Research article

Existence and compatibility of positive solutions for boundary value fractional differential equation with modified analytic kernel

  • Received: 11 September 2022 Revised: 30 December 2022 Accepted: 16 January 2023 Published: 28 January 2023
  • MSC : 34B18, 45B05

  • In this article, a Green's function for a fractional boundary value problem in connection with modified analytic kernel has been constructed to study the existence of multiple solutions of a type of characteristic fractional boundary value problems. It is done here by using a well-known result: Krasnoselskii fixed point theorem. Moreover, a practical example is created to understand the importance of main results regarding the existence of solution of a boundary value fractional differential problem with homogeneous conditions. This example analytically and graphically, explains circumstances under which the Green's functions with different types of differential operator are compatible.

    Citation: Amna Kalsoom, Sehar Afsheen, Akbar Azam, Faryad Ali. Existence and compatibility of positive solutions for boundary value fractional differential equation with modified analytic kernel[J]. AIMS Mathematics, 2023, 8(4): 7766-7786. doi: 10.3934/math.2023390

    Related Papers:

  • In this article, a Green's function for a fractional boundary value problem in connection with modified analytic kernel has been constructed to study the existence of multiple solutions of a type of characteristic fractional boundary value problems. It is done here by using a well-known result: Krasnoselskii fixed point theorem. Moreover, a practical example is created to understand the importance of main results regarding the existence of solution of a boundary value fractional differential problem with homogeneous conditions. This example analytically and graphically, explains circumstances under which the Green's functions with different types of differential operator are compatible.



    加载中


    [1] K. S. Miller, B. Ross, An introduction to fractional calculus and fractional diffrential equations, New York: Wiley, 1993.
    [2] K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974.
    [3] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625. https://doi.org/10.1006/jmaa.1996.0456 doi: 10.1006/jmaa.1996.0456
    [4] S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804–812. https://doi.org/10.1006/jmaa.2000.7123 doi: 10.1006/jmaa.2000.7123
    [5] A. Babakhani, V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl., 278 (2003), 434–442. https://doi.org/10.1016/S0022-247X(02)00716-3 doi: 10.1016/S0022-247X(02)00716-3
    [6] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [7] C. F. Li, X. N. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl., 59 (2010), 1363–1375. https://doi.org/10.1016/j.camwa.2009.06.029 doi: 10.1016/j.camwa.2009.06.029
    [8] Y. Wang, L. Liu, Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal. Theor., 74 (2011), 3599–3605. https://doi.org/10.1016/j.na.2011.02.043 doi: 10.1016/j.na.2011.02.043
    [9] B. Ahmad, S. K. Ntouyas, A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Differ. Equ., 2011 (2011), 107384. https://doi.org/10.1155/2011/107384 doi: 10.1155/2011/107384
    [10] J. Wang, Y. Zhou, M. Feckan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008–3020. https://doi.org/10.1016/j.camwa.2011.12.064 doi: 10.1016/j.camwa.2011.12.064
    [11] M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
    [12] J. Jiang, L. Liu, Y. Wu, Positive solutions to singular fractional differential system with coupled boundary conditions, Commun. Nonlinear Sci., 18 (2013), 3061–3074. https://doi.org/10.1016/j.cnsns.2013.04.009 doi: 10.1016/j.cnsns.2013.04.009
    [13] J. Henderson, R. Luca, Positive solutions for a system of nonlocal fractional boundary value problems, Fract. Calc. Appl. Anal., 16 (2013), 985–1008. https://doi.org/10.2478/s13540-013-0061-4 doi: 10.2478/s13540-013-0061-4
    [14] K. Shah, R. A. Khan, Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti periodic boundary conditions, Differ. Equ. Appl., 7 (2015), 245–262. https://doi.org/10.7153/dea-07-14 doi: 10.7153/dea-07-14
    [15] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 51 (2016), 48–54. https://doi.org/10.1016/j.aml.2015.07.002 doi: 10.1016/j.aml.2015.07.002
    [16] Y. Zou, G. He, On the uniqueness of solutions for a class of fractional differential equations, Appl. Math. Lett., 74 (2017), 68–73. https://doi.org/10.1016/j.aml.2017.05.011 doi: 10.1016/j.aml.2017.05.011
    [17] B. Ahmad, R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516–534. https://doi.org/10.1016/j.amc.2018.07.025 doi: 10.1016/j.amc.2018.07.025
    [18] M. Benchohra, S. Bouriah, J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstr. Math., 52 (2019), 437–450. https://doi.org/10.1515/dema-2019-0032 doi: 10.1515/dema-2019-0032
    [19] Z. Yue, Y. Zou, New uniqueness results for fractional differential equation with dependence on the first order derivative, Adv. Differ. Equ., 2019 (2019), 38. https://doi.org/10.1186/s13662-018-1923-1 doi: 10.1186/s13662-018-1923-1
    [20] A. Amara, Existence results for hybrid fractional differential equations with three-point boundary conditions, AIMS Math., 5 (2020), 1074–1088. https://doi.org/10.3934/math.2020075 doi: 10.3934/math.2020075
    [21] H. Afshari, M. S. Abdo, J. Alzabut, Further results on existence of positive solutions of generalized fractional boundary value problems, Adv. Differ. Equ., 2020 (2020), 600. https://doi.org/10.1186/s13662-020-03065-2 doi: 10.1186/s13662-020-03065-2
    [22] H. R. Marasi, H. Aydi, Existence and uniqueness results for two-term nonlinear fractional differential equations via a fixed point technique, J. Math., 2021 (2021), 6670176. https://doi.org/10.1155/2021/6670176 doi: 10.1155/2021/6670176
    [23] A. Tudorache, R. Luca, Positive solutions for a system of fractional boundary value problems with r-Laplacian operators, uncoupled nonlocal conditions and positive parameters, Axioms, 11 (2022), 164. https://doi.org/10.3390/axioms11040164 doi: 10.3390/axioms11040164
    [24] X. Zhang, Y. Tian, Sharp conditions for the existence of positive solutions for a second-order singular impulsive differential equation, Appl. Anal., 101 (2022), 1–13. https://doi.org/10.1080/00036811.2017.1370542 doi: 10.1080/00036811.2017.1370542
    [25] C. E. Wagner, A. C. Barbati, J. Engmann, A. S. Burbidge, G. H. McKinley, Quantifying the consistency and rheology of liquid foods using fractional calculus, Food Hydrocolloid., 69 (2017), 242–254. https://doi.org/10.1016/j.foodhyd.2017.01.036 doi: 10.1016/j.foodhyd.2017.01.036
    [26] L. L. Ferras, N. J. Ford, M. L. Morgado, M. Rebelo, G. H. McKinley, J. M. Nobrega, Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries, Comput. Fluids, 174 (2018), 14–33. https://doi.org/10.1016/j.compfluid.2018.07.004 doi: 10.1016/j.compfluid.2018.07.004
    [27] A. Stankiewicz, Fractional Maxwell model of viscoelastic biological materials, BIO Web of Conferences, 10 (2018), 02032. https://doi.org/10.1051/bioconf/20181002032 doi: 10.1051/bioconf/20181002032
    [28] Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. https://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563
    [29] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [30] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer, 2014.
    [31] K. Lazopoulos, Non-local continuum mechanics and fractional calculus, Mech. Res. Commun., 33 (2006), 753–757. https://doi.org/10.1016/j.mechrescom.2006.05.001 doi: 10.1016/j.mechrescom.2006.05.001
    [32] C. S. Drapaca, S. Sivaloganathan, A fractional model of continuum mechanics, J. Elast., 107 (2012), 105–123. https://doi.org/10.1007/s10659-011-9346-1 doi: 10.1007/s10659-011-9346-1
    [33] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, Vienna: Springer, 1997.
    [34] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [35] V. E. Tarasov, Mathematical economics: Application of fractional calculus, Mathematics, 8 (2020), 660. https://doi.org/10.3390/math8050660 doi: 10.3390/math8050660
    [36] D. Kumar, D. Baleanu, Fractional calculus and its applications in physics, Front. Phys., 7 (2019), 81. https://doi.org/10.3389/fphy.2019.00081 doi: 10.3389/fphy.2019.00081
    [37] Y. Wei, Y. Kang, W. Yin, Y. Wang, Generalization of the gradient method with fractional order gradient direction, J. Frankl. I., 357 (2020), 2514–2532. https://doi.org/10.1016/j.jfranklin.2020.01.008 doi: 10.1016/j.jfranklin.2020.01.008
    [38] K. A. Abro, M. H. Laghari, J. F. Gómez-Aguilar, Application of Atangana-Baleanu fractional derivative to carbon nanotubes based non-Newtonian nanofluid: applications in nanotechnology, J. Appl. Comput. Mech., 6 (2020), 1260–1269. https://doi.org/10.22055/JACM.2020.33461.2229 doi: 10.22055/JACM.2020.33461.2229
    [39] S. Chávez-Vázquez, J. F. Gómez-Aguilar, J. E. Lavín-Delgado, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, Applications of fractional operators in robotics: a review, J. Intell. Robot. Syst., 104 (2022), 63. https://doi.org/10.1007/s10846-022-01597-1 doi: 10.1007/s10846-022-01597-1
    [40] X. Xu, D. Jiang, C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal., 71 (2009), 4676–4688. https://doi.org/10.1016/j.na.2009.03.030 doi: 10.1016/j.na.2009.03.030
    [41] I. Podlubny, Fractional differential equations, 1998.
    [42] L. Debnath, D. Bhatta, Integral transforms and their applications, Chapman & Hall, 2007.
    [43] A. Fernandez, M. A. Ozarslan, D. Baleanu, On fractional calculus with general analytical kernels, Appl. Math. Comput., 354 (2019), 248–265. https://doi.org/10.1016/j.amc.2019.02.045 doi: 10.1016/j.amc.2019.02.045
    [44] T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15.
    [45] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [46] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1087) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog