In this paper, we mainly study the following boundary value problems of fractional discontinuous differential equations with impulses:
$ \hskip 3mm \left\{ \begin{array}{lll} _{t}^{C} \mathcal {D}^{\mathfrak{R}}_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t)), \ a.e.\ t\in Q, \\ \triangle \Lambda|_{t = t_{{\kappa}}} = \Phi_{{\kappa}}(\Lambda(t_{{\kappa}})), \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ \triangle \Lambda'|_{t = t_{{\kappa}}} = 0, \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ {\vartheta} \Lambda(0)-{\chi} \Lambda(1) = \int_{0}^{1}\varrho_{1}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \\ {\zeta} \Lambda'(0)-\delta \Lambda'(1) = \int_{0}^{1}\varrho_{2}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \end{array}\right. $
where $ {\vartheta} > {\chi} > 0, \ {\zeta} > \delta > 0 $, $ \Phi_{{\kappa}}\in C(\mbox{ $\mathbb{R}$ }^{+}, \mbox{ $\mathbb{R}$ }^{+}) $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \geq 0 $ a.e. on $ Q = [0, 1] $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \in L^{1}(0, 1) $ and $ \digamma:[0, 1]\times \mbox{ $\mathbb{R}$ }^{+}\rightarrow \mbox{ $\mathbb{R}$ }^{+} $, $ \mbox{ $\mathbb{R}$ }^{+} = [0, +\infty) $. By using Krasnosel skii's fixed point theorem for discontinuous operators on cones, some sufficient conditions for the existence of single or multiple positive solutions for the above discontinuous differential system are established. An example is given to confirm the main results in the end.
Citation: Yang Wang, Yating Li, Yansheng Liu. Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulses[J]. AIMS Mathematics, 2023, 8(3): 7196-7224. doi: 10.3934/math.2023362
In this paper, we mainly study the following boundary value problems of fractional discontinuous differential equations with impulses:
$ \hskip 3mm \left\{ \begin{array}{lll} _{t}^{C} \mathcal {D}^{\mathfrak{R}}_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t)), \ a.e.\ t\in Q, \\ \triangle \Lambda|_{t = t_{{\kappa}}} = \Phi_{{\kappa}}(\Lambda(t_{{\kappa}})), \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ \triangle \Lambda'|_{t = t_{{\kappa}}} = 0, \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ {\vartheta} \Lambda(0)-{\chi} \Lambda(1) = \int_{0}^{1}\varrho_{1}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \\ {\zeta} \Lambda'(0)-\delta \Lambda'(1) = \int_{0}^{1}\varrho_{2}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \end{array}\right. $
where $ {\vartheta} > {\chi} > 0, \ {\zeta} > \delta > 0 $, $ \Phi_{{\kappa}}\in C(\mbox{ $\mathbb{R}$ }^{+}, \mbox{ $\mathbb{R}$ }^{+}) $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \geq 0 $ a.e. on $ Q = [0, 1] $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \in L^{1}(0, 1) $ and $ \digamma:[0, 1]\times \mbox{ $\mathbb{R}$ }^{+}\rightarrow \mbox{ $\mathbb{R}$ }^{+} $, $ \mbox{ $\mathbb{R}$ }^{+} = [0, +\infty) $. By using Krasnosel skii's fixed point theorem for discontinuous operators on cones, some sufficient conditions for the existence of single or multiple positive solutions for the above discontinuous differential system are established. An example is given to confirm the main results in the end.
[1] | Y. Li, Y. Liu, Multiple solutions for a class of boundary value problems of fractional differential equations with generalized Caputo derivatives, AIMS Math., 43 (2021), 13119–13142. http://dx.doi.org/10.3934/math.2021758 doi: 10.3934/math.2021758 |
[2] | Y. Liu, Y. Liu, Multiple positive solutions for a class of boundary value problem of fractional (p, q)-difference equations under (p, q)-integral boundary conditions, J. Math., 2021 (2021), 1–13. https://doi.org/10.1155/2021/2969717 doi: 10.1155/2021/2969717 |
[3] | A. A. Kilbas, H. M. Sirvastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, Amsterdam, North-Holland Mathematics Studies, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 |
[4] | Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8(2015), 340–353. http://dx.doi.org/10.22436/jnsa.008.04.07 doi: 10.22436/jnsa.008.04.07 |
[5] | D. D. Bainov, P. S. Simeonov, Impulsive Differential Equations: Asymptotic Properties of the Solutions Series on Advances in Mathematics for Applied Sciences, Singapore: World Scientific, 1995. http://dx.doi.org/10.1142/9789812831804_fmatter |
[6] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Oscillation Theory of Impulsive Differential Equations, Singapore: World Scientific, 1989. |
[7] | R. P. Agarwal, D. O'Regan, S. H. Saker, Oscillation and Stability of Delay Models in Biology, New York, USA: Springer International Publishing, 2014. https://doi.org/10.1007/978-3-319-06557-1 |
[8] | L. Lin, Y. Liu, D. Zhao, Controllability of impulsive Caputo fractional evolution equations with nonlocal conditions, Mathematics, 9 (2021), 1–14. https://doi.org/10.3390/math9121358 doi: 10.3390/math9121358 |
[9] | X. Li, J. Shen, H. Akca, R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798–804. https://doi.org/10.1016/j.amc.2014.10.113 doi: 10.1016/j.amc.2014.10.113 |
[10] | X. Li, D. O'Regan, H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA. J. Appl. Math., 80(2015), 85–99. https://doi.org/10.1093/imamat/hxt027 doi: 10.1093/imamat/hxt027 |
[11] | X. Li, T. Caraballo, R. Rakkiyappan, X. Han, On the stability of impulsive functional differential equations with infinite delays, Math. Methods Appl. Sci., 38 (2015), 3130–3140. https://doi.org/10.1002/mma.3303 doi: 10.1002/mma.3303 |
[12] | X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130–146. https://doi.org/10.1016/j.amc.2018.09.003 doi: 10.1016/j.amc.2018.09.003 |
[13] | L. Lin, Y. Liu, D. Zhao, Multiple Solutions for Singular Semipositone Boundary Value Problems of Fourth-order Differential Systems with Parameters. Bound. Value Probl., 40 (2021), 1–15. https://doi.org/10.1186/s13661-021-01554-1 |
[14] | Y. Wang, Y. Liu, Y. Cui, Multiple sign-changing solutions for nonlinear fractional Kirchhoff equations, Bound. Value Probl., 193 (2018), 1–21. https://doi.org/10.1186/s13661-018-1114-8 doi: 10.1186/s13661-018-1114-8 |
[15] | R. Figueroa, R. L. Pouso, J. R. Lopez, A version of Krasnoselskii's compression-expansion fixed point theorem in cones for discontinuous operators with applications, Topol. Methods Nonlinear Anal., 51 (2018), 493–510. https://doi.org/10.48550/arXiv.1703.04510 doi: 10.48550/arXiv.1703.04510 |
[16] | R. F. Sestelo, R. L. Pouso, J. R. Lopez, Degree Theory for Discontinuous Operators, Cham: Springer, 2021. https://doi.org/10.24193/FPT-RO.2021.1.10 |
[17] | R. Figueroa, G. A. Infante, Schauder-type theorem for discontinuous operators with applications to second-order BVPs, Fixed Point Theory Appl., 57 (2016). https://doi.org/10.1186/s13663-016-0547-y |
[18] | Y. Wang, Y. Li, Y. Liu, Multiple solutions for a class of BVPs of second-order discontinuous differential equations with impulse effects, Symmetry., 14 (2022), 1–21. https://doi.org/10.3390/sym14081549 doi: 10.3390/sym14081549 |
[19] | D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, 1993. https://doi.org/10.1016/j.automatica.2014.11.009 |
[20] | S. Carl, S. Heikkila, Nonlinear Differential Equations in Ordered Spaces, Boca Raton: Chapman Hall/CRC, 2000. https://doi.org/10.1201/9781482280951 |
[21] | S.Heikkil$\ddot{a}$, V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, New York: Marcel Dekker, 1994. https://doi.org/10.1201/9780203746493 |
[22] | A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Dordrecht: Kluwer Academic, 1988. https://doi.org/10.1016/0022-247X(91)90044-Z |