In this article, a Green's function for a fractional boundary value problem in connection with modified analytic kernel has been constructed to study the existence of multiple solutions of a type of characteristic fractional boundary value problems. It is done here by using a well-known result: Krasnoselskii fixed point theorem. Moreover, a practical example is created to understand the importance of main results regarding the existence of solution of a boundary value fractional differential problem with homogeneous conditions. This example analytically and graphically, explains circumstances under which the Green's functions with different types of differential operator are compatible.
Citation: Amna Kalsoom, Sehar Afsheen, Akbar Azam, Faryad Ali. Existence and compatibility of positive solutions for boundary value fractional differential equation with modified analytic kernel[J]. AIMS Mathematics, 2023, 8(4): 7766-7786. doi: 10.3934/math.2023390
In this article, a Green's function for a fractional boundary value problem in connection with modified analytic kernel has been constructed to study the existence of multiple solutions of a type of characteristic fractional boundary value problems. It is done here by using a well-known result: Krasnoselskii fixed point theorem. Moreover, a practical example is created to understand the importance of main results regarding the existence of solution of a boundary value fractional differential problem with homogeneous conditions. This example analytically and graphically, explains circumstances under which the Green's functions with different types of differential operator are compatible.
[1] | K. S. Miller, B. Ross, An introduction to fractional calculus and fractional diffrential equations, New York: Wiley, 1993. |
[2] | K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974. |
[3] | D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625. https://doi.org/10.1006/jmaa.1996.0456 doi: 10.1006/jmaa.1996.0456 |
[4] | S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 252 (2000), 804–812. https://doi.org/10.1006/jmaa.2000.7123 doi: 10.1006/jmaa.2000.7123 |
[5] | A. Babakhani, V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl., 278 (2003), 434–442. https://doi.org/10.1016/S0022-247X(02)00716-3 doi: 10.1016/S0022-247X(02)00716-3 |
[6] | Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052 |
[7] | C. F. Li, X. N. Luo, Y. Zhou, Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Comput. Math. Appl., 59 (2010), 1363–1375. https://doi.org/10.1016/j.camwa.2009.06.029 doi: 10.1016/j.camwa.2009.06.029 |
[8] | Y. Wang, L. Liu, Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal. Theor., 74 (2011), 3599–3605. https://doi.org/10.1016/j.na.2011.02.043 doi: 10.1016/j.na.2011.02.043 |
[9] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Differ. Equ., 2011 (2011), 107384. https://doi.org/10.1155/2011/107384 doi: 10.1155/2011/107384 |
[10] | J. Wang, Y. Zhou, M. Feckan, On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl., 64 (2012), 3008–3020. https://doi.org/10.1016/j.camwa.2011.12.064 doi: 10.1016/j.camwa.2011.12.064 |
[11] | M. Feckan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017 |
[12] | J. Jiang, L. Liu, Y. Wu, Positive solutions to singular fractional differential system with coupled boundary conditions, Commun. Nonlinear Sci., 18 (2013), 3061–3074. https://doi.org/10.1016/j.cnsns.2013.04.009 doi: 10.1016/j.cnsns.2013.04.009 |
[13] | J. Henderson, R. Luca, Positive solutions for a system of nonlocal fractional boundary value problems, Fract. Calc. Appl. Anal., 16 (2013), 985–1008. https://doi.org/10.2478/s13540-013-0061-4 doi: 10.2478/s13540-013-0061-4 |
[14] | K. Shah, R. A. Khan, Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti periodic boundary conditions, Differ. Equ. Appl., 7 (2015), 245–262. https://doi.org/10.7153/dea-07-14 doi: 10.7153/dea-07-14 |
[15] | Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 51 (2016), 48–54. https://doi.org/10.1016/j.aml.2015.07.002 doi: 10.1016/j.aml.2015.07.002 |
[16] | Y. Zou, G. He, On the uniqueness of solutions for a class of fractional differential equations, Appl. Math. Lett., 74 (2017), 68–73. https://doi.org/10.1016/j.aml.2017.05.011 doi: 10.1016/j.aml.2017.05.011 |
[17] | B. Ahmad, R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516–534. https://doi.org/10.1016/j.amc.2018.07.025 doi: 10.1016/j.amc.2018.07.025 |
[18] | M. Benchohra, S. Bouriah, J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstr. Math., 52 (2019), 437–450. https://doi.org/10.1515/dema-2019-0032 doi: 10.1515/dema-2019-0032 |
[19] | Z. Yue, Y. Zou, New uniqueness results for fractional differential equation with dependence on the first order derivative, Adv. Differ. Equ., 2019 (2019), 38. https://doi.org/10.1186/s13662-018-1923-1 doi: 10.1186/s13662-018-1923-1 |
[20] | A. Amara, Existence results for hybrid fractional differential equations with three-point boundary conditions, AIMS Math., 5 (2020), 1074–1088. https://doi.org/10.3934/math.2020075 doi: 10.3934/math.2020075 |
[21] | H. Afshari, M. S. Abdo, J. Alzabut, Further results on existence of positive solutions of generalized fractional boundary value problems, Adv. Differ. Equ., 2020 (2020), 600. https://doi.org/10.1186/s13662-020-03065-2 doi: 10.1186/s13662-020-03065-2 |
[22] | H. R. Marasi, H. Aydi, Existence and uniqueness results for two-term nonlinear fractional differential equations via a fixed point technique, J. Math., 2021 (2021), 6670176. https://doi.org/10.1155/2021/6670176 doi: 10.1155/2021/6670176 |
[23] | A. Tudorache, R. Luca, Positive solutions for a system of fractional boundary value problems with r-Laplacian operators, uncoupled nonlocal conditions and positive parameters, Axioms, 11 (2022), 164. https://doi.org/10.3390/axioms11040164 doi: 10.3390/axioms11040164 |
[24] | X. Zhang, Y. Tian, Sharp conditions for the existence of positive solutions for a second-order singular impulsive differential equation, Appl. Anal., 101 (2022), 1–13. https://doi.org/10.1080/00036811.2017.1370542 doi: 10.1080/00036811.2017.1370542 |
[25] | C. E. Wagner, A. C. Barbati, J. Engmann, A. S. Burbidge, G. H. McKinley, Quantifying the consistency and rheology of liquid foods using fractional calculus, Food Hydrocolloid., 69 (2017), 242–254. https://doi.org/10.1016/j.foodhyd.2017.01.036 doi: 10.1016/j.foodhyd.2017.01.036 |
[26] | L. L. Ferras, N. J. Ford, M. L. Morgado, M. Rebelo, G. H. McKinley, J. M. Nobrega, Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries, Comput. Fluids, 174 (2018), 14–33. https://doi.org/10.1016/j.compfluid.2018.07.004 doi: 10.1016/j.compfluid.2018.07.004 |
[27] | A. Stankiewicz, Fractional Maxwell model of viscoelastic biological materials, BIO Web of Conferences, 10 (2018), 02032. https://doi.org/10.1051/bioconf/20181002032 doi: 10.1051/bioconf/20181002032 |
[28] | Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. https://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563 |
[29] | H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019 |
[30] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer, 2014. |
[31] | K. Lazopoulos, Non-local continuum mechanics and fractional calculus, Mech. Res. Commun., 33 (2006), 753–757. https://doi.org/10.1016/j.mechrescom.2006.05.001 doi: 10.1016/j.mechrescom.2006.05.001 |
[32] | C. S. Drapaca, S. Sivaloganathan, A fractional model of continuum mechanics, J. Elast., 107 (2012), 105–123. https://doi.org/10.1007/s10659-011-9346-1 doi: 10.1007/s10659-011-9346-1 |
[33] | F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, Vienna: Springer, 1997. |
[34] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[35] | V. E. Tarasov, Mathematical economics: Application of fractional calculus, Mathematics, 8 (2020), 660. https://doi.org/10.3390/math8050660 doi: 10.3390/math8050660 |
[36] | D. Kumar, D. Baleanu, Fractional calculus and its applications in physics, Front. Phys., 7 (2019), 81. https://doi.org/10.3389/fphy.2019.00081 doi: 10.3389/fphy.2019.00081 |
[37] | Y. Wei, Y. Kang, W. Yin, Y. Wang, Generalization of the gradient method with fractional order gradient direction, J. Frankl. I., 357 (2020), 2514–2532. https://doi.org/10.1016/j.jfranklin.2020.01.008 doi: 10.1016/j.jfranklin.2020.01.008 |
[38] | K. A. Abro, M. H. Laghari, J. F. Gómez-Aguilar, Application of Atangana-Baleanu fractional derivative to carbon nanotubes based non-Newtonian nanofluid: applications in nanotechnology, J. Appl. Comput. Mech., 6 (2020), 1260–1269. https://doi.org/10.22055/JACM.2020.33461.2229 doi: 10.22055/JACM.2020.33461.2229 |
[39] | S. Chávez-Vázquez, J. F. Gómez-Aguilar, J. E. Lavín-Delgado, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, Applications of fractional operators in robotics: a review, J. Intell. Robot. Syst., 104 (2022), 63. https://doi.org/10.1007/s10846-022-01597-1 doi: 10.1007/s10846-022-01597-1 |
[40] | X. Xu, D. Jiang, C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal., 71 (2009), 4676–4688. https://doi.org/10.1016/j.na.2009.03.030 doi: 10.1016/j.na.2009.03.030 |
[41] | I. Podlubny, Fractional differential equations, 1998. |
[42] | L. Debnath, D. Bhatta, Integral transforms and their applications, Chapman & Hall, 2007. |
[43] | A. Fernandez, M. A. Ozarslan, D. Baleanu, On fractional calculus with general analytical kernels, Appl. Math. Comput., 354 (2019), 248–265. https://doi.org/10.1016/j.amc.2019.02.045 doi: 10.1016/j.amc.2019.02.045 |
[44] | T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7–15. |
[45] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[46] | F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7 |