3390/axioms11110594 doi: 10.3390/axioms11110594 |
[37] | A. H. Alkhaldi, M. D. Siddiqi, M. A. Khan, L. S. Alqahtani, Imperfect fluid generalized robertson walker spacetime admitting Ricci-Yamabe metric, Adv. Math. Phys., 2021 (2021), 2485804. https://doi.org/10.1155/2021/2485804 doi: 10.1155/2021/2485804 |
[38] | K. A. Bronnikov, S. W. Kim, M. V. Skvortsova, The Birkhohff theorem and string clouds, Class. Quantum Grav., 33 (2016), 195006. https://doi.org/10.1088/0264-9381/33/19/195006 doi: 10.1088/0264-9381/33/19/195006 |
[39] | C. Alcock, E. Farhi, A. Olinto, Strange stars, Astrophys. J., 310 (1986), 261. https://doi.org/10.1086/164679 doi: 10.1086/164679 |
[40] | P. Haensel, J. L. Zdunik, R. Sehaffer, Strange quark stars, Astron. Astrophys., 160 (1986), 121–128. |
[41] | K. S. Cheng, Z. G. Dai, T. Lu, Strange stars and related astrophysical phenomena, Int. J. Mod. Phys. D, 7 (1998), 139–176. https://doi.org/10.1142/S0218271898000139 doi: 10.1142/S0218271898000139 |
[42] | I. Yavuz, I. Yilmaz, H. Baysal, Strange quark matter attached to the string cloud in the spherically symmetric space-time admitting conformal motion, Int. J. Mod. Phys. D, 14 (2005), 1365–1372. https://doi.org/10.1142/S0218271805007061 doi: 10.1142/S0218271805007061 |
[43] | K. Johnson, The M.I.T bag model, Acta Phys. Pol., B6 (1975), 865–892. |
[44] | J. I. Kapusta, Finite-temperature field theory, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1088/0954-3899/15/3/005 |
[45] | Z. H. Liu, J. C. Niu, Vibrational energy flow model for functionally graded beams, Compos. Struct., 186 (2018), 17–28. https://doi.org/10.1016/j.compstruct.2017.11.026 doi: 10.1016/j.compstruct.2017.11.026 |
[46] | J. Satish, R. Venkateswarlu, Bulk viscous fluid cosmological models in $f(R, T)$ gravity, Chinese J. Phys., 54 (2016), 830–838. https://doi.org/10.1016/j.cjph.2016.08.008 doi: 10.1016/j.cjph.2016.08.008 |
[47] | H. Sotani, K. Kohri, T. Harada, Restriction quark matter models by gravitational wave observation, Phys. Rev. D, 69 (2004), 084008. https://doi.org/10.1103/PhysRevD.69.084008 doi: 10.1103/PhysRevD.69.084008 |
[48] | I. Hinterleither, V. A. Kiosak, $\varphi(\mathcal{R}ic)$-Vector field in Riemannian spaces, Arch. Math., 44 (2008), 385–390. http://eudml.org/doc/250510 |
[49] | M. Katz, Liouville's equation for curvature and systolic defect, 2011, arXiv: 1105.0553. |
[50] | A. G. Popov, Exact formula for constructing solutions of the Liouville equation $\Delta_{2}u = e^{u}$ from solutions of the Laplace equation $\Delta_{2}v = 0$, Dokl. Akad. Nauk., 333 (1993), 440–441. |
[51] | B. Chow, S. C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, et al., The Ricci flow: techniques and applications, part Ⅰ: geometric aspects, Rhode Island: American Mathematical Society, 2007. http://doi.org/10.1090/surv/163 |
[52] | A. M. Blaga, Harmonic aspects in an $\eta$-Ricci soliton, Int. Electron. J. Geom., 13 (2020), 41–49. https://doi.org/10.36890/iejg.573919 doi: 10.36890/iejg.573919 |