Research article Special Issues

A class of HOC finite difference method for elliptic interface problems with imperfect contact

  • Received: 10 October 2022 Revised: 15 November 2022 Accepted: 28 November 2022 Published: 26 December 2022
  • MSC : 35J40, 35R05

  • The elliptic interface problems with imperfect contact have found applications in numerical solutions of the Stefan problem of the solidification process and crystal growth, composite materials, multi-phase flows, etc. In this paper a 1D elliptic interface problem with imperfect contact is considered. A class of high-order compact finite difference schemes are constructed on body-fitted and non-body-fitted mesh, respectively. For each case, the second-, third- and fourth-order approximations of implicit jump conditions are provided by using the jump conditions and its high-order derivatives. Numerical examples are provided to verify the performance of the schemes. The numerical results demonstrate that the schemes have theoretical accuracy for elliptic interface problems with imperfect contact.

    Citation: Fujun Cao, Dongfang Yuan. A class of HOC finite difference method for elliptic interface problems with imperfect contact[J]. AIMS Mathematics, 2023, 8(3): 5789-5815. doi: 10.3934/math.2023292

    Related Papers:

  • The elliptic interface problems with imperfect contact have found applications in numerical solutions of the Stefan problem of the solidification process and crystal growth, composite materials, multi-phase flows, etc. In this paper a 1D elliptic interface problem with imperfect contact is considered. A class of high-order compact finite difference schemes are constructed on body-fitted and non-body-fitted mesh, respectively. For each case, the second-, third- and fourth-order approximations of implicit jump conditions are provided by using the jump conditions and its high-order derivatives. Numerical examples are provided to verify the performance of the schemes. The numerical results demonstrate that the schemes have theoretical accuracy for elliptic interface problems with imperfect contact.



    加载中


    [1] A. A. Samarskii, V. B. Andreev, Differential method for elliptic equations [in Russian], Nauka, Moscow, 1976.
    [2] A. A. Samarskii, The theroy of difference scheme, Marcel Dekker, Inc., 2001.
    [3] A. A. Samarskii, P. N. Vabishchevich, Computational heat transfer, Vol. 1, John Wiley & Sons Ltd, 1995.
    [4] Z. Q. Huang, E. J. Ding, Transport theory, 2 Eds., Beijing: Science Press, 2008.
    [5] G. Lopez-Ruiz, J. Bravo-Castillero, R. Brenner, M. E. Cruzd, R. Guinovart-Díazb, L. D. Pérez-Fernándeze, et al., Variational bounds in composites with nonuniform interfacial thermal resistance, Appl. Math. Model., 39 (2015), 7266–7276. https://doi.org/10.1016/j.apm.2015.02.048 doi: 10.1016/j.apm.2015.02.048
    [6] R. P. A. Rocha, M. A. E. Cruz, Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance, Numer. Heat Transfer, Part A, 39 (2001), 179–203. https://doi.org/10.1080/10407780118981 doi: 10.1080/10407780118981
    [7] R. Costa, J. M. Nobrega, S. Clain, G. J. Machado, Very high-order accurate polygonal mesh finite volume scheme for conjugate heat transfer problems with curved interfaces and imperfect contacts, Comput. Methods Appl. Mech. Eng., 357 (2019), 112560. https://doi.org/10.1016/j.cma.2019.07.029 doi: 10.1016/j.cma.2019.07.029
    [8] R. J. LeVeque, Z. L. Lin, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), 1019–1044. https://doi.org/10.1137/0731054 doi: 10.1137/0731054
    [9] R. J. LeVeque, Z. L. Lin, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18 (1997), 709–735. https://doi.org/10.1137/S1064827595282532 doi: 10.1137/S1064827595282532
    [10] Z. Li, M. C. Lai, The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171 (2001), 822–842. https://doi.org/10.1006/jcph.2001.6813 doi: 10.1006/jcph.2001.6813
    [11] K. Ito, Z. Li, Solving a nonlinear problem in magneto-rheological fluids using the immersed interface method, J. Sci. Comput., 19 (2003), 253–266. https://doi.org/10.1023/A:1025356025745 doi: 10.1023/A:1025356025745
    [12] Z. Li, K. Ito, Maximum principle preserving schemes for interface problems, J. Sci. Comput., 23 (2001), 339–361. https://doi.org/10.1137/S1064827500370160 doi: 10.1137/S1064827500370160
    [13] Z. Li, K. Ito, The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains, SIAM, Philadelphia, 2006.
    [14] A. Wiegmann, K. P. Bube, The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 35 (1998), 177–200. https://doi.org/10.1137/S003614299529378X doi: 10.1137/S003614299529378X
    [15] M. Colnago, W. Casaca, L. Franco de Souza, A high-order immersed interface method free of derivative jump conditions for Poisson equations on irregular domains, J. Comput. Phys., 423 (2020), 109791, https://doi.org/10.1016/j.jcp.2020.109791 doi: 10.1016/j.jcp.2020.109791
    [16] F. Gibou, R. Fedkiw, A fourth order accurate discretization for the laplace and heat equations on arbitrary domains, with applications to the stefan problem, J. Computat. Phys., 202 (2005), 577–601. https://doi.org/10.1016/j.jcp.2004.07.018 doi: 10.1016/j.jcp.2004.07.018
    [17] H. Wu, High order scheme for Schrodinger equation with discontinuous potential â… : immersed interface method, Numer. Math.: Theory, Methods Appl., 4 (2011), 576–597. https://doi.org/10.1017/S100489790000074X doi: 10.1017/S100489790000074X
    [18] S. Abide, B. Zeghmati, Multigrid defect correction and fourth-order compact scheme for Poisson's equation, Comput. Math. Appl., 73 (2017), 1433–1444. https://doi.org/10.1016/j.camwa.2017.01.016 doi: 10.1016/j.camwa.2017.01.016
    [19] S. Abide, Finite difference preconditioning for compact scheme discretizations of the Poisson equation with variable coefficients, J. Comput. Appl. Math., 379 (2020), 112872. https://doi.org/10.1016/j.cam.2020.112872 doi: 10.1016/j.cam.2020.112872
    [20] R. P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152 (1999), 457–492. https://doi.org/10.1006/jcph.1999.6236 doi: 10.1006/jcph.1999.6236
    [21] X. D. Liu, R. P. Fedkiw, M. Kang, A boundary condition capturing method for Poisson equation on irregular domains, J. Comput. Phys., 160 (2000), 151–178. https://doi.org/10.1006/jcph.2000.6444 doi: 10.1006/jcph.2000.6444
    [22] M. Oevermann, C. Scharfenberg, R. Klein, A sharp interface finite volume method for elliptic equations on Cartesian grids, J. Comput. Phys., 228 (2009), 5184–5206. https://doi.org/10.1016/j.jcp.2009.04.018 doi: 10.1016/j.jcp.2009.04.018
    [23] M. Oevermann, R. Klein, A cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces, J. Comput. Phys., 219 (2006), 749–769. https://doi.org/10.1016/j.jcp.2006.04.010 doi: 10.1016/j.jcp.2006.04.010
    [24] F. Cao, Z. Sheng, G. Yuan, Monotone finite volume schemes for diffusion equation with imperfect interface on distorted meshes, J. Sci. Comput., 76 (2018), 1055–1077. https://doi.org/10.1007/s10915-018-0651-8 doi: 10.1007/s10915-018-0651-8
    [25] Y. C. Zhou, S. Zhao, M. Feig, G. W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213 (2006), 1–30. https://doi.org/10.1016/j.jcp.2005.07.022 doi: 10.1016/j.jcp.2005.07.022
    [26] K. Xia, M. Zhan, G. W. Wei, MIB method for elliptic equations with multi-material interfaces, J. Comput. Phys., 230 (2011), 4588–4615. https://doi.org/10.1016/j.jcp.2011.02.037 doi: 10.1016/j.jcp.2011.02.037
    [27] H. Feng, G. Long, S. Zhao, An augmented matched interface and boundary (MIB) method for solving elliptic interface problem, J. Comput. Appl. Math., 361 (2019), 426–443. https://doi.org/10.1016/j.cam.2019.05.004 doi: 10.1016/j.cam.2019.05.004
    [28] H. Wang, J. Chen, P. Sun, F. Qin, A conforming enriched finite element method for elliptic interface problems, Appl. Numer. Math.: Trans. IMACS, 127 (2018), 1–17. https://doi.org/10.1016/j.apnum.2017.12.011 doi: 10.1016/j.apnum.2017.12.011
    [29] G. Jo, D. Y. Kwak, Enriched $P_1$-conforming methods for elliptic interface problems with implicit jump conditions, Adv. Math. Phys., 2018 (2018), 1–9. https://doi.org/10.1155/2018/9891281 doi: 10.1155/2018/9891281
    [30] L. Wang, S. Hou, L. Shi, A simple FEM for solving two-dimensional diffusion equation with nonlinear interface jump conditions, Comput. Model. Eng. Sci., 119 (2019), 73–90. https://doi.org/10.32604/cmes.2019.04581 doi: 10.32604/cmes.2019.04581
    [31] Y. Xiao, J. Xu, F. Wang, High-order extended finite element methods for solving interface problems, Comput. Methods Appl. Mech. Eng., 364 (2020), 112964. https://doi.org/10.1016/j.cma.2020.112964 doi: 10.1016/j.cma.2020.112964
    [32] A. Loubenets, T. Ali, M. Hanke, Highly accurate finite element method for one-dimensional elliptic interface problems, Appl. Numer. Math., 59 (2009), 119–134. https://doi.org/10.1016/j.apnum.2007.12.003 doi: 10.1016/j.apnum.2007.12.003
    [33] J. Guzman, M. A. Sanchez, M. Sarkis, Higher-order finite element methods for elliptic problems with interfaces, ESAIM: Math. Model. Numer. Anal., 50 (2016), 1561–1583. https://doi.org/10.1051/m2an/2015093 doi: 10.1051/m2an/2015093
    [34] T. Lin, D. Sheen, X. Zhang, A noncomforming immersed finite element method for elliptic interface problems, J. Sci. Comput., 79 (2019), 442–463. https://doi.org/10.1007/s10915-018-0865-9 doi: 10.1007/s10915-018-0865-9
    [35] Q. Zhuang, R. Guo, High degree discontinuous Petrov-Galerkin immersed finite element methods using fictitious elements for elliptic interface problems, J. Comput. Appl. Math., 362 (2019), 560–573. https://doi.org/10.1016/j.cam.2018.09.028 doi: 10.1016/j.cam.2018.09.028
    [36] H. Ji, Z. Weng, Q. Zhang, An augmented immersed finite element method for variable coefficient elliptic interface problems in two and three dimensions, J. Comput. Phys., 418 (2020), 109631. https://doi.org/10.1016/j.jcp.2020.109631 doi: 10.1016/j.jcp.2020.109631
    [37] R. Guo, T. Lin, An immersed finite element method for elliptic interface problems in three dimensions, J. Comput. Phys., 414 (2020), 109478. https://doi.org/10.1016/j.jcp.2020.109478 doi: 10.1016/j.jcp.2020.109478
    [38] R. Guo, T. Lin, A higher degree immersed finite element method based on a cauchy extension for elliptic interface problems, SIAM J. Numer. Anal., 57 (2019), 1545–1573. https://doi.org/10.1137/18M121318X doi: 10.1137/18M121318X
    [39] M. N. Linnick, H. F. Fasel, A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J. Comput. Phys., 204 (2004), 157–192. https://doi.org/10.1016/j.jcp.2004.09.017 doi: 10.1016/j.jcp.2004.09.017
    [40] X. Zhong, A new high-order immersed interface method for solving elliptic equations with imbedded interface of discontinuity, J. Comput. Phys., 225 (2007), 1066–1099. https://doi.org/10.1016/j.jcp.2007.01.017 doi: 10.1016/j.jcp.2007.01.017
    [41] I. T. Angelova, L. G. Vulkov, High-order finite difference schemes for elliptic problems with intersecting interfaces, Appl. Math. Comput., 187 (2007), 824–843. https://doi.org/10.1016/j.amc.2006.08.165 doi: 10.1016/j.amc.2006.08.165
    [42] H. Feng, S. Zhao, A fourth order finite difference method for solving elliptic interface problems with the FFT acceleration, J. Comput. Phys., 419 (2020), 109677, https://doi.org/10.1016/j.jcp.2020.109677 doi: 10.1016/j.jcp.2020.109677
    [43] J. Li, J. M. Melenk, B. Wohlmuthc, J. Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math., 60 (2010), 19–37. https://doi.org/10.1016/j.apnum.2009.08.005 doi: 10.1016/j.apnum.2009.08.005
    [44] L. N. T. Huynh, N. C. Nguyen, J. Peraire, B. C. Khoo, A high-order hybridizable discontinuous Galerkin method for elliptic interface problems, Int. J. Numer. Methods Eng., 93 (2013), 183–200. https://doi.org/10.1002/nme.4382 doi: 10.1002/nme.4382
    [45] H. Huang, J. Li, J. Yan, High order symmetric direct discontinuous Galerkin method for elliptic interface problems with fitted mesh, J. Comput. Phys., 409 (2020), 109301. https://doi.org/10.1016/j.jcp.2020.109301 doi: 10.1016/j.jcp.2020.109301
    [46] Y. Xiao, J. Xu, F. Wang, High-order extended finite element methods for solving interface problems, Comput. Methods Appl. Mech. Eng., 364 (2020), 112964. https://doi.org/10.1016/j.cma.2020.112964 doi: 10.1016/j.cma.2020.112964
    [47] M. M. Gupta, R. P. Manohar, J. W. Stephenson, High-order difference schemes for two-dimensional elliptic equations, Numer. Methods Partial Differ. Equ., 1 (1985), 71–80. https://doi.org/10.1002/num.1690010108 doi: 10.1002/num.1690010108
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(950) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog