In this paper, we take advantage of implicit relationships to come up with a new concept called "$ \mathcal{A}_{\vartheta} $-$ \alpha $-contraction mapping". We utilized our new notion to formulate and prove some common fixed point theorems for two and four self-mappings over complete extended quasi $ b $-metric spaces under a set of conditions. Our main results widen and improve many existing results in the literature. To support our research, we present some examples as applications to our main findings.
Citation: Amina-Zahra Rezazgui, Abdalla Ahmad Tallafha, Wasfi Shatanawi. Common fixed point results via $ \mathcal{A}_{\vartheta} $-$ \alpha $-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi $ b $-metric space[J]. AIMS Mathematics, 2023, 8(3): 7225-7241. doi: 10.3934/math.2023363
In this paper, we take advantage of implicit relationships to come up with a new concept called "$ \mathcal{A}_{\vartheta} $-$ \alpha $-contraction mapping". We utilized our new notion to formulate and prove some common fixed point theorems for two and four self-mappings over complete extended quasi $ b $-metric spaces under a set of conditions. Our main results widen and improve many existing results in the literature. To support our research, we present some examples as applications to our main findings.
[1] | K. Abodayeh, T. Qawasmeh, W. Shatanawi, A. Tallafha, $\epsilon_{\varphi}$-contraction and some fixed point results via modified $\omega$-distance mappings in the frame of complete quasi metric spaces and applications, Int. J. Electr. Comput. Eng., 10 (2020), 3839–3853. https://doi.org/10.11591/ijece.v10i4.pp3839-3853 doi: 10.11591/ijece.v10i4.pp3839-3853 |
[2] | I. Abu-Irwaq, W. Shatanawi, A. Bataihah, I. Nuseir, Fixed point results for nonlinear contractions with generalized $\Omega$-distance mappings, UPB Sci. Bull. Ser. A, 81 (2019), 57–64. |
[3] | G. Akinbo, M. O. Olatinwo, A. O. Bosede, A note on $A$-contractions and common fixed points, Acta Univ. Apulensis, 23 (2010), 91–98. |
[4] | M. Akram, A. A. Siddiqui, A fixed point theorem for $A$-contraction on a class of generalized metric spaces, Korean J. Math Sci., 10 (2003), 1–15. |
[5] | M. Akram, A. A. Zafar, A. A. Siddiqui, A general class of contractions: $A$-contractions, Novi Sad J. Math., 38 (2008), 25–33. |
[6] | M. Akram, A. A. Zafar, A. A. Siddiqui, Common fixed point theorems for self maps of a generalized metric space satisfying $A$-contraction type condition, Int. J. Math. Anal., 5 (2011), 757–763. |
[7] | A. Ali, M. Arshad, E. Emeer, H. Aydi, A. Mukheimer, K. Abodayeh, Certain dynamic iterative scheme families and multi-valued fixed point results, AIMS Math., 7 (2022), 12177–12202. https://doi.org/10.3934/math.2022677 doi: 10.3934/math.2022677 |
[8] | A. Ali, M. Arshad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized $\theta_b$-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 1–19. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8 |
[9] | A. Ali, A. Hussain, M. Arshad, H. A. Sulami, M. Tariq, Certain new development to the orthogonal binary relations, Symmetry, 14 (2022), 1954. https://doi.org/10.3390/sym14101954 doi: 10.3390/sym14101954 |
[10] | A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamicprocess for F-HRS type contractions with application, Phys. A, 538 (2020), 122669. https://doi.org/10.1016/j.physa.2019.122669 doi: 10.1016/j.physa.2019.122669 |
[11] | S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Univ. Modena, 46 (1998), 263–276. |
[12] | V. Gupta, R. Kaur, Some common fixed point theorems for a class of $A$-contractions on 2-metric space, Int. J. Pure Appl. Math., 78 (2012), 909–916. |
[13] | G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 531318. https://doi.org/10.1155/S0161171286000935 doi: 10.1155/S0161171286000935 |
[14] | M. Nazam, M. Zhenhua, S. U. Khan, M. Arshad, Common fixed points of four maps satisfying $F$-contraction on $b$-metric spaces, J. Funct. Spaces, 2017 (2017), 9389768. https://doi.org/10.1155/2017/9389768 doi: 10.1155/2017/9389768 |
[15] | B. Nurwahyu, Fixed point theorems for cyclic weakly contraction mappings in dislocated quasi extended $b$-metric space, J. Funct. Spaces, 2019 (2019), 1367879. https://doi.org/10.1155/2019/1367879 doi: 10.1155/2019/1367879 |
[16] | I. Nuseir, W. Shatanawi, I. Abu-Irwaq, A. Bataihah, Nonlinear contractions and fixed point theorems with modified $\omega$-distance mappings in complete quasi metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 5342–5350. https://doi.org/10.22436/jnsa.010.10.20 doi: 10.22436/jnsa.010.10.20 |
[17] | T. Qawasmeh, W. Shatanawi, A. Bataihah, A. Tallafha, Fixed point results and $(\alpha, \beta)$-triangular admissibility in the frame of complete extended $b$-metric spaces and application, UPB Sci. Bull. Ser. A, 23 (2021), 113–124. |
[18] | J. R. Roshan, N. Shobkolaei, S. Sedghi, M. Abbas, Common fixed point of four maps in $b$-metric spaces, Hacettepe J. Math. Stat., 43 (2014), 613–624. |
[19] | A. Roldán-López-de-Hierro, E. Karapinar, M. de la Sen, Coincidence point theorems in quasi-metric spaces without assuming the mixed monotone property and consequences in $G$-metric spaces, J. Fixed Point Theory Appl., 2014 (2014), 1–29. https://doi.org/10.1186/1687-1812-2014-184 doi: 10.1186/1687-1812-2014-184 |
[20] | W. Shatanawi, Some fixed point results for a generalized $\psi$-weak contraction mappings in orbitally metric spaces, Chaos Solitons Fract., 45 (2012), 520–526. https://doi.org/10.1016/j.chaos.2012.01.015 doi: 10.1016/j.chaos.2012.01.015 |
[21] | W. Shatanawi, On $w$-compatible mappings and common coupled coincidence point in cone metric spaces, Appl. Math. Lett., 25 (2012), 925–931. https://doi.org/10.1016/j.aml.2011.10.037 doi: 10.1016/j.aml.2011.10.037 |
[22] | W. Shatanawi, Fixed and common fixed point for mapping satisfying some nonlinear contraction in $b$-metric spaces, J. Math. Anal., 7 (2016), 1–12. |
[23] | W. Shatanawi, Fixed and common fixed point theorems in frame of quasi metric spaces based on ultra distance functions, Nonlinear Anal., 23 (2018), 724–748. https://doi.org/10.15388/NA.2018.5.6 doi: 10.15388/NA.2018.5.6 |
[24] | W. Shatanawi, A. Bataihah, A. Pitea, Fixed and common fixed point results for cyclic mappings of $\Omega$-distance, J. Nonlinear Sci. Appl., 9 (2016), 727–735. https://doi.org/10.22436/jnsa.009.03.02 doi: 10.22436/jnsa.009.03.02 |
[25] | W. Shatanawi, A. Pitea, R. Lazović, Contraction conditions using comparison functions on $b$-metric spaces, Fixed Point Theory Appl., 2014 (2014), 1–11. https://doi.org/10.1186/1687-1812-2014-135 doi: 10.1186/1687-1812-2014-135 |
[26] | W. Shatanawi, V. C. Rajić, S. Radenović, A. Al-Rawashdeh, Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–7. https://doi.org/10.1186/1687-1812-2012-106 doi: 10.1186/1687-1812-2012-106 |
[27] | W. Shatanawi, T. Qawasmeh, A. Bataihah, A. Tallafha, New contractions and some fixed point results with application based on extended quasi $b$-metric spaces, UPB Sci. Bull. Ser. A, 83 (2021), 39–48. |
[28] | N. Shahzad, O. Valero, M. A. Alghamdi, M. A. Alghamdi, A fixed point theorem in partial quasi-metric spaces and an application to software engineering, Appll. Math. Comput., 268 (2015), 1292–1301. https://doi.org/10.1016/j.amc.2015.06.074 doi: 10.1016/j.amc.2015.06.074 |
[29] | M. L. Song, X. J. Zhu, Common fixed point for self-mappings satisfying an implicit Lipschitz-type condition in Kaleva-Seikkala's type fuzzy metric spaces, Abstr. Appl. Anal., 2013 (2013), 1–10. https://doi.org/10.1155/2013/278340 doi: 10.1155/2013/278340 |
[30] | W. A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675–684. https://doi.org/10.2307/2371174 |