Research article

Coronavirus dynamics, infections and preventive interventions using fractional-calculus analysis

  • Received: 29 November 2022 Revised: 11 January 2023 Accepted: 17 January 2023 Published: 07 February 2023
  • MSC : 4C05, 92D25

  • In this research work, we construct an epidemic model to understand COVID-19 transmission vaccination and therapy considerations. The model's equilibria were examined, and the reproduction parameter was calculated via a next-generation matrix method, symbolized by $ \mathcal{R}_0 $. We have shown that the infection-free steady state of our system is locally asymptotically stable for $ \mathcal{R}_0 < 1 $. Also, the local asymptotic stability of the endemic steady state has been established for $ \mathcal{R}_0 > 1 $. We have used a partial rank correlation coefficient method for sensitivity analysis of the threshold parameter $ \mathcal{R}_0 $. The contribution of vaccination to the threshold parameter is explored through graphical results. In addition to this, the uniqueness and existence of the solution to the postulated model of COVID-19 infection is shown. We ran various simulations of the proposed COVID-19 dynamics with varied input parameters to scrutinize the complex dynamics of COVID-19 infection. We illustrated the variation in the dynamical behavior of the system with different values of the input parameters. The key factors of the system are visualized for the public health officials for the control of the infection.

    Citation: Salah Boulaaras, Ziad Ur Rehman, Farah Aini Abdullah, Rashid Jan, Mohamed Abdalla, Asif Jan. Coronavirus dynamics, infections and preventive interventions using fractional-calculus analysis[J]. AIMS Mathematics, 2023, 8(4): 8680-8701. doi: 10.3934/math.2023436

    Related Papers:

  • In this research work, we construct an epidemic model to understand COVID-19 transmission vaccination and therapy considerations. The model's equilibria were examined, and the reproduction parameter was calculated via a next-generation matrix method, symbolized by $ \mathcal{R}_0 $. We have shown that the infection-free steady state of our system is locally asymptotically stable for $ \mathcal{R}_0 < 1 $. Also, the local asymptotic stability of the endemic steady state has been established for $ \mathcal{R}_0 > 1 $. We have used a partial rank correlation coefficient method for sensitivity analysis of the threshold parameter $ \mathcal{R}_0 $. The contribution of vaccination to the threshold parameter is explored through graphical results. In addition to this, the uniqueness and existence of the solution to the postulated model of COVID-19 infection is shown. We ran various simulations of the proposed COVID-19 dynamics with varied input parameters to scrutinize the complex dynamics of COVID-19 infection. We illustrated the variation in the dynamical behavior of the system with different values of the input parameters. The key factors of the system are visualized for the public health officials for the control of the infection.



    加载中


    [1] V. D. Ashwlayan, C. Antlash, M. Imran, S. M. B. Asdaq, M. K. Alshammari, M. Alomani, et al., Insight into the biological impact of COVID-19 and its vaccines on human health, Saudi J. Biol. Sci., 29 (2022), 3326–3337. https://doi.org/10.1016/j.sjbs.2022.02.010 doi: 10.1016/j.sjbs.2022.02.010
    [2] A. I. Shahin, S. Almotairi, A deep learning BiLSTM encoding-decoding model for COVID-19 pandemic spread forecasting, Fractal Fract., 5 (2021), 175. https://doi.org/10.3390/fractalfract5040175 doi: 10.3390/fractalfract5040175
    [3] J. Wang, J. Pang, X. Liu, Modelling diseases with relapse and nonlinear incidence of infection: a multi-group epidemic model, J. Biol. Dynam., 8 (2014), 99–116. https://doi.org/10.1080/17513758.2014.912682 doi: 10.1080/17513758.2014.912682
    [4] N. Ma, W. Ma, Z. Li, Multi-model selection and analysis for COVID-19, Fractal Fract., 5 (2021), 120. https://doi.org/10.3390/fractalfract5030120 doi: 10.3390/fractalfract5030120
    [5] R. Jan, S. Boulaaras, Analysis of fractional-order dynamics of dengue infection with non-linear incidence functions, T. I. Meas. Control, 44 (2022). https://doi.org/10.1177/01423312221085049
    [6] S. Boulaaras, R. Jan, A. Khan, M. Ahsan, Dynamical analysis of the transmission of dengue fever via Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 8 (2022), 100072. https://doi.org/10.1016/j.csfx.2022.100072 doi: 10.1016/j.csfx.2022.100072
    [7] K. Prem, Y. Liu, T. W. Russell, A. J. Kucharski, R. M. Eggo, N. Davies, et al., The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study, Lancet Public Health, 5 (2020), e261–e270. https://doi.org/10.1016/S2468-2667(20)30073-6 doi: 10.1016/S2468-2667(20)30073-6
    [8] N. Lurie, M. Saville, R. Hatchett, J. Halton, Developing COVID-19 vaccines at pandemic speed, New Eng. J. Med., 382 (2020), 1969–1973. https://doi.org/10.1056/NEJMp2005630 doi: 10.1056/NEJMp2005630
    [9] F. Amanat, F. Krammer, SARS-CoV-2 vaccines: status report, Immunity, 52 (2020), 583–589. https://doi.org/10.1016/j.immuni.2020.03.007 doi: 10.1016/j.immuni.2020.03.007
    [10] J. E. Aledort, N. Lurie, J. Wasserman, S. A. Bozzette, Non-pharmaceutical public health interventions for pandemic influenza: an evaluation of the evidence base, BMC Public Health, 7 (2007), 1–9. https://doi.org/10.1186/1471-2458-7-208 doi: 10.1186/1471-2458-7-208
    [11] T. M. Chen, J. Rui, Q. P. Wang, Z. Y. Zhao, J. A. Cui, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9 (2020), 24. https://doi.org/10.1186/s40249-020-00640-3 doi: 10.1186/s40249-020-00640-3
    [12] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [13] J. M. Read, J. R. Bridgen, D. A. Cummings, A. Ho, C. P. Jewell, Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions, Philos. T. R. Soc. B, 376 (2020). https://doi.org/10.1098/rstb.2020.0265
    [14] A. R. Tuite, D. N. Fisman, A. L. Greer, Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, CMAJ, 192 (2020), E497–E505. https://doi.org/10.1503/cmaj.200476 doi: 10.1503/cmaj.200476
    [15] O. Pinto Neto, D. M. Kennedy, J. C. Reis, Y. Wang, A. C. B. Brizzi, G. J. Zambrano, et al., Mathematical model of COVID-19 intervention scenarios for Sao PauloBrazil, Nat. Commun., 12 (2021), 418. https://doi.org/10.1038/s41467-020-20687-y doi: 10.1038/s41467-020-20687-y
    [16] O. Nave, U. Shemesh, I. HarTuv, Applying Laplace Adomian decomposition method (LADM) for solving a model of COVID-19, Comput. Method. Biomec., 24 (2021), 1618–1628. https://doi.org/10.1080/10255842.2021.1904399 doi: 10.1080/10255842.2021.1904399
    [17] Z. Shah, R. Jan, P. Kumam, W. Deebani, M. Shutaywi, Fractional dynamics of HIV with source term for the supply of new CD4+ T-cells depending on the viral load via Caputo-Fabrizio derivative, Molecules, 26 (2021), 1806. https://doi.org/10.3390/molecules26061806 doi: 10.3390/molecules26061806
    [18] T. Q. Tang, Z. Shah, R. Jan, E. Alzahrani, Modeling the dynamics of tumorimmune cells interactions via fractional calculus, Eur. Phys. J. Plus, 137 (2022), 367. https://doi.org/10.1140/epjp/s13360-022-02591-0 doi: 10.1140/epjp/s13360-022-02591-0
    [19] S. Qureshi, A. Yusuf, Fractional derivatives applied to MSEIR problems: comparative study with real world data, Eur. Phys. J. Plus, 134 (2019), 171. https://doi.org/10.1140/epjp/i2019-12661-7 doi: 10.1140/epjp/i2019-12661-7
    [20] S. Qureshi, R. Jan, Modeling of measles epidemic with optimized fractional order under Caputo differential operator, Chaos Soliton. Fract., 145 (2021), 110766. https://doi.org/10.1016/j.chaos.2021.110766 doi: 10.1016/j.chaos.2021.110766
    [21] S. Kumar, R. P. Chauhan, S. Momani, S. Hadid, Numerical investigations on COVID-19 model through singular and non-singular fractional operators, Numer. Meth. Part. Differ. Equ., 2020. https://doi.org/10.1002/num.22707
    [22] A. Atangana, S. İĞret araz, A novel COVID-19 model with fractional differential operators with singular and non-singular kernels: analysis and numerical scheme based on Newton polynomial, Alex. Eng. J., 60 (2021), 3781–3806. https://doi.org/10.1016/j.aej.2021.02.016 doi: 10.1016/j.aej.2021.02.016
    [23] R. Jan, A. Khurshaid, H. Alotaibi, M. Inc, A robust study of the transmission dynamics of syphilis infection through non-integer derivative, AIMS Math., 8 (2023), 6206–6232. https://doi.org/10.3934/math.2023314 doi: 10.3934/math.2023314
    [24] O. A. Omar, R. A. Elbarkouky, H. M. Ahmed, Fractional stochastic modelling of COVID-19 under wide spread of vaccinations: Egyptian case study, Alex. Eng. J., 61 (2022), 8595–8609. https://doi.org/10.1016/j.aej.2022.02.002 doi: 10.1016/j.aej.2022.02.002
    [25] O. A. Omar, Y. Alnafisah, R. A. Elbarkouky, H. M. Ahmed, COVID-19 deterministic and stochastic modelling with optimized daily vaccinations in Saudi Arabia, Results Phys., 28 (2021), 104629. https://doi.org/10.1016/j.rinp.2021.104629 doi: 10.1016/j.rinp.2021.104629
    [26] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [27] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. http://dx.doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202
    [28] R. Jan, M. A. Khan, Y. Khan, S. Ullah, A new model of dengue fever in terms of fractional derivative, Math. Biosci. Eng., 17 (2020), 5267–5288.
    [29] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [30] C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of R0 and its role on global stability, Mathematical approaches for emerging and re-emerging infection diseases: an introduction, 125 (2002), 31–65.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1436) PDF downloads(73) Cited by(27)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog