Research article

An improved reachable set estimation for time-delay linear systems with peak-bounded inputs and polytopic uncertainties via augmented zero equality approach

  • Received: 13 October 2022 Revised: 05 December 2022 Accepted: 06 December 2022 Published: 26 December 2022
  • MSC : 34D20, 34K20, 34K25

  • This paper proposes an improved estimation of the reachable set (RS) analysis in linear systems with polytopic uncertainties, peak-bounded inputs and time-varying delay. Inspired by past literature, Lyapunov-Krasovskii's functionals are dealt for treating the time-delay and bounding analysis effectively. So, the proposed method focuses on Lyapunov-Krasovskii's functionals via various time-delay conditions for linear systems. Based on the Lyapunov method, some integral inequalities, useful zero equalities, and the augmented zero equality approach are introduced. The results are expressed in terms of linear matrix inequalities, which are easy to get optimized solutions for obtaining guaranteed minimum RS of system dynamics. Finally, two numerical examples are shown to judge that the proposed estimation method can lead to less conservative results.

    Citation: Yonggwon Lee, Yeongjae Kim, Seunghoon Lee, Junmin Park, Ohmin Kwon. An improved reachable set estimation for time-delay linear systems with peak-bounded inputs and polytopic uncertainties via augmented zero equality approach[J]. AIMS Mathematics, 2023, 8(3): 5816-5837. doi: 10.3934/math.2023293

    Related Papers:

  • This paper proposes an improved estimation of the reachable set (RS) analysis in linear systems with polytopic uncertainties, peak-bounded inputs and time-varying delay. Inspired by past literature, Lyapunov-Krasovskii's functionals are dealt for treating the time-delay and bounding analysis effectively. So, the proposed method focuses on Lyapunov-Krasovskii's functionals via various time-delay conditions for linear systems. Based on the Lyapunov method, some integral inequalities, useful zero equalities, and the augmented zero equality approach are introduced. The results are expressed in terms of linear matrix inequalities, which are easy to get optimized solutions for obtaining guaranteed minimum RS of system dynamics. Finally, two numerical examples are shown to judge that the proposed estimation method can lead to less conservative results.



    加载中


    [1] C. Goerzen, Z. Kong, B. Mettler, A survey of motion planning algorithms from the perspective of autonomous UAV guidance, J. Intell. Robot. Syst., 57 (2010), 65. http://dx.doi.org/10.1007/s10846-009-9383-1 doi: 10.1007/s10846-009-9383-1
    [2] J. Kober, J. Bagnell, J. Peters, Reinforcement learning in robotics: a survey, The International Journal of Robotics Research, 32 (2013), 1238–1274.
    [3] W. He, Y. Dong, C. Sun, Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE Trans. Syst. Man. Cy.-Sys., 46 (2016), 334–344. http://dx.doi.org/10.1109/TSMC.2015.2429555 doi: 10.1109/TSMC.2015.2429555
    [4] E. Fridman, U. Shaked, On reachable sets for linear systems with delay and bounded peak inputs, Automatica, 39 (2003), 2005–2010. http://dx.doi.org/10.1016/S0005-1098(03)00204-8 doi: 10.1016/S0005-1098(03)00204-8
    [5] C. Durieu, E. Walter, B. Polyak, Multi-input multi-output ellipsoidal state bounding, J. Optim. Theory Appl., 111 (2001), 273–303. http://dx.doi.org/10.1023/A:1011978200643 doi: 10.1023/A:1011978200643
    [6] J. Kim, Improved ellipsoidal bound of reachable sets for time-delayed linear systems, Automatica, 44 (2008), 2940–2943. http://dx.doi.org/10.1016/j.automatica.2008.03.015 doi: 10.1016/j.automatica.2008.03.015
    [7] Z. Zuo, D. Ho, Y. Wang, Reachable set bounding for delayed systems with polytopic uncertainties: the maximal Lyapunov-Krasovskii functional approach, Automatica, 46 (2010), 949–952. http://dx.doi.org/10.1016/j.automatica.2010.02.022 doi: 10.1016/j.automatica.2010.02.022
    [8] J. Park, T. Lee, Y. Liu, J. Chen, Dynamic systems with time delays: stability and control, Singapore: Springer Nature, 2019. http://dx.doi.org/10.1007/978-981-13-9254-2
    [9] W. Kwon, P. Park, Stabilizing and optimizing control for time-delay systems, Cham: Springer, 2019. http://dx.doi.org/10.1007/978-3-319-92704-6
    [10] E. Fridman, U. Shaked, Delay-dependent stability and $H^\infty$ control: constant and time-varying delays, Int. J. Control, 76 (2003), 48–60. http://dx.doi.org/10.1080/0020717021000049151 doi: 10.1080/0020717021000049151
    [11] S. Boyd, L. Ghaoui, E. Feron, V. Balakrishnam, Linear matrix inequalities in system and control theory, Philadelphia: SIAM, 1994. http://dx.doi.org/10.1137/1.9781611970777
    [12] W. Wang, S. Zhong, F. Liu, J. Cheng, Reachable set estimation for linear systems with time-varying delay and polytopic uncertainties, J. Franklin I., 356 (2019), 7322–7346. http://dx.doi.org/10.1016/j.jfranklin.2019.03.031 doi: 10.1016/j.jfranklin.2019.03.031
    [13] D. Panagou, K. Margellos, S. Summers, J. Lygeros, K. Kyriakopoulos, A viability approach for the stabilization of an underactuated underwater vehicle in the presence of current disturbances, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2010, 8612–8617. http://dx.doi.org/10.1109/CDC.2009.5400954 doi: 10.1109/CDC.2009.5400954
    [14] N. That, P. Nam, Q. Ha, Reachable set bounding for linear discrete-time systems with delays and bounded disturbances, J. Optim. Theory Appl., 157 (2013), 96–107. http://dx.doi.org/10.1007/s10957-012-0179-2 doi: 10.1007/s10957-012-0179-2
    [15] Z. Zuo, Y. Fu, Y. Wang, Results on reachable set estimation for linear systems with both discrete and distributed delays, IET Control Theory Appl., 6 (2012), 2346–2350. http://dx.doi.org/10.1049/iet-cta.2012.0491 doi: 10.1049/iet-cta.2012.0491
    [16] L. Hien, N. An, H. Trinh, New results on state bounding for discrete-time systems with interval time-varying delay and bounded disturbance inputs, IET Control Theory Appl., 8 (2014), 1405–1414. http://dx.doi.org/10.1049/iet-cta.2013.0980 doi: 10.1049/iet-cta.2013.0980
    [17] Z. Wu, P. Shi, H. Su, C. Jian, Sampled-data synchronization of chaotic Lur'e systems with time delays, IEEE T. Neur. Net. Lear., 24 (2013), 410–421. http://dx.doi.org/10.1109/TNNLS.2012.2236356 doi: 10.1109/TNNLS.2012.2236356
    [18] T. Hu, L. Ma, Z. Lin, Stabilization of switched systems via composite quadratic functions, IEEE T. Automat. Contr., 53 (2008), 2571–2585. http://dx.doi.org/10.1109/TAC.2008.2006933 doi: 10.1109/TAC.2008.2006933
    [19] T. Ru, J. Xia, X. Huang, X. Chen, J. Wang, Reachable set estimation of delay fuzzy inertial neural networks with Markov jumping parameters, J. Franklin I., 357 (2020), 6882–6898. http://dx.doi.org/10.1016/j.jfranklin.2020.04.036 doi: 10.1016/j.jfranklin.2020.04.036
    [20] Z. Feng, W. Zheng, L. Wu, Reachable set estimation of T-S fuzzy systems with time-varying delay, IEEE T. Fuzzy Syst., 25 (2017), 878–891. http://dx.doi.org/10.1109/TFUZZ.2016.2586945 doi: 10.1109/TFUZZ.2016.2586945
    [21] H. Yuan, Reachable set of open quantum dynamics for a single spin in markovian environment, Automatica, 49 (2013), 955–959. http://dx.doi.org/10.1016/j.automatica.2013.01.005 doi: 10.1016/j.automatica.2013.01.005
    [22] Z. Zuo, Z. Wang, Y. Chen, Y. Wang, A non-ellipsoidal reachable set estimation for uncertain neural networks with time-varying delay, Commun. Nonlinear Sci., 19 (2014), 1097–1106. http://dx.doi.org/10.1016/j.cnsns.2013.08.015 doi: 10.1016/j.cnsns.2013.08.015
    [23] W. Lin, Y. He, M. Wu, Q. Liu, Reachable set estimation for Markovian jump neural networks with time-varying delay, Neural Networks, 108 (2018), 527–532. http://dx.doi.org/10.1016/j.neunet.2018.09.011 doi: 10.1016/j.neunet.2018.09.011
    [24] J. Zhao, Algebraic criteria for reachable set estimation of delayed memristive neural networks, IET Control Theory Appl., 13 (2019), 1736–1743. http://dx.doi.org/10.1049/iet-cta.2018.5959 doi: 10.1049/iet-cta.2018.5959
    [25] Y. Ding, H. Lium H. Xu, S. Zhong, On uniform ultimate boundness of linear systems with time-varying delays and peak-bounded disturbances, Appl. Math. Compu., 349 (2019), 381–392. http://dx.doi.org/10.1016/j.amc.2018.12.068 doi: 10.1016/j.amc.2018.12.068
    [26] K. Gu, An integral inequality in the stability problem of time-delay systems, Proceedings of the 39th IEEE Conference on Decision and Control, 2002, 2805–2810. http://dx.doi.org/10.1109/CDC.2000.914233 doi: 10.1109/CDC.2000.914233
    [27] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. http://dx.doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [28] S. Xu, J. Lam, A survey of linear matrix inequality techniques in stability analysis of delay systems, Int. J. Syst. Sci., 39 (2008), 1095–1113. http://dx.doi.org/10.1080/00207720802300370 doi: 10.1080/00207720802300370
    [29] M. Park, O. Kwon, J. Park, S. Lee, E. Cha, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica, 55 (2015), 204–208. http://dx.doi.org/10.1016/j.automatica.2015.03.010 doi: 10.1016/j.automatica.2015.03.010
    [30] X. Zhang, Q. Han, X. Yu, Survey on recent advances in networked control systems, IEEE T. Ind. Inform., 12 (2016), 1740–1752. http://dx.doi.org/10.1109/TII.2015.2506545 doi: 10.1109/TII.2015.2506545
    [31] P. Park, J. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. http://dx.doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [32] K. Liu, E. Fridman, Wirtinger's inequality and Lyapunov-based sampled-data stabilization, Automatica, 48 (2012), 102–108. http://dx.doi.org/10.1016/j.automatica.2011.09.029 doi: 10.1016/j.automatica.2011.09.029
    [33] P. Park, W. Lee, S. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin I., 352 (2015), 1378–1396. http://dx.doi.org/10.1016/j.jfranklin.2015.01.004 doi: 10.1016/j.jfranklin.2015.01.004
    [34] X. Zhang, Q. Han, A. Seuret, F. Gouaisbaut, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, 84 (2017), 221–226. http://dx.doi.org/10.1016/j.automatica.2017.04.048 doi: 10.1016/j.automatica.2017.04.048
    [35] O. Kwon, S. Lee, J. Park, On the reachable set bounding of uncertain dynamic systems with time-varying delays and disturbances, Inform. Sciences, 181 (2011), 3735–3748. http://dx.doi.org/10.1016/j.ins.2011.04.045 doi: 10.1016/j.ins.2011.04.045
    [36] M. Park, O. Kwon, J. Ryu, Generalize integral inequality: application to time-delay systems, Appl. Math. Lett., 77 (2018), 6–12. http://dx.doi.org/10.1016/j.aml.2017.09.010 doi: 10.1016/j.aml.2017.09.010
    [37] H. Zeng, Y. He, M. Wu, J. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE T. Automat. Contr., 60 (2015), 2768–2772. http://dx.doi.org/10.1109/TAC.2015.2404271 doi: 10.1109/TAC.2015.2404271
    [38] J. Ishihara, H. Kussaba, R. Borges, Existence of continuous or constant Finsler's variables for parameter-dependent systems, IEEE T. Automat. Contr., 62 (2017), 4187–4193. http://dx.doi.org/10.1109/TAC.2017.2682221 doi: 10.1109/TAC.2017.2682221
    [39] O. Kwon, S. Lee, M. Park, S. Lee, Augmented zero equality approach to stability for linear systems with time-varying delay, Appl. Math. Comput., 381 (2020), 125329. http://dx.doi.org/10.1016/j.amc.2020.125329 doi: 10.1016/j.amc.2020.125329
    [40] S. Lee, Y. Kim, Y. Lee, M. Park, O. Kwon, Relaxed stability conditions for linear systems with time-varying delays via some novel approaches, AIMS Mathematics, 6 (2021), 2454–2467. http://dx.doi.org/10.3934/math.2021149 doi: 10.3934/math.2021149
    [41] Y. Kim, Y. Lee, S. Kim, S. Lee, O. Kwon, An augmented approach to absolute stability for uncertain Lur'e system with time-varying delay, Math. Method. Appl. Sci., in press. http://dx.doi.org/10.1002/mma.8061
    [42] H. Chen, Improved results on reachable set bounding for linear delayed systems with polytopic uncertainties, Discrete Dyn. Nat. Soc., 2015 (2015), 895412. http://dx.doi.org/10.1155/2015/895412 doi: 10.1155/2015/895412
    [43] B. Zhang, J. Lam, S. Xu, Relaxed results on reachable set estimation of time-delay systems with bounded peak inputs, Int. J. Robust Nonlin., 26 (2016), 1994–2007. http://dx.doi.org/10.1002/rnc.3395 doi: 10.1002/rnc.3395
    [44] S. Kim, P. Park, C. Jeong, Robust $H^\infty$ stabilisation of networks control systems with packet analyser, IET Control Theory Appl., 4 (2010), 1828–1837. http://dx.doi.org/10.1049/iet-cta.2009.0346 doi: 10.1049/iet-cta.2009.0346
    [45] Y. Sheng, Y. Shen, Improved reachable set bounding for linear time-delay systems with disturbances, J. Franklin I., 353 (2016), 2708–2721. http://dx.doi.org/10.1016/j.jfranklin.2016.05.013 doi: 10.1016/j.jfranklin.2016.05.013
    [46] H. Chen, S. Zhong, New results on reachable set bounding for linear time delay systems with polytopic uncertainties via novel inequalities, J. Ineq. Appl., 2017 (2017), 277. http://dx.doi.org/10.1186/s13660-017-1552-3 doi: 10.1186/s13660-017-1552-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1556) PDF downloads(109) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog