We investigate an Ishikawa iteration process in the set up of generalized $ \alpha $- nonexpansive mappings. Approximation of these two mappings to a common fixed point by $ \Delta- $convergence and strong convergence of the scheme in hyperbolic space are also illustrated. The presented results amplify and polish many recent ideas put forward in uniformly convex Banach spaces, including CAT(0) spaces.
Citation: Buthinah A. Bin Dehaish, Rawan K. Alharbi. On fixed point results for some generalized nonexpansive mappings[J]. AIMS Mathematics, 2023, 8(3): 5763-5778. doi: 10.3934/math.2023290
We investigate an Ishikawa iteration process in the set up of generalized $ \alpha $- nonexpansive mappings. Approximation of these two mappings to a common fixed point by $ \Delta- $convergence and strong convergence of the scheme in hyperbolic space are also illustrated. The presented results amplify and polish many recent ideas put forward in uniformly convex Banach spaces, including CAT(0) spaces.
[1] | K. Aoyama, F. Kohsaka, Fixed point theorem for $\alpha$-nonexpansive mappings in Banach spaces, Nonlinear Anal., 74 (2011), 4387–4391. http://doi.org/10.1016/j.na.2011.03.057 doi: 10.1016/j.na.2011.03.057 |
[2] | T. Bantaojai, C. Suanoom, W. Khuangsatung, The convergence theorem for a square $\alpha $-nonexpansive mapping in a hyperbolic space, Thai J. Math., 18 (2020), 1597–1609. |
[3] | G. Das, P. Debata, Fixed points of quasinonexpansive mappings, Indian J. Pure Appl. Math., 17 (1986), 1263–1269. |
[4] | R. DeMarr, A common fixed point theorem for commuting mappings, The American Mathematical Monthly, 70 (1963), 535–537. https://doi.org/10.2307/2312067 doi: 10.2307/2312067 |
[5] | H. Fukhar-ud-din, M. Khamsi, Approximating common fixed points in hyperbolic spaces, Fixed Point Theory Appl., 2014 (2014), 113. https://doi.org/10.1186/1687-1812-2014-113 doi: 10.1186/1687-1812-2014-113 |
[6] | H. Fukhar-ud-din, Iterative process for an $\alpha-$ nonexpansive mapping and a mapping satisfying condition (C) in a convex metric space, Iran. J. Math. Sci. Info., 14 (2019), 167–179. https://doi.org/10.7508/ijmsi.2019.01.015 doi: 10.7508/ijmsi.2019.01.015 |
[7] | C. Garodia, I. Uddin, Some convergence results for generalized nonexpansive mappings in CAT (0) spaces, Commun. Korean Math. Soc., 34 (2019), 253–265. https://doi.org/10.4134/CKMS.c180093 doi: 10.4134/CKMS.c180093 |
[8] | K. Goebel, W. Kirk, Iteration processes for nonexpansive mappings, In: Topological methods in nonlinear functional analysis, American Mathematical Society, 1983,115–123. |
[9] | K. Goebel, R. Simeon, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekket, 1984. |
[10] | H. A. Hammad, H. Almusawa, Modified inertial Ishikawa iterations for fixed points of nonexpansive mappings with an application, AIMS Mathematics, 7 (2022), 6984–7000. http://doi.org/10.3934/math.2022388 doi: 10.3934/math.2022388 |
[11] | S. Hassan, M. De la Sen, P. Agarwal, Q. Ali, A. Hussain, A new faster iterative scheme for numerical fixed points estimation of Suzuki's generalized nonexpansive mappings, Math. Probl. Eng., 2020 (2020), 3863819. https://doi.org/10.1155/2020/3863819 doi: 10.1155/2020/3863819 |
[12] | N. Hussain, Z. Mitrović, S. Radenović, A common fixed point theorem of Fisher in b-metric spaces, RACSAM, 113 (2019), 949–956. https://doi.org/10.1007/s13398-018-0524-x doi: 10.1007/s13398-018-0524-x |
[13] | M. Imdad, S. Dashputre, Fixed point approximation of Picard normal S-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Math. Sci., 10 (2016), 131–138. https://doi.org/10.1007/s40096-016-0187-8 doi: 10.1007/s40096-016-0187-8 |
[14] | S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59 (1976), 65–71. https://doi.org/10.1090/S0002-9939-1976-0412909-X doi: 10.1090/S0002-9939-1976-0412909-X |
[15] | S. H. Khan, H. Fukhar-ud-din, Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Anal., 61 (2005), 1295–1301. https://doi.org/10.1016/j.na.2005.01.081 doi: 10.1016/j.na.2005.01.081 |
[16] | S. H. Khan, Fixed point approximation of nonexpansive mappings on a nonlinear domain, Abstr. Appl. Anal., 2014 (2014), 401650. https://doi.org/10.1155/2014/401650 doi: 10.1155/2014/401650 |
[17] | W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689–3696. https://doi.org/10.1016/j.na.2007.04.011 doi: 10.1016/j.na.2007.04.011 |
[18] | U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357 (2005), 89–128. https://doi.org/10.1090/S0002-9947-04-03515-9 doi: 10.1090/S0002-9947-04-03515-9 |
[19] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162 |
[20] | A. Mebawondu, C. Izuchukwu, Some fixed points properties, strong and $\Delta-$convergence results for generalized $\alpha-$nonexpansive mappings in hyperbolic spaces, Adv. Fixed Point Theory, 8 (2018), 1–20. https://doi.org/10.28919/afpt/3415 doi: 10.28919/afpt/3415 |
[21] | Z. Mitrović, H. Aydi, N. Hussain, A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on $\mathscr{F}$-metric spaces and an application, Mathematics, 7 (2019), 387. https://doi.org/10.3390/math7050387 doi: 10.3390/math7050387 |
[22] | R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Func. Anal. Opt., 38 (2017), 248–266. https://doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075 |
[23] | A. Panwar, P. Lamba, Approximating fixed points of generalized $\alpha-$ nonexpansive mappings in CAT (0) spaces, Adv. Appl. Math. Sci., 19 (2020), 907–915. |
[24] | S. Reich, I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537–558. https://doi.org/10.1016/0362-546X(90)90058-O doi: 10.1016/0362-546X(90)90058-O |
[25] | C. Suanoom, C. Klin-eam, Remark on fundamentally non-expansive mappings in hyperbolic spaces, J. Nonlinear Sci. Appl., 9 (2016), 1952–1956. http://doi.org/10.22436/jnsa.009.05.01 doi: 10.22436/jnsa.009.05.01 |
[26] | C. Suanoom, K. Sriwichai, C. Klin-Eam, W. Khuangsatung, The generalized $\alpha $-nonexpansive mappings and related convergence theorems in hyperbolic spaces, Journal of Informatics and Mathematical Sciences, 11 (2019), 1–17. https://doi.org/10.26713/jims.v11i1.1147 doi: 10.26713/jims.v11i1.1147 |
[27] | W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep., 22 (1970), 142–149. https://doi.org/10.2996/kmj/1138846111 doi: 10.2996/kmj/1138846111 |
[28] | I. Uddin, M. Imdad, Convergence of SP-iteration for generalized nonexpansive mapping in Hadamard space, Hacet. J. Math. Stat., 47 (2018), 1595–1604. https://doi.org/10.15672/HJMS.2017.509 doi: 10.15672/HJMS.2017.509 |
[29] | K. Ullah, J. Ahmad, M. Sen, On generalized nonexpansive maps in Banach spaces, Computation, 8 (2020), 61. https://doi.org/10.3390/computation8030061 doi: 10.3390/computation8030061 |
[30] | G. I. Usurelu, T. Turcanu, M. Postolache, Algorithm for two generalized nonexpansive mappings in uniformly convex spaces, Mathematics, 10 (2022), 318. https://doi.org/10.3390/math10030318 doi: 10.3390/math10030318 |