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Abstract: This paper proposes an improved estimation of the reachable set (RS) analysis in linear
systems with polytopic uncertainties, peak-bounded inputs and time-varying delay. Inspired by
past literature, Lyapunov-Krasovskii’s functionals are dealt for treating the time-delay and bounding
analysis effectively. So, the proposed method focuses on Lyapunov-Krasovskii’s functionals via
various time-delay conditions for linear systems. Based on the Lyapunov method, some integral
inequalities, useful zero equalities, and the augmented zero equality approach are introduced. The
results are expressed in terms of linear matrix inequalities, which are easy to get optimized solutions
for obtaining guaranteed minimum RS of system dynamics. Finally, two numerical examples are
shown to judge that the proposed estimation method can lead to less conservative results.
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1. Introduction

Dynamical systems have been recognized as one of the most important studies in the engineering
field. Developments of the industrial machine, which has various dynamics from simple mechanical
equipment to complex algorithm robots, are good examples for showing an importance of dynamical
systems [1,2]. Nowadays, as the need for heavy industrial equipment increases, the system engineers
are interested in designing systems that have peak value inputs [3]. As discussed in [4,5], the reachable
set estimation (RSE) has been selected to solve the minimization problems of peak gain and disturbance
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problems. In other words, the result of studying RSE in dynamic systems shows the ellipsoid bounded
set of system trajectories with peak value inputs.

There are two well-known unavoidable phenomena when designing or operating dynamic hardware
systems. The first is the systematic uncertainty phenomenon and the other is a time delay [6,7]. The
occurrence of them can derive low performance and system fault [8]. So, the bounding analysis with
Lyapunov-Krasovskii’s Functionals (LKFs) has been selected to design feedback controllers and find
the stable region of the system with various conditions [9, 10]. By constructing appropriate LKFs,
past works [6, 11] could investigate the RSE with bounding analysis. Furthermore, time-delay systems
can be investigated in RSE problems with the uncertainties and disturbances phenomena by the LKFs
methods [4, 6, 12].

The RSE of time-delay systems with bounded peak inputs gives essential meanings to dynamic
differential systems [8, 13]. With the aforementioned concerns, studies of RSE have been developed in
various systems. For adopting the practical dynamic systems, discrete-time systems [14—16], sampled-
data systems [17], switched systems [18] have been considered. Furthermore, fuzzy systems [19,20]
that can provide effective solutions for nonlinear systems, Markov jump systems [21] for controlling
complex uncertainties, and neural networks [22-24], which applied the mentioned techniques, are
received attention in RSE research. As the above kinds of literature pointed out, some mathematical
techniques affect improved estimation. The expression of polytopic uncertainties was used frequently
in [6,7,25]. Jensen’s inequality [26] and Wirtinger-based integral inequality (WBII) [27], which are
represented as integral inequalities, are used for treating single or multi integral terms in the derivative
of LKFs. Many works showed that utilizing these inequalities can expand the feasible region of
stability criteria in time-delay systems [28—30]. The reciprocally convex approach (RCA) derives a
tighter bound with an appropriate matrix [31-33]. It is well-known that expanding augmented vectors
in integral terms of the Lyapunov function leads to less conservative results [34]. However, existing
RSE methods are limited to expanding augmented vectors in integral terms of Lyapunov functions by
containing e**~". In order to compensate for this limitation, an integral term of the Lyapunov function
candidate without ¢*“™ can be considered for RSE [35]. In [35], the absence of the ¢**™® method
focused on calculating time-varying delay. This paper concentrates on the expanding augmented
vectors for improved RSE with the mentioned method.

To get more optimized reachable bounding set, this paper introduces augmented integral terms of
LKFs. And an advanced generalized integral inequality [36] for a derivative term of double integral
Lyapunov function is utilized. And the convex parameters are treated by RCA [37]. Finally, inspired
by [38,39], the appropriate augmented vectors and free-weighting matrices are used for the Augmented
zero equality approach (AZEA) [40,41]. With the mentioned approaches, the reachable bounding set
for linear time-delay systems with polytopic uncertainties and bounded peak inputs is proposed. For
the proving proposed suggestions, next section introduces some inequalities and mathematical facts.
In Section 3, Theorems and Corollary are organized by the conditions of time-varying delay n(z) and
its time-derivative 7(¢). Section 4 introduces our investigation results and compares them with the past
studies. Finally, two numerical examples are included to prove the superiority of proposed approaches
with listed ellipsoidal bounds sizes and state trajectories.

Notation. R" is the n-dimensional Euclidean space, R™" denotes the set of m X n real matrix. M € S}
denotes the sets of positive definite n X n matrix. N € S" denotes the sets of symmetric n X n matrix.
# > 0 means that the matrix # is a real symmetric positive definite matrix. / and I, denote the identity
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matrix with appropriate dimension and n X n identity matrix, respectively. 0,, and 0,,x denote the
m X m and m X k sizes zero matrices, respectively. || - || refers to the Euclidean vector norm and the
induced matrix norm. diag{---} denotes the block diagonal matrix. The symmetric elements will be
denoted by *. For a given matrix X € R”™", such that rank(X) = r, we define X* € R™"™" as the right
orthogonal complement of X; i.e., XX* = 0. X[, g represents the value of function X is dependent
on the scalar @ and scalar function 8(¢). Sym{X} denotes X + X . col{- - -} is the column matrices.

2. Problem formation

Consider the following bounded peaked input linear systems with time-varying delay [7,42,43]

Xx(1) (A+ AA) x(t) + (D + AD()) x(t — n(t)) + (B+ AB(t)) w(t), Yt >0,
x(s) = 0, Vse[-n, 0], n>0, 2.1)

where x(7) € R” is the state vector. A, AA(t) € R™", D, AD(t) € R”" and B, AB(t) € R™". A, D, B
are known constant matrices. AA(r), AD(t), AB(t) are uncertain matrices which belong to a given
polytope by a linear convex-hull of matrices A, x, D, and B,

N
A = ) WA 2.2)
k=1

where A4(1) € [0,1], 21, &(®) = 1, A®®) = [AA®D), AD(1), AB(®)]. And Ay = [Augs Dugr Buil
(k =1, ..., N) are the vertices. A,x, Dy, B.x are known constant matrices with appropriate
dimensions. w(f) € R™ is the input in the form

wl (Ow(r) < w? (2.3)

m*

The time-varying delay 7(z) is considered in this paper. It is assumed that the time-varying delays have
the following conditions as:
Case 1.

0<nt)y<n, —oo<n(t)<u, Yt>0, 2.4)
Case 2.
0 <nu<n®)<n, —p<n@)<u Vi>O0. (2.5)

A reachable set that bounds the state of systems (2.1) is defined by R, 2 {x(t) € R" : x(t) and w(r)
satisfy Eqgs (2.1) and (2.3)}. As Boyd and Wang pointed out [11, 12], this RSE problem has the same
meaning as the problem of finding an ellipsoid bound to the R,. The ellipsoid can be defined by

R. 2 (xeR", XTPx < 1), (2.6)

where matrix # has constant value and positive definite. Thus, instead of solving the optimized RSE
problem, our work can focus on finding a solution for the smallest ellipsoid bound problem.

The main goal of this paper is to calculate the optimized RS bounds of the system (2.1) with w(z).
With the following adopted lemmas, the next section derives the construction of suitable LKFs for
system (2.1) and sufficient conditions.
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Lemma 1. [11] Let V(x(t)) be a LKF for system (2.1) with V(x(0)) = 0 and w (t)w(t) < w?. If

V() + aV(x()) — %WT(I)W(I) <0, a>0, 2.7)

m

then, V(x(t)) <1, Vit > 0.
Lemma 2. [36] ((I =0, 2), k = 0) For a matrix M > 0, the following inequality is satisfied:

!
Do) > D Qi+ DI (@MTY(@), 2.8)
i=0
where ®o(@) = (b - a) [ " (sHXMa(s)ds, and the To(@) = [ a(s)ds, Ti(@) = 32 [ [ a@)dvds -
fab a(s)ds and Ty(a) = (bfz)z fab fsb fvb a(z)dzdvds — ﬁ fab fsb a(v)dvds + fab a(s)ds.
Lemma 3. [31] Let Ny € R™, N, € R™"™ be positive definite matrices, if there exists any matrix

nxm Ny X
X € R™" such that[ XN,

] > 0, then the inequality

1
Iy, 0 N X
[ 0o L NZ]Z[XT Nz] 29)

1-a
holds for all @ € (0, 1).

Lemmad. [38] LetS CR% [ e R", ® = ®T € S", and B € R™". For each s € S, the following
statements are equivalent:

(i) "D(s) <0, VB(s){ =0, £ #0,

(i) AP(s) € R : O(s) + V(s5)B(s) + BT (s)P7(s) < 0,

(iii) (B*(s5))T®(s)B*(s) < 0.

3. Main results

The RSE of the system (2.1) is proposed in this section. To avoid complicated expression, some
notations of matrices are defined as

) = | UOr e R R L LR :
,,,,,,,,, f’ —n(1) x,({)c,ls, o __.
jt‘:]fl(ﬁ (s)d _
,,,,,, 2 0 ,zl ® x(,s),d,s, o
N | ”}” L fw e
I N/ AN 2 x(u)duds Q 0
0 = coly| xt—m |, |- TE (). W) ,a:[ 1 ]
‘ " Wx*)?(?))z B ,Ln,n(z»f,fr i(i[ ,ni), Xw)duds o On 222
G I 0 7 oo S X0duds
. n([) ft n(t) ft n@ x(u)duds
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Qk 02n 02n
1 —
Q = Q+ oN o P k=1,2), Qugr=| * 3& 0y |(k=1,2),
co| v —22-kg ¢
n * * SQk

Pl On On

Q = |: Qaug,l S :|7 Paug = * PZ _Pl On s ﬁ] = diag{Rl, Ona On’ On}a

* Qaug,Z

* * —P,
A = A+A,;, Di=D+D,;, Bj=B+8,;(j=1, ..., N),
e = [Ouxe—tins Ins Oux5—tmamy) k=1, 2, ..., 15), €16 = [Ouxisns Lnl”,
T = e, e, ..., €],
&1 = eiyters, & =1e - ey —es,
Cian = coll-ey +Ajel + Dje; + Bjeys, n(teg — ey, (7 =n())eg — efy, n(t)eg — efy,

i —n®)e; —ejsy G=1, ..., N),

Ay = [er —ea, e, e+ ey —2e6, €14 —2e10, €1 — €2 + 6eg — 12¢3, €14 — 6¢19 + 12¢1],
Ay = [ex—e3, e15, ex +e3—2e7, e15—2ey1, e; —e3 + 6e; — 12e9, €15 — 6e1 + 12¢13],
= T

Eo= Sym{[el, es, €1, 21 R|es, es, 1 — e3, nes — (€1 — €3)] },

—_ T
= Hj+ale, e3, &, &2]R]el, e3, &1, ],

—_

e1Gel — (1 — pwesGel +nesNe, —nesNek, E5 = n’les, e1]1Qles, 11",

= E3 - e A1, AQIALL Aol +7len, e, e3|Pagler, e, es]”,

a
= E 45, += T
=1 +‘—‘2+‘—‘3__2616616‘ (31)
Win

[ [ [n]
w [\S)
| Il

[1]
I

Now, we have the following theorem.

Theorem 1. For given scalars 1 > 0, w> > 0 and u > 0, the RSs of the system (2.1) with delay

m

conditions of (2.4) are bounded by an ellipsoid R, (2.6), if there exist matrices R € Sﬁ”, R, N, G,
QeSS (k=1,2), P (=1,2) €8" any matrix S € R and a scalar a > 0, such that the
following linear matrix inequalities(LMIs) hold:

(Ff,[m)T = (Fﬁ[m) <0,

(rt,) E(T5,) <0G =1, ..., W),

Jilnl Jln

Q=>0,Q>0 Q>0 R>R,, (3.2)

where = and T, are defined in (3.1), respectively.

Proof. For positive matrices R, Ry, N, G, Q (k = 1, 2), let us choose the following LKFs candidate
as

3
Vr() = > Vnlo), (3.3)
k=1

where

Vi) = BIORB(),
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n f i (S)Nx(s)ds + f x7()Gx(s)ds,

-n(?)

V(1)

t-n
t !
Vrs(t) n f e 5T (u)Q, x(u)duds
t-nJs

! !
+n f f e xT () Qux(u)duds,
t-npJs

where B1(1) = colix(t), x(t = ), [ x(s)ds, [ [ *Gduds}. The Vpi(r) and Vra() can be
calculated as

Vi(n) = 2B[(ORB.(1) = T (OZ1{(0) —a V(1) + aVri (1) = (T (DEL() — aVr (1), (3.4)

=0
. : L] 0,
Vra( = nB3(, 1~ n)[ N N ]ﬁBz(t, (= + 8L 10| -G
xBs(t, 1 = 1(1)) < {1 (DEKL (1), (3.5)

where B,(z, s) = col{x(t), x(s)}.
Then, the V73(f) can be expressed as

! t
Vis(t) = 7 f " IBI(HQB;(1ds — 1 f "B (5)QB;(s)ds
t t-n

-

! t
L d
+7 f f 070~ (81 ) QB3 () duds ~ aVr3(0)
—-nJvs

t
= PBIHQB3(1) -7 f OB (5)QBs(s)ds — V(1) —aVia(t) + V(1)
| —— -

{T(Es¢() =0
t

= (300 -7 f "B (5)QB5(5)ds + aVry (1) + aVrs (1)

t=n(t)

—1(t)
7 f "B (5)QBL (s)ds + aVroa(t) — V(1) — aVrs (o), (3.6)
-n
! t—1(1) t
where V() = 7 f i (SN x(s)ds+n f i (SN x(s)ds+ f xT(5)Gx(s)ds, and Bs(u) =
t=n(1) t-n t=n(1)
Vra1 () Vraa(0) Vras(6)

col{x(u), x(u)}.
Inspired by [44], the zero equations with matrices P; = P[T (i =1, 2) are considered as

!

o=re-nn| 0 et - [ ()%?(n[ g o w6
n -t n
1=1)(1)
0 = nBL(t = (0,1~ 1) [ o ] Bt — (1), t—1) 1 f B (5) [ o 7 ] By(s)ds.
n t-n 2 n

(3.8)
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An upper bound of the first integral term of (3.6) with aV7,;(¢), @V723(¢) and Eq (3.7) can be obtained
as

t
—ﬂf 60(5_1)%5(6')@%3(5‘)615‘ + a’VTgl(l) + Q’VT23(I)
t=n(t)

!
- f "B (5)QB3(s)ds — 7 f
t

-n(1) t=n(1)

+nB] (1, 1= (1) [ o ] Balt, 1= n(0) + AV (1) + aVrss(0)

t

On 7)1

On

_Pl

! ! 1 —aN Pl
< —pe ¥ f B ()QB;(s)ds — ne™ " f %T(s)(— o ])23 (s)ds
! o ’ ! o \e| P =56 )
T 7)1 On
+nB, (t, t — (1)) 0. _p By (1, t —n(1)). (3.9)
n 1

With the Lemma 2 (/ = 2) and an LMI condition, integral terms of (3.9) can be bounded as

I | —aN P
ol 3 % e

e~

1

!
—ne_“”f %g(s)ﬁ%3(s)ds — ne“mf
t

—n(t) 1=n(1)

+nBL (1, 1= 1(1)) [ ’gl _0;)1 ] By(t, 1 — (1))

ne~ "\ I | —aN % T T
< —% Al,l(t) Q_'_ﬁ[ P{ _%g Al,l(t)+3A1’2(l‘)Q1A1’2(1‘)+5A173(Z‘)Q1A1’3(Z‘)
Q
P10,
+nB] (1, t—n(t))[ 0 _p, ]%za,r—n(t», (3.10)
where A = [0 Bs()ds, A = L Bs)ds - [ ["Bsududs and

ot 6 [t t 12 [t t ot
As(0) = ft_nm Bs(s)ds — -5 f,_nm fs Bs(u)duds + % fz_,,m fs fu By (v)dvduds.

Likewise, the another integral term of (3.6) with aV7,,(¢) and Eq (3.8) are bounded as

1=1(1)
_nf ea(s—t)ggg(s)g%3(s)ds + aVra(t)
t

-n
(1) 1—1)(1) 1 _
< —ne f B (5)QB;(s)ds — ne™™" f B (s)(—[ “ﬁv P ])233(s)ds
[—]7 t_n 6’_(”7 Pz On
P, 0,
+1%B; (t — (1), t—n)[ 02 _p, ]%z(t—n(t), t=n). (3.11)

With the Lemma 2 (/ = 2) and an LMI condition, integral terms of (3.11) can be bounded as

—1(f)

1—1(1)
—ne” " f %g(s)Di&(s)ds —ne " f
t

-n -n

1 [ -aN P
ssg(s)(—[ 76% o,j ])%3(s)ds

e~an
AIMS Mathematics Volume 8, Issue 3, 5816-5837.
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+w£0—mmt—m[§2_%kaa—mmt—m

ne~*" T 1 —aN P T T
< T A (| Q+ ﬁ[ P 0, ] Ag i (1) + 3AL,(DQ A2 (1) + 5A] (DQa Ao 5(1)
Q@
P, 0,
+7B; (1 = (1), 1 - 77)[ 02 _p, ]%z(t—n(t), r=n), (3.12)

—1(1)

Bi(s)ds — 2= [T [T Byuyduds and
ft n(t) ft n(t) fl () B3 (v)dvduds.

1—1(1)

where Ayi() = [ 233(s)ds Mooy = [
Mo = [ Bs()ds = o [ [T Byyduds +

U ﬂ(t) (- rl(t))2

And then, by utilizing Lemma 3, the sum of (3.10) and (3.12) can be written and bounded as

o A (1) ! 020 02 o Aa (1) ! Q 0y 0y
0 A (D) 31 0y |[A4(2) - —0 Ao (1) 3@, 0y [Ax(2)
T A £ 5Q T M) £ 5Q
A{(l) Q(mg,l Ag(t) Qaug,Z
P1 On On
By x+ Po—-P1 0, [By@®)
* * P,
Paug
T
— Al(t) Qau 1 S Al(t) T
_ 3,
< —e [Az(t)] [ ST Qugo Aa(r) + 1B, (P 41 Ba(2). (3.13)
Q
From (3.6) to (3.13), an upper bound of V73(f) can be obtained as
T
. =~ —an | A1(D) A (2)
T (& _—an 1 T

—aVra(t) — aVrs(1)
= "(OEL(0) — aVra (1) — aVrs(0), (3.14)
where B,(1) = col{x(t), x(t —n(t)), x(t — n)} and other notations are defined in (3.1).

The system (2.1) with polytope expression (2.2) and some equations with vector {(¢f) can be
considered as

| =i +Ajel +Djel + Bely |c)=0(i=1,....N), (3.15)
Iy
| nwel - el |¢) =0, (3.16)
T
2,[n0]
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| 1=n@yel - el [¢@ =0, (3.17)
3,10y}
| nel —el, e =0, (3.18)
— e
L ey}
| 1=n@)el - el [¢@ =0, (3.19)
s ey}

where I'y ;{(1) (j =1, ..., N), Iipye¢(0) (i =2, ..., 5) represent the zero equations.
By combining the (3.15)—-(3.19) and the free-weighting matrices ¢, ; (j=1, ..., N), ¢;x (i=2 ..., 5,
k=1, 2) € RUSr+mxn the zero equations can be obtained as

IO (Pl jgon + T @) (O =0 =1, ..., N k=1, 2), (3.20)

with the relation (Dj’k = T[(]ﬁl’j, (152’1(, ey (]55,/{], Fj,[n(t)] = col {Fl,j, 1“2[,,([)], ey Fs[,,(,)]}.
Therefore, from (3.4)—(3.14) and (3.20), the V7(¢) + aVy(t) — V%WT(t)w(t) can be bounded as

Vi(r) + aVip(t) %wT(t)w(t)

m

- 4 a
< TOEI+Ey+ 55 - W—zemeﬂ, + 8 ym{@ iy Ly D (). (3.21)

m

If the following inequality is negative definite, the chosen LKFs (3.3) can satisfy the condition
Vr(t) < 1 by Lemma 1.

- - —_ a .
=+ 2+ 2y — W—2€]6€1T6 + Sym{(Dj,ij,[n(t)]} <0 SUbJeCt to Fj’[,](,)]{(l) =0, (3.22)

where the @, ; with 17(¢) = 0 and the @, with n(¢) = n are defined, respectively.
Since the T, is dependent on system polytope and time-delay n(t) € [0,n], if the following
inequalities:

T S %6166{6 + Sym{(Dj,ll"j,[o]} <0, (3.23)
S+ E B — %6166{6 + Sym{‘l)j,gfj,[n]} <0 (] =1,...,N) (3.24)

hold, then inequality (3.22) is satisfied.
Finally, by utilizing of AZEA according to Lemma 4, (3.23) and (3.24) can be described as

Tl - a
(ij[()]) ‘:‘1+:‘2+‘:‘3_W_261661T6 (F]f[o])SO, (3.25)
(h) |1+ B2+ B = ereele| (M) <0G =1, s ) (3.26)
Ji[n] =1 =2 =3 W2 €16€1¢ jm) = J=1 ..., . .

m
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For satisfying definition (2.6), a matrix R, € R*”*" which was inspired by Wang et al. [12], is
defined as

Rl Onx3n

* O3n><3n

R >

] =R,. (3.27)

From (3.3)—(3.27) and Lemma 1, it is easy to guarantee that x” (/)R x(¢) < V71(t) < V() < 1. Thus,
the following condition

[61" I, >0 (3.28)

k Rl

can be derived from x” ()R, x(tf) < 1. Then, if conditions (3.2) and (3.28) satisfy, the RS of the
system (2.1) is contained in the ellipsoid (2.6). By the Schur complement, the condition (3.28)
represents Ry > 1/61, = 61, where ¢ is an ellipsoidal parameter. This completes our proof. O

Remark 1. In (3.21), adding zero equalities with free-weighting matrices can derive improved
estimation results. However, the free-weighting matrices ®;; have an enormous amount of
computational burden. This fatal disadvantage makes the researcher calculate the trade-off. As past
work [41] showed, AZEA can eliminate the concerns of the computational burden by applying finsler’s
lemma. So, a more optimized reachable bounding set is proposed with AZEA.

In the following corollary, the time-delay condition when an upper bound of 7(?) is unknown can be
considered. To prove them with simplicity, the following LKFs and notations are rewritten.

Qcr = Q+ (—aNC + On 7 ])(k =1, 2),
e—an On
[ QC,k 02n 02n
QC augk = * 3QC,k 02n (k = 1, 2)»
[ * * 5Qck
[ Qc 1 S
Q — aug,
¢ | * QC aug,2 ] ’
Eco = nles, erINcles, e]” —nles, esINcles, es]”,
Ecs = E3—e A1, AMQc[Ar, Asl” +1ler, ea, e3]1Pugler, e, 3],
@
Ec = E1+Ec+Ec— W—2€16€1T6- (3.29)

m

Corollary 1. For a given scalar n > 0, the RSs of the system (2.1) with time-delay condition 0 <
n(t) < n is bounded by an ellipsoid R, (2.6), if there exist matrices R € 8", R, € 8", N¢, Q € S*,
P, (i=1,2) €8" any matrix S € R**" and a scalar a > 0, such that the following LMIs hold:

(ri[o])T Ec (Ff,m]) <0,
(Fj:[fl])T Ec (ri[n]) <0@(=1,...,N),
Qc120,Qc2 20, Qc >0, R2R, (3.30)

where Ec, Qcy and Q¢ are defined in (3.29), respectively. Other notations are defined in (3.1).

AIMS Mathematics Volume 8, Issue 3, 5816-5837.
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Proof. In order to discuss the delay conditions 0 < n(#) < n and unknown 7(t), let us choose the LKFs
candidate as

Ve = ki:ka(r), (3.31)
=
where
Ve = Vo),
Ver() = 1 £ nfBgT(S)Nc%s(S)ds,
Ves() = 7 f [ f te“(“")%g ()QB3(u)duds.
i-n Js

The V¢, (7) can be calculated as

V(1) U%g(I)NC%ﬂl) - 77%3T(f —mNcB3(t—1n)

{T(DEd (). (3.32)

And the expressions of V¢ (f) and Ves(f) from (3.31) are similar to (3.4) and (3.6), respectively.
The V¢, (#) derives more simple results than V7,(7). In (3.10), the absence of intergral term, which

has interval from ¢ — n(¢) to t makes difference. So, integral term of V3(¢) can be written as
! ! 0, P

—ne” " f B (5)QB,(s)ds — ne™" f pT Ol

t 1 n

1
B (5)— (—aNc +
e~
—n(t) t=n(1)

]) Byr(s)ds

.
< —% (AT, (OQeaAL1(1) + 3AT(OQc Ara(t) + SAT (D Qc1 A1 3(1))
P 0,
+7%B; (1, t—n(t))[ o _p, ]%Q(t, t—1()) (3.33)

_ 1
where Qe = Q + —; (—aNc +

On Pl
P o0, |)

And other integral term has same process. Thus, the upper bound of V3(f) can be obtained that

T
VC3(I) < gT(l‘)E:;{(t) _ e_a,,]|: A](t) ] [ QC aug,l S ] [ A](t) ]

As(2) S" Qe || A(®
Q¢
+B (NP Ba(1) — aVea (1) — aVes(t)
= "(DZ2cL(0) — aVer(t) — aVes(D). (3.34)

Likewise, the (3.15)—(3.19) can be combined, and the V(¢) + aV(f) — W%WT(t)w(t) can be bounded as
) o -
Ve(@®) + aVe(t) - W—sz(t)w(t) < ' (dc + Sym{q)j,krj,[n(t)]}) 4(@). (3.35)
Lastly, similar to Theorem 1, LMIs (3.30) can be obtained. So rest proof is omitted. O
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s—t

Remark 2. In past literature, constructing integral LKFs for RSE was limited by the presence of e
However, inspired by Kwon et al. [35], the authors tried to choose the integral Lyapunov function

Vea(t) and Ves(t) with augmented vectors [ i(s) xT(s) ]T. Although some definite conditions about
Qc and Q¢ are needed to combine inequality lemmas, the result can lead to get a tighter upper bound
of RSE condition. To the author’s knowledge, this trial is the first time in RSE.

In the following theorem, an interval time-delay condition and a lower bound condition about 7(¢)
are investigated, the following new LKFs and notations are introduced to prove them.

%ft © ft ft x(v)dvduds

,,,,,,,,j(f:@z ,,,,,,,,,
En = | x-mw) :
ft x(s)ds

,,,,,, 0 z),[ 0 ;C(f),df o
7 1—n(t
X n—iz(t) t_nn x(s)ds
R XE-n@®) | | 2;)7 [ lt;f xwduds |
g(l) = col 77)67(17—771)77 s ’*****7%(5 " ,](,)***c} *d*’ f(l), W(t) s
(1) ,(,n,n(,t»}f ,,I,,,Qf‘,f,
= || S Jeoduds
t—n(t)  rt—n(t
U(f)f f x(u)duds
A 1 _QNZ Pk R Qk 02n 02)1
Q& = Q+— a (k=1,2), Qugx=| * 3 0y |[(k=1,2),
e—an %k gk A
d * *  SQq
1% A Q S ~ .
Q3 = (L{— — N], Q = augl A 5 RZ = dlag{Rz, Ona Ona Om On, On, On}a
e ¥ * Qaug,Z
A T A T
e = [Onx(k—l)m I, 0n><((18—k)n+m)] k=1, 2, ..., 18), e19 = [Opxisn, Inl,
T = [él’ éZ’ ey é19]a
e AT AT AT AT AT AT AT AT AT AT AT
Uiy = coli—é, + Ajey + Dy + Bjéyy, n(t)eg — ey, (n—n(1))ey — &y, n(1)ég — €14 — €17,
(m—n@®)e;—eée}(j=1, ..., N),
& = [él6’ e17, €13, me; —(ej6 + €17 + élS)] )
Sy = 61— eis, ela — (1 =7(0) &, (1 —0(1)) &, — &3, mey — (&1 — &3)],
Al = [e;—@&y, €6+ e17, &1 + &y — 28, 16+ €17 — 2819, &) — &y + 665 — 1283,
16+ &17 — 6219 + 12815,
Ay = [ex—83, &1g, &y + 23— 287, 213 — 2811, &) — &3 + 687 — 1289, 215 — 6&1 + 12213],
_ N T
Bl = Sym{[eb e3, e, 81]R[€4, es, s, Ez[f;(z)]] },
= = N N N N Dra A A A 1T
= 1710 B = 1/10)] +ale, e, e, E11R[e, &3, e, &1,
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Eoin = TmbaN18h — nueisNi8]s + neaNael — nesNael
+1G18] — (1 = 7(1)2G18] + (1 — 1)(1))2G28) — :3G28],
Z: = pPles, 21Qles, o] + e, UeT,
By = E3-e A, AZ]Q[AI’ A1" + qle, &g, E31Puggler, &2, 2317 —[61 — 141 Q5 [21 — €14]"
ém(r)] = h‘l[n(t)] + ~2[77<z)] + 85 - %6196{9 (3.36)
n

Theorem 2. For given scalars n,, > 0, n > 0 and u > 0, the system (2.1), the RSs of the system (2.1)
with time-delay condition (2.5) are bounded by an ellipsoid R. (2.6), if there exist matrices R € S,
Ry, Ni Gi(i=1,2), UeS", Qe S P (i=1,2) €8S any matrix S € R and a scalar
a > 0, such that the following LMIs hold:

(fJL'[nm])T é‘[‘“] (fj [nnl) <0,
J[nm]) ‘é ( J[nm]) <0,

A,

fﬁ[ 1)T “[—#l( J[TI]) <0,

(rf[n]) Efu ( ][77]) <0@(=1,...,N),
Q>0,Q >0, Q320,QZO,7AQ27~{2, (3.37)

where Zyy and Tjpy ) are defined in (3.36), respectively.

Proof. For the condition (2.5), positive matrices 7A€, R, Ni, Gi (i =1, 2), U, Q, and the following
LKFs candidate are chosen as

3
Vr@) = > Vn), (3.38)

where

Vi@ = B[RS, @),
Via(t) = 1 f L ($)N1x(s)ds + 1 f i ($)NLx(s)ds
=1m t-n

t t—n(t)
+f X (s)glx(s)ds+f ! x($)Gax(s)ds,
1=1(t)

Vrs() = f f DB (W)QB3(u)duds

+1m f f W=D 3T (W)U x(u)duds,
=1 Js

where 8,(1) = collx(), x(t =), x(t=n), [ x(s)ds, [ x()ds, [ x(s)ds, [1 [ dwduds).
By constructing the LKFs as (3.38), the RSE about conditions (2. 5) can be proved And the

B, (1), Bs(1) are noticed in Theorem 1.
The V7, and V7, can be written as

V@) = EOE 1080 — oV ), (3.39)
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. . N1 + N> 0, 0, .
VTZ(I) = EBg(t’ r— Mo - 77) * _nle On §232(1‘9 - Nms ! - 77)
* % _77N2
Gi 0, 0,
+8It, t—n@t), t-m)| * A=-70)(G2-G) 0, |Balt, t—n(t), t—1)
% % —g2
= (020l (), (3.40)

where ﬁ%z(t, u, s) = col{x(®), x(u), x(s)}.
Calculating the time-derivative of V73 leads to

t

Vis(t) = Z'0E:L0)—n f "B (5)QB(5)ds + a (Vra (1) + V(1))
1=n(1)

t—1(1)
- f "B ()QB3(5)ds + @ (Vraat) + Vraa(0)) - f & () Uk(s)ds

-n =1

+aVry(t) — aViy(t) — aVrs(), (3.41)

where

! t t—1(1)
Vi () = 1y, f (N x(s)ds + 1 f i ()N x(s)ds +1 f ' i ($)NLx(s)d's
=N t

—n(t) -1

Vr20(h) Vra1 () Vraa ()

¢ —1(f)
+f xT(s)glx(s)ds+f ! X1 ($)Gax(s)ds .

-n(?) t-n

VTZ:;(t) ‘A/T24(t)

Same as (3.7) and (3.8), the zero equations with P; (i = 1, 2) are considered. An upper bound of
the first integral term of (3.41) with Va1 (1), aVras(t) and zero Eq (3.7) can be obtained as

. f BT (HQBY (5)ds + @ (Vrar (1) + Vraa (1)

-n(t)
! ! 1 —CYNZ P]
< —me ™ f BI($)QB;(s5)ds — ne™" f %T(s)(—[ o Dﬂs (s)ds
7 ey ’ 7 - o \e | PL =G ’
T P1 On
By (1, 1 =nD) | _p, B, (1, t —n(?)). (3.42)

With the Lemma 2 ([ = 2) and an LMI condition, the integral terms of (3.42), which have interval
from ¢ — n(¢) to t, can be bounded as

_ ! _ ! 1 —CYNQ 7)]
e [ BT(9)Q@Bs(s)ds — e f B! (5)[— )8 (s)d
ne ft:q(t) 3 (5)QB;3(s)ds ne ) 3 (s) (e_m7 [ P{ _;gl ]) 3 (s)ds
—an N N R
< —% (AT (OQALI(0) + 3AT, QA1) + SAT,(OQ AL (1)) (3.43)

AIMS Mathematics Volume 8, Issue 3, 5816-5837.



5830

where Q, = Q + %[ —aNz P ]

PT 26,
n
Likewise, the another integral term of (3.42) with aVran(t), V() and Eq (3.8) are bounded as

t—1(1)
. f BT (5)@Bs(s)ds + @ (Vra(®) + Vrsa(0)
t

-n
t—n(1) r—1(f) 1 _a/N P
< —pe ¥ %T B ds — ne~®" EBT L 2 b B J
< -ne ft_n 3 (9)QB3(s)ds — ne fl_n 3(s)(e_m7[ P —ig, 3(s)ds
P 0,
+7B; (1 = (), t—n)[ 02 o ]%Z(I—n(t), t—n). (3.44)

With the Lemma 2 (I = 2) and an LMI condition, integral terms of (3.44), which have interval from
t —ntot—n(t), can be bounded as

> —1(f) » 1—1)(1) 1 —aN, P,
—ne " ft: 233T(S)Q233(s)ds —ne " ‘f_ %g(s) (E [ P§ _eg, ]) Bi(s)ds
n =1 ]
e~ A A A
_h (Ag (O A1 (1) + 3A] (N A2 (1) + 5AT 3(t)QzA2,3(t)) , (3.45)
A —-aN P
where @, = Q + %[ 1 _%Zgz :
And then, by utilizing Lemma 3, sum of (3.43) and (3.45) can be rewritten and bounded as
—an él 02n 0211 —an éZ 02n 02n
ne T A ne T A
00 A = 3Q 0y [A1(D)— ——(t)A2 O = 3Q 0y [AxD)
n * * 5@ 0 * x 5@,
éaug,] éaug,Z
T N
- Al(t) Quu 1 S Al(t)
< —e M &L, . 3.46
¢ [ Aot ] [ ST Qugo ] [ Aot ] (3:40)

Q

Finally, after Lemma 2 (/ = 0) about —n,,, ft :7 T ()Ux(s)ds in (3.41) with aVir(7), the \7T3(t) has an
upper bound as

Vi < ZTOE:L(1) — aVpa(t) — aVrs (), (3.47)

where = A0 éz[f](m, =, and Z (?) are defined in (3.36).
Similarly with Theorem 1, the zero equations can be obtained as

0 (Dl jpgon + T @) €0 =0 (i=1,.... N k=1,2), (3.48)

where (i)j,k = ‘Y[él,j, @2,/0 e &S,k], fj,[n(t)] = col {fl,ja 1Aﬂz[n(z)], cees IAﬂsm(z)]}-
Therefore, from (3.39)—(3.47) with adding the (3.48), the following RSE condition can be written as

Vr(t) + aVr() - M%wT(t)w(t) < 20 (Bpgn + Syml®ul i) £ < 0. (3.49)
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The inequality (3.49) can be satisfied with the following equality condition holds:

2 2, 2, a ., .7 PN
Spn] T 22me) T E3 — W—2€19€19 + Sym{CDj,ij,[n(,)]} <0. (3.50)
m

And then, the LMIs conditions (3.37) are obtained by the same processes as Theorem 1. This
completes our proof. O

Remark 3. In RSE studies, past literature constructed the non-integral Lyapunov functional candidate
Vi(¢t) by choosing only x(#). And recently, Wang et al. [12] introduced an augmented method
of non-integral Lyapunov functional candidate for RSE. With this expanded Lyapunov functional,
a less conservative result can be obtained. However, it still has limitations for deriving various
time-delay conditions without time-varying delay information in V;(¢). In this paper, by choosing
the appropriate state vectors in the proposed Vr(7), the time-varying delay condition (2.5) can be
considered effectively.

Remark 4. For investigating the practical conditions, various time-varying delay conditions should be
considered. Case 1(2.4) is the time condition for Theorem 1 where 0 < n(f) < n, —c0 < 1(t) < p.
Case 2(2.5) is the time condition for Theorem 2 where 0 < n,, < n(t) < n, —u < 7(t) < u. The
time condition, when an upper bound of 7(¢) is unknown is investigated in Corollary 1. Moreover, by
constructing the Vri(f) with augmented vectors about 7 —17,,, and the Vo (f) with integral intervals from
t — 1, to t and from ¢ — i to ¢ — n(), the delay condition Case 2(2.5) can be investigated in Theorem 2.

4. Numerical examples

In this section, we provide two examples to show the improved RSE with optimized ellipsoidal
bound parameter 6 = 6.
Example 1. Consider the system (2.1) with the following parameters which have been studied for
polytopic uncertainty:

-2 0 -1 0 -0.5
A+ﬂu,1—[ 0 _0.7:|,D+Z)u,1—[_1 0.9 ,B+Bu,1—[ 1 ],
A +ﬂu,2 - |: 0 _1.1 ’ D + Du,Z - |: _1 _1.1 ]7 BM,Z - BM,]’ w (t)w(t) S Wm - 17
Aj:A+ﬂu’j, Dj:D+Du,ja Bj:B+Bu’j(j:1, 2), n,n:0,77=0.7, T]mST](I)Sr]

4.1)

By definition (2.2), system uncertainties are expressed in polytope expression. So polytopic
uncertainties about the system are introduced with A;, D;, B; (j = 1, 2). For comparison with
past literature [7, 35,42,45,46], the delay conditions in (4.1) are utilized. In Table 1, our computed
results are listed with various conditions of time-varying delay. It should be noted that our result
with unknown 7(¢) represents a smaller ¢ than the result of the delay condition (2.4). This difference

is derived from the augmented [ i(s) xT(s) ]T in Veo(t), Ves(t). It is well-known that for getting
less conservative results, the LKFs should be constructed with bounded conditions about 7(¢) and 7(¢).
Thus, a smaller ellipsoidal bound can be obtained with a simple augmented approach in Corollary 1.
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Moreover, the number of decision variables for Table 1(Example 1) is listed in Table 2. And Figure 1
shows that comparison of results when delay conditions (2.5) where 1,, = 0, n = 0.7 are selected.

Table 1. The sizes if 6 bound with = 0.7 and different u (Example 1).

J7i 0.1 0.3 0.6 0.9 unknown  1(t)

Kwon [35](Thml) - - - - 2.1139 —00 < 1(f) <
Sheng [45](Thm1) - - - - 1.61 —00 < 7)(t) < 00
Our result(Corl) - - - - 1.2277 —00 < 7)(t) < 00
Kwon [35](Thm?2) 1.9475 2.0182 2.1123 2.1139 - —oo <1(t) <
Chen [42](Thm10) 1.84 1.95 2.06 3.09 - —oo <1(t) <
Our result(Thm1) 1.4683 1.4844 1.4844 1.4844 - —oo <1(t) <
Zuo [7](Thm7) 1.94 2.08 2.60 3.51 - —u<nit)<u
Kwon [35](Thm4) 1.7728 1.8199 1.8674 1.9433 - —u<nit)<u
Chen [46](Thm?2) 1.51 1.63 1.94 2.05 - —u<nit)<u
Our result(Thm2, n,, = 0) 1.1766 1.2091 1.2462 1.2607 - —u<nit)<u

Table 2. The number of decision variables for Example 1.

Methods NoDVs

Zuo [7](Thm7) 2n® +2n+5
Kwon [35](Thm1) 6n’> +2n

Kwon [35](Thm?2) 6.5n%> +2.5n
Kwon [35](Thm4) 11.5n% +4.5n
Sheng [45](Thm1) 125 + 3.5 +mn+ 1
Chen [42](Thm10) T’ +5n+1
Chen [46](Thm2) 6n’ +4n + 1

Our result(Thm1) 47.5n* +5.5n+ 1
Our result(Corl) 49.5n> +5.5n + 1
Our result(Thm2) 66.5n% + 8.5n + 1

*m: dimension of disturbance

The size of ellipsoidal bound §~! about each p with —p < i(t) < p, = 0.7
T T T T T

45 ‘
= olll = Zuo[7]
sl | Kwon[35]
o Chen[45]
=@ =Our result(Thm2)
2 s N
e
- ST e
o -
P e
______
--------
.
A " e o o e
o e e e -
1.5
r ‘

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1. The graph undervalues of Table 1 (—u < 7(¢) < p) (Example 1, Theorem 2).
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Example 2. Consider the system (2.1) with the following parameters:

-1
Aj:[ 1

0.5
—4

o

0.1
-04 2

0.2

2

0
0.5

o

M =0.1,7=05, u=02, w(@OWrt)<w, = 1.

] (=1,

4.2)

Theorem 2 focused on investigating the interval time delay 7(¢f) and lower bound of 7(f)
conditions. The obtained ellipsoid matrices about not only Optimized but also constant parameters
a = 0.3, 0.6, 0.9, which mean matrix # in (2.6), are listed in Table 3. Here, the fminsearch.m, which
Kim in [6] introduced, can be used for getting a local optimum a. The system state trajectory and
guaranteed RS bound in [25] are compared with our obtained results in Figure 2. Finally, the number
of decision variables for Table 3 (Example 2) is listed in Table 4.

Table 3. Ellipse parameters and the comparisons of ellipse size for different @ (Example 2).

a 0.3 0.6 0.9 Optimized
[ 3739 -0307 || 3984 -0.038 || 1.013 -0.008 |
Zhang [43](Thm1) -
| -0307 3.053 || -0.038 39511 || —0.008 1.024 |
. [ 3948 0386 || 4333 —0.266 1.048  —0.056 4932 -0572 | -
Ding [25](Cor2) ,0 =0.253
| —0386  3.083 || -0266 4.101 || -0.056 1.123 || -0572 4.293
3493  -0.016 4952 —0.001 1,722 -0.202 5184 0345 | -
Our result(Thm?2) ,0 =0.217
| 0016 3463 || -0.001 4951 || —0202 1944 || -0.345 4.804

Figure 2. The system trajectories under values 77,, = 0.1, n = 0.5, u

The size of ellipsoidal bound about p = 0.2 with, 0.1 < 7(t) < 0.5
T T T T T

02

0.2

-0.4 -

— Ding[25]
wmm = Our result(Thm2)
= = System trajectory

-0.6
-0.6

n — pand wl(¢) = [cos(?), sin(t)] (Example 2, Theorem 2).
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Table 4. The number of decision variables for Example 2.

Methods NoDVs

Zhang [43](Thml) 4.5n% +3.5n+2
Ding [25](Corl) 7.5n* +3.5n+ 1
Our result(Thm2)  66.57% + 8.51n + 1

5. Conclusions

In this paper, the augmented integral LKFs methods for RSE problems about time-delay linear
systems with uncertainty and peak input value were proposed. For the various delay conditions,
Theorem 1 and Theorem 2 constructed appropriate LKFs, and they utilized the WBII and RCA methods
with an augmented zero equality approach. And Corollary 1 introduced the augmented LKFs method
in integral terms with considering ¢“~". Finally, the superiorities of our methods are represented in
tables and figures. Based on the proposed idea, the authors will try to investigate the various systems
of reachable set estimations, such as neural networks, discrete-time models, sampled-data control
systems, and so on.
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