This paper presents a characterization of $ (s, S) $-inventory policies for Lindley systems with possibly unbounded costs, where the objective is to minimize the expected discounted total cost by ordering (production) strategies. Moreover, the existence of a subsequence of minimizers of the value iteration functions that converge to a $ (s, S) $ optimal inventory system policy is shown. A numerical example is given to illustrate the theory.
Citation: Rubén Blancas-Rivera, Hugo Cruz-Suárez, Gustavo Portillo-Ramírez, Ruy López-Ríos. $ (s, S) $ Inventory policies for stochastic controlled system of Lindley-type with lost-sales[J]. AIMS Mathematics, 2023, 8(8): 19546-19565. doi: 10.3934/math.2023997
This paper presents a characterization of $ (s, S) $-inventory policies for Lindley systems with possibly unbounded costs, where the objective is to minimize the expected discounted total cost by ordering (production) strategies. Moreover, the existence of a subsequence of minimizers of the value iteration functions that converge to a $ (s, S) $ optimal inventory system policy is shown. A numerical example is given to illustrate the theory.
[1] | E. Ahmadi, H. Mosadegh, R. Maihami, I. Ghalehkhondabi, M. Sun, G. A. Süer, Intelligent inventory management approaches for perishable pharmaceutical products in a healthcare supply chain, Comput. Oper. Res., 147 (2022), 105968. https://doi.org/10.1016/j.cor.2022.105968 doi: 10.1016/j.cor.2022.105968 |
[2] | Y. Aneja, A. Noori, The optimality of (s, S) policies for a stochastic inventory problem with proportional and lump-sum penalty cost, J. Manag. Sci., 33 (1987), 750–755. https://doi.org/10.1287/mnsc.33.6.750 doi: 10.1287/mnsc.33.6.750 |
[3] | R. Ash, Real analysis and probability, New York: Academic Press, 1972. https://doi.org/10.1016/C2013-0-06164-6 |
[4] | Y. Barron, O. Baron, QMCD Approach for perishability models: The (S, s) control policy with lead time, IISE Trans., 52 (2020), 133–150. https://doi.org/10.1080/24725854.2019.1614697 doi: 10.1080/24725854.2019.1614697 |
[5] | A. Bensoussan, Dynamic programming and inventory control, In: Studies in Probability, Amsterdam: IOS Press, 3 (2011). https://doi.org/10.3233/978-1-60750-770-3-i |
[6] | A. Bensoussan, M. A. Helal, V. Ramakrishna, Optimal policies for inventory systems with piecewise-linear concave ordering costs, Available at SSRN 3601262, 2020. https://dx.doi.org/10.2139/ssrn.3601262 |
[7] | D. Bertsekas, Dynamic programming and optimal control, 2 Eds., Athena scientific, 2012. |
[8] | B. Chen, X. Chao, C. Shi, Nonparametric learning algorithms for joint pricing and inventory control with lost sales and censored demand, Math. Oper. Res., 46 (2021), 726–756. https://doi.org/10.1287/moor.2020.1084 doi: 10.1287/moor.2020.1084 |
[9] | D. Cruz-Suárez, R. Montes-de-Oca, Uniform convergence of value iteration policies for discounted Markov decision processes, B. Soc. Mat. Mex., 12 (2006), 133–148. |
[10] | D. Cruz-Suárez, R. Montes-de-Oca, F. Salem-Silva, Conditions for the uniqueness of optimal policies of discounted Markov decision processes, Math. Method. Oper. Res., 60 (2004), 415–436. https://doi.org/10.1007/s001860400372 doi: 10.1007/s001860400372 |
[11] | H. Daduna, P. Knopov, L. Tur, Optimal strategies for an inventory system with cost functions of general form, Cybern. Syst. Anal., 35 (1999), 602–618. https://doi.org/10.1007/bf02835856 doi: 10.1007/bf02835856 |
[12] | E. Feinberg, D. Kraemer, Continuity of discounted values and the structure of optimal policies for periodic-review inventory systems with setup costs, Nav. Res. Log., 2023, 1–13. https://doi.org/10.1002/nav.22108 |
[13] | E. Feinberg, Optimality conditions for inventory control, Optim. Chall. Complex Netw. Risk. Syst. INFORMS, 2016, 14–45. https://doi.org/10.1287/educ.2016.0145 |
[14] | E. Gordienko, O. Hernández-Lerma, Average cost Markov control processes with weighted norms: Value iteration, Appl. Math., 23 (1995), 219–237. https://doi.org/10.4064/am-23-2-219-237 doi: 10.4064/am-23-2-219-237 |
[15] | A. Gut, Stopped random walks, Limit Theorems and Applications, 2 Eds., New York: Springer, 2009. https://doi.org/10.1007/978-0-387-87835-5 |
[16] | X. Guo, Q. Zhu, Average optimality for Markov decision processes in Borel spaces: A new condition and approach, J. Appl. Probab., 43 (2006), 318–334. https://doi.org/10.1239/jap/1152413725 doi: 10.1239/jap/1152413725 |
[17] | O. Hernández-Lerma, J. Lasserre, Discrete-time Markov control processes: Basic optimality criteria, New York: Springer Science & Business Media, 2012. |
[18] | D. Iglehart, Optimality of (s, S) policies in the infinite horizon dynamic inventory problem, Manag. Sci., 9 (1963), 259–267. https://doi.org/10.1287/mnsc.9.2.259 doi: 10.1287/mnsc.9.2.259 |
[19] | D. Iglehart, Capital accumulation and production for the firm: Optimal dynamic policies, Manag. Sci., 12 (1965), 193–205. https://doi.org/10.1287/mnsc.12.3.193 doi: 10.1287/mnsc.12.3.193 |
[20] | D. Lindley, The theory of queues with a single server, Math. Proc. Cambridge, 48 (1952), 277–289. https://doi.org/10.1017/S0305004100027638 doi: 10.1017/S0305004100027638 |
[21] | S. Meyn, R. Tweedie, Markov chains and stochastic stability, New York: Springer Science & Business Media, 1993. https://doi.org/10.1007/978-1-4471-3267-7 |
[22] | S. Perera, S. Sethi, A survey of stochastic inventory models with fixed costs Optimality of (s, S) and (s, S) type policies discrete-time case, Prod. Oper. Manag., 32 (2022), 131–153. https://doi.org/10.1111/poms.13820 doi: 10.1111/poms.13820 |
[23] | E. Porteus, On the optimality of generalized (s, S) policies, Manag. Sci., 17 (1971), 411–426. https://doi.org/10.1287/mnsc.17.7.411 doi: 10.1287/mnsc.17.7.411 |
[24] | W. Rudin, Principles of mathematical analysis (Vol. 3), New York: McGraw-hill (1976). |
[25] | M. Schäl, On the optimality of (s, S)-policies in dynamic inventory models with finite horizon, SIAM J. Appl. Math., 30 (1976), 528–537. https://doi.org/10.1137/0130048 doi: 10.1137/0130048 |
[26] | S. Sethi, F. Feng, Optimality of (s, S) policies in inventory models with Markovian demand, Oper. Res., 45 (1997), 931–939. https://doi.org/10.1287/opre.45.6.931 doi: 10.1287/opre.45.6.931 |
[27] | O. Vega, R. Montes-de-Oca, Application of average dynamic programming to inventory systems, Math. Method. Oper. Res., 47 (1998), 451–471. https://doi.org/10.1007/bf01198405 doi: 10.1007/bf01198405 |
[28] | A. Veinott, H. Wagner, Computing optimal (s, S) inventory policies, Manag. Sci., 11 (1965), 525–552. https://doi.org/10.1287/mnsc.11.5.525 doi: 10.1287/mnsc.11.5.525 |
[29] | X. Xu, S. P. Sethi, S. H. Chung, Ordering COVID-19 vaccines for social welfare with information updating: Optimal dynamic order policies and vaccine selection in the digital age, IISE, 2023, 1–28. https://doi.org/10.1080/24725854.2023.2204329 |
[30] | H. Zhang, J. Zhang, R. Q. Zhang, Simple policies with provable bounds for managing perishable inventory, Prod. Oper. Manag., 29 (2020), 2637–2650. https://doi.org/10.2307/3214683 doi: 10.2307/3214683 |
[31] | Y. Zheng, A simple proof for optimality of (s, S) policies in infinite-horizon inventory systems, J. Appl. Probab., 28 (1991), 802–810. https://doi.org/10.2307/3214683 doi: 10.2307/3214683 |