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1. Introduction

Let K be a subset of a metric space (X, d). Design the set of common fixed points of P and S by
Fix(P) ∩ Fix(S ), where a common fixed point (in short, comm.f.p.) of a pair of self mappings P and
S given on K [4] is a point ζ ∈ K for which P(ζ) = ζ = S (ζ). Recall that a mapping P : K → K is
termed:
(1) Nonexpansive given that d(P(u), P(v)) ≤ d(u, v), for all u, v ∈ K .
(2) Quasi-nonexpansive given that Fix(P) , φ and for all u ∈ K and v ∈ Fix(P), the following assertion
holds: d(P(u), v) ≤ d(u, v).
It is obvious that each nonexpansive mappings with just a fixed point (in short, f.p.) is a quasi-
nonexpansive mapping.

In 2011, the notion of α− nonexpansive mapping was put forward in Banach space by Aoyama and
Kohsaka [1]. In 2017, this notion was partially extended to the notion of generalized (in short, grz.)
α−nonexpansive mapping in Banach space by Pant and Shukla [22] as: consider a Banach space X
with its nonempty subset K , the mapping P : K −→ K is considered a grz. α−nonexpansive provided

there exists α ∈ [0, 1) such that for all u, v ∈ K ,
1
2
‖u − P(u)‖ ≤ ‖u − v‖ implies ‖P(u) − P(v)‖ ≤

α ‖P(u) − v‖ + α ‖P(v) − u‖ + (1 − 2α) ‖u − v‖ .
The fixed point theory has become one of the fields that have gained wide and rapid development

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2023290


5764

in recent years, due to the progress and diversity of the various iterative processes used to approximate
fixed points of nonexpansive mappings and the wider classes of nonexpansive mappings, (see [7,
10–12, 21, 23, 28–30]). Very famous Mann iteration process and Ishikawa iteration process among
others. In 1953, Mann [19] brought up the fundamental way for approximating f.p. of continuous
transformation in Banach space as: u1 ∈ K ,

un+1 = tnP(un) + (1 − tn)un, n ∈ N,

where {tn} is a sequence belonging to [0, 1].
Moreover, in 1974, Ishikawa [14] refined Mann’s iterative process from one to two-step iterations;

he also put up an iterative process to approximate f.p. of psedu-contractive compact mapping in Hilbert
space given below: 

u1 ∈ K ,

vn = (1 − sn)un + snP(un),
un+1 = (1 − tn)un + tnP(vn), n ∈ N,

with {tn} and {sn} denoting sequences lying in [0, 1] and obeying some criteria. It can be seen that Mann
iteration is a special case of Ishikawa iteration when sn = 0,∀n ∈ N.

There are three basic rules on which the fixed point theory is based. One of them is the type
of mappings for which we want to find the fixed points, the other is the iteration process used to
approximate the fixed point, and the last is the space on which the mapping is given and studied.
Banach spaces have been extensively studied by researchers as is evident in the literature, due to the
fact that Banach spaces always have convex structures. While metric spaces do not naturally have this
structure. That is why the need arose to launch convex structure to it. The notion of convex metric
spaces was first launched by Takahashi [27], he scrutinized the fixed point theory for nonexpansive
mappings in the convex metric spaces. Then, there were respective ventures to present a convex
structure on metric space. Hyperbolic space is an example of metric spaces with a convex structure,
respective views have emerged, (see [8, 18, 24]). The class of hyperbolic spaces given by Kohlenbach
in [18] is more general than the class of hyperbolic space set up by Reich and Shafrir in [24], however
it is more restrictive than the class of hyperbolic space launched by Goebel and Kirk in [8]. This class
of hyperbolic space includes Banach spaces, Cartesian products of Hilbert balls, Hadamard manifords,
CAT(0) spaces, R-trees and Hilbert ball with the hyperbolic metric. For additional examples and
information of hyperbolic spaces, (see [8, 9, 18, 24]).

In 2014, Khan [16] investigated ∆−convergence as well as strong convergence of a three-step
iterative process, which was mentioned in his paper for nonexpansive mappings on a nonlinear
domain of hyperbolic spaces. Fukhar-ud-din and Khamsi [5] established strong convergence and
∆−convergence results to a comm.f.p. in hyperbolic space, using an Ishikawa iteration scheme
associated to a pair of nonexpansive mappings, which was given by Das and Debata [3] as: vn = snP(un) + (1 − sn)un

un+1 = tnS (vn) + (1 − tn)un, n ∈ N,
(1.1)

where {tn} and {sn} are sequences in [0, 1] enjoying certain criteria.
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In 2018, Mebawondo and Izuchukwu [20] launched the class of grz. α− nonexpansive mapping in
hyperbolic space as: in a metric space X, a mapping P : K ⊂ X → K is named grz. α−nonexpansive
given that for all u, v ∈ K there exists α ∈ [0, 1) such that
1
2

d(u, P(u)) ≤ d(u, v) implies
d(P(u), P(v)) ≤ αd(P(u), v) + αd(P(v), u) + (1 − 2α)d(u, v).
Further, they scrutinized some fixed points properties and demiclosedness principle for grz.
α−nonexpansive mappings in the uniformly convex hyperbolic spaces and they set up strong and
∆−convergence results by using iteration process, known as Picard Normal S -iteration process, which
is mentioned in their paper.

Then, In 2019, Fukhar-ud-din scrutinized ∆−convergence and strong convergence of the Ishikawa
iteration (1.1) to the comm.f.p. of an α− nonexpansive mapping and a mapping enjoying criterion (C)
in the framework of a convex metric space. Suanoom et al. [26] established ∆−convergence results
and strong convergence results for a grz. α−nonexpansive mappings in a hyperbolic space by using the
iteration process which is mentioned in their paper.

In 2020, Bantaojai et al. [2] launched the class of a square α− nonexpansive mapping (or
α−nonexpansive mapping) in hyperbolic space as: in a metric space X, a mapping P : K ⊂ X → K is
named square α−nonexpansive mapping given that α < 1 such that

d2(P(u), P(v)) ≤ αd2(P(u), v) + αd2(u, P(v)) + (1 − 2α)d2(u, v),

for all u, v ∈ K .
The aim of this paper is to bring up a conceptual theoretical bodywork based on studying the

strong and ∆−convergence results of two grz. α− nonexpansive mappings P and S to a comm.f.p.
in uniformly convex hyperbolic space. The results put up in this paper are new and extend the
corresponding results for uniformly convex Banach spaces as well as CAT(0) spaces.

2. Preliminaries

During this paper, suppose X is a hyperbolic space which was introduced by Kohlenbach [18], as:

Definition 2.1. A hyperbolic space (in short, hbc.s.) is a metric space (X, d) with a mapping W :
X2 × [0, 1]→ X enjoying the following criteria.
(H1) d(p,W(u, v, α)) ≤ (1 − α)d(p, u) + αd(p, v);
(H2) d(W(u, v, α),W(u, v, β)) = |α − β| d(u, v);
(H3) W(u, v, α) = W(v, u, 1 − α);
(H4) d(W(u, z, α),W(v,w, α)) ≤ (1 − α)d(u, v) + αd(z,w),
for all u, v, z,w ∈ X and α, β ∈ [0, 1].

Now, we recall some definitions on hbc.s..

Definition 2.2. ( [25]) Suppose that X is a hbc.s. with a mapping W : X2 × [0, 1]→ X.
(1) A nonempty subset K of X is named convex if W(u, v, λ) ∈ K ,
for all u, v ∈ K and λ ∈ [0, 1].
(2) X is named uniformly convex (in short, u.c.) if for any r > 0 and ε ∈ (0, 2], there exists a δ ∈ (0, 1]
such that for all u, v, z ∈ X

d(W(u, v,
1
2

)) ≤ (1 − δ)r,
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provided d(u, z) ≤ r, d(v, z) ≤ r and d(u, v) ≥ εr.
(3) A map η : (0,∞) × (0, 2]→ (0, 1] which provides such a δ = η(r, ε) for a given r > 0 and ε ∈ (0, 2]
is known as a modulus of uniform convexity of X. The mapping η is said to be monotone, if it decreases
with r (for a fixed ε).

Definition 2.3. ( [25]) Let {un} be a bounded sequence in a hbc.s. X. For u ∈ X, we define a continuous
functional r(·, {un}) : X → [0,∞) by

r(u, {un}) = lim sup
n→∞

d(u, un).

The asymptotic radius r({un}) of {un} is given by

r({un}) = in f {r(u, un) : u ∈ X} .

A point u ∈ K is named an asymptotic center of the sequence {un} with respect to K ⊆ X if

r(u, {un}) = in f {r(v, {un}) : v ∈ K} .

The set of all asymptotic centers of {un} with respect to K is denoted by AK ({un}). Simply, denoted by
r({un}) and A({un}) to the asymptotic radius and the asymptotic center which are taken with respect to
X, respectively.

In u.c. Banach space and CAT(0) space, we have the following property: the bounded sequences
have unique asymptotic centers with respect to closed convex subsets. In the case of hbc.s., we have
the following result.

Lemma 2.1. ( [25]) Let X be a complete u.c.hbc.s. with monotone modulus of uniform convexity η.
Then every bounded sequence {un} in X has a unique asymptotic center with respect to any nonempty
closed convex subset K of X.

Definition 2.4. ( [17]) A sequence {un} in X is said to ∆-converge to u ∈ X, if u is the unique asymptotic
center of

{
unk

}
for every subsequence

{
unk

}
of {un}. In this case, we write ∆ − lim

n→∞
un = u.

Lemma 2.2. ( [25]) Let X be a u.c.hbc.s. with monotone modulus of uniform convexity η. Let u ∈ X
and {αn} be a sequence in [a, b] for some a, b ∈ (0, 1). If {un} and {vn} are sequences in X such that
lim sup

n→∞
d(un, u) ≤ c, lim sup

n→∞
d(vn, u) ≤ c and lim sup

n→∞
d(W(un, vn, αn), u) = c for some c ≥ 0. Then

lim
n→∞

d(un, vn) = 0.

Definition 2.5. ( [13]) Let K be a nonempty subset of a hbc.s. X and {un} be a sequence in X. Then
{un} is termed a Fejèr monotone sequence with respect to K if for all u ∈ K and n ≥ 1,

d(un+1, u) ≤ d(un, u).

In our main results, in the case, when we examine the strong convergence result, an additional
criterion on the mappings P and S will be added. This criterion is termed condition (AV) and is given
as:

Definition 2.6. ( [15]) Two self-mappings P and S on K with a nonempty subset Fix(P) ∩ Fix(S ) of
K are said to obey criterion (AV) if one can locate a nondecreasing function g on [0,∞) with g(0) = 0
and g(t) > 0 for all t ∈ (0,∞) such that

1
2

[d(u, P(u)) + d(u, S (u))] ≥ g(d(u, Fix(P) ∩ Fix(S ))) for all u ∈ K .

AIMS Mathematics Volume 8, Issue 3, 5763–5778.



5767

3. Main results

In this section, we discuss the convergence behavior of two grz. α− nonexpansive mappings to a
comm.f.p. by using Ishikawa iteration. We start by proving the following lemmas that are useful in our
results.

Lemma 3.1. Suppose that P, S are two self grz. α− nonexpansive mappings given on a nonempty
subsetK of a metric space X with a comm.f.p. of P and S , say ζ. Then P and S are quasi-nonexpansive
mappings and the comm.f.p. set is a closed subset of X.

Proof. Let u ∈ K and ζ ∈ Fix(P) ∩ Fix(S ). From the definition of grz. α− nonexpansive mapping, we
have

d(P(u), ζ) = d(P(u), P(ζ))
≤ αd(P(u), ζ) + αd(u, P(ζ)) + (1 − 2α)d(u, ζ)
= αd(P(u), ζ) + αd(u, ζ) + (1 − 2α)d(u, ζ)
= αd(P(u), ζ) + (1 − α)d(u, ζ).

Now, we get
(1 − α)d(P(u), ζ) ≤ (1 − α)d(u, ζ),

since α ∈ [0, 1), then we round off that

d(P(u), ζ) ≤ d(u, ζ). (3.1)

Whence, P is quasi-nonexpansive mapping.
In the same way, we can deduce that S is quasi-nonexpansive mapping, i.e.,

(S (u), ζ) ≤ d(u, ζ). (3.2)

Next, we prove that the comm.f.p. set Fix(P) ∩ Fix(S ) is a closed set. Suppose {ζn} is a sequence in
Fix(P) ∩ Fix(S ) such that ζn −→ ζ as n −→ ∞. And we want to show that ζ ∈ Fix(P) ∩ Fix(S ).

From (3.1), we get d(P(ζ), ζn) ≤ d(ζ, ζn) −→ 0 as n −→ ∞, and by the uniqueness of the limit point,
we have P(ζ) = ζ. And from (3.2), we obtain d(S (ζ), ζn) ≤ d(ζ, ζn) −→ 0 as n −→ ∞, Whence, by
the uniqueness of the limit point, we have S (ζ) = ζ. Whence, ζ ∈ Fix(P) ∩ Fix(S ). This means that
Fix(P) ∩ Fix(S ) is a closed set. �

Lemma 3.2. Suppose that P, S are two self grz. α− nonexpansive mappings given on a nonempty
closed convex subset K of a hbc.s. X. Then for the sequence {un}, given by Ishikawa iteration (1.1),
the following statements are obeyed:
1) {un} is a Fejèr monotone sequence with respect to Fix(P) ∩ Fix(S ).
2) lim

n→∞
d(un, ζ) exists for each ζ ∈ Fix(P) ∩ Fix(S ).

3) lim
n→∞

d(un, Fix(P) ∩ Fix(S )) exists.

Proof. 1) By using Lemma 3.1 for a comm.f.p. ζ of P and S , we consider

d(un+1, ζ) = d(W(S (vn), un, tn), ζ)
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≤ tnd(S (vn), ζ) + (1 − tn)d(un, ζ)
≤ tnd(vn, ζ) + (1 − tn)d(un, ζ)
= tnd(W(P(un), un, sn), ζ) + (1 − tn)d(un, ζ)
≤ tnsnd(P(un), ζ) + tn(1 − sn)d(un, ζ) + (1 − tn)d(un, ζ)
≤ tnsnd(un, ζ) + tnd(un, ζ) − tnsnd(un, ζ) + (1 − tn)d(un, ζ)
= d(un, ζ).

Then, we round off that
d(un+1, ζ) ≤ d(un, ζ).

Whence {un} is a Fejèr monotone sequence with respect to Fix(P) ∩ Fix(S ).
2) From (1), we have {d(un, ζ)} is non-increasing sequence and bounded. Whence, lim

n→∞
d(un, ζ) exists

for each ζ ∈ Fix(P) ∩ Fix(S ).
3) It is considered a direct conclusion from (1) and (2). �

Lemma 3.3. Suppose that P, S are two self grz. α− nonexpansive mappings given on a nonempty
convex closed subset K of a complete u.c.hbc.s. with a monotone modulus of uniform convexity η.
Suppose that Fix(P)∩Fix(S ) , φ. Then for the sequence {un}, which given by Ishikawa iteration (1.1),
we have

lim
n→∞

d(un, S (un)) = 0 = lim
n→∞

d(un, P(un)).

Proof. Let ζ ∈ Fix(P) ∩ Fix(S ), from Lemma 3.2, we round off lim
n→∞

d(un, ζ) exists for each ζ ∈

Fix(P) ∩ Fix(S ).
Suppose

lim
n→∞

d(un, ζ) = c, (3.3)

where c ≥ 0 is a real number. From Lemma 3.1, since d(P(un), ζ) ≤ d(un, ζ), we have

lim sup
n→∞

d(P(un), ζ) ≤ c. (3.4)

Moreover,

d(vn, ζ) = d(W(P(un), un, sn), ζ)
≤ snd(P(un), ζ) + (1 − sn)d(un, ζ)
≤ snd(un, ζ) + (1 − sn)d(un, ζ)
= d(un, ζ).

Therefor, we have
lim sup

n→∞
d(vn, ζ) ≤ c. (3.5)

From Lemma 3.1, since d(S (vn), ζ) ≤ d(vn, ζ), we have

lim sup
n→∞

d(S (vn), ζ) ≤ c. (3.6)
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From (3.3), we get that
lim
n→∞

d(W(S (vn), un, tn), ζ) = c.

Now, from Lemma 2.2, we round off

lim
n→∞

d(S (vn), un) = 0. (3.7)

By Lemma 3.1, we have

d(un, ζ) ≤ d(un, S (vn)) + d(S (vn), ζ)
≤ d(un, S (vn)) + d(vn, ζ).

Taking the limit infimum in the above inequality, we obtain

c ≤ lim inf
n→∞

d(vn, ζ). (3.8)

From (3.5) and (3.8), we deduce
lim
n→∞

d(vn, ζ) = c.

From Ishikawa iteration (1.1), we have

lim
n→∞

d(W(P(un), un, sn), ζ) = c.

Then, by Lemma 2.2, we round off

lim
n→∞

d(P(un), un) = 0. (3.9)

From Ishikawa iteration (1.1), we have

d(P(un), vn) = d(P(un),W(P(un), un, sn))
≤ snd(P(un), P(un)) + (1 − sn)d(P(un), un)
= (1 − sn)d(P(un), un).

Then, we obtain
lim
n→∞

d(P(un), vn) = 0. (3.10)

Now, from definition of grz. α− nonexpansive mapping, we have

d(S (un), un) ≤ d(S (un), S (vn)) + d(S (vn), un)
≤ αd(S (un), vn) + αd(un, S (vn)) + (1 − 2α)d(un, vn) + d(S (vn), un)
= αd(S (un), vn) + (1 + α)d(un, S (vn)) + (1 − 2α)d(un, vn)
≤ αd(S (un), un) + αd(un, vn) + (1 + α)d(un, S (vn)) + (1 − 2α)d(un, vn).

Then, we obtain (1−α)d(S (un), un) ≤ (1−α)d(un, vn) + (1 +α)d(un, S (vn)), since α ∈ [0, 1), we deduce

d(S (un), un) ≤ d(un, vn) +
(1 + α)
(1 − α)

d(un, S (vn))
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≤ d(un, P(un)) + d(P(un), vn) +
(1 + α)
(1 − α)

d(un, vn).

From (3.7), (3.9) and (3.10), we round off

lim
n→∞

d(S (un), un) = 0.

�
The following result corresponds to the result known as demiclosedness principle, which due to

Gohde in u.c. Banach space.

Lemma 3.4. Suppose that P is a self grz. α− nonexpansive mapping given on a nonempty convex
closed subset K of a complete u.c.hbc.s. X. Let {un} ∈ K be an approximate f.p. sequence of P, i.e.,
lim
n→∞

d(un, P(un)) = 0. If x ∈ K is the asymptotic center of {un} with respect toK , then u is a f.p. of P. In

particular, if {un} ∈ K is an approximate f.p. sequence of P, such that ∆− lim
n→∞

un = u, then u ∈ Fix(P).

Proof. Assume that u ∈ K is the unique asymptotic center of {un} with respect to K . And assume that
{un} is an approximate f.p. sequence of P. Since,

d(P(u), un) ≤ d(P(u), P(un)) + d(P(un), un)
≤ αd(P(u), un) + αd(u, P(un)) + (1 − 2α)d(u, un) + d(P(un), un).

Then, we have

(1 − α)d(P(u), un) ≤ αd(u, un) + αd(un, P(un)) + (1 − 2α)d(u, un) + d(P(un), un)
= (1 − α)d(u, un) + (1 + α)d(un, P(un)).

Then,

d(P(u), un) ≤ d(u, un) +
(1 + α)
(1 − α)

d(un, P(un)).

Whence, we obtain

r(P(u), {un}) = lim sup
n→∞

d(P(u), un)

≤ lim sup
n→∞

d(u, un) + lim sup
n→∞

(1 + α)
(1 − α)

d(un, P(un))

= lim sup
n→∞

d(u, un) = r(u, {un}).

By Lemma 2.1, we deduce
P(u) = u.

Whence, u is a f.p. of P. �

Theorem 3.1. (∆− convergent result) Suppose that P, S are two self grz. α− nonexpansive mappings
given on a nonempty closed convex subset K of a complete u.c.hbc.s. X with monotone modulus of
uniform convexity η, such that Fix(P) ∩ Fix(S ) is nonempty. Then the sequence {un}, which given by
Ishikawa iteration (1.1) ∆− converges to a comm.f.p. of P and S .

AIMS Mathematics Volume 8, Issue 3, 5763–5778.



5771

Proof. Step 1: by Lemma 3.2, we have lim
n→∞

d(un, ζ) exists, for each ζ ∈ Fix(P) ∩ Fix(S ).
Step 2: by Lemma 3.3, we attain

lim
n→∞

d(un, S (un)) = 0 = lim
n→∞

d(un, P(un)).

Step 3: suppose ψ∆(un) is the set of all ∆− limits of the sequence {un}. Assume ψ∆(un), where the union
is taken over all subsequences

{
unk

}
of {un}.

Now, we prove that ψ∆(un) ⊂ Fix(P) ∩ Fix(S ).
Let ζ is ∆−limit of the sequence {un}. Since by Lemma 3.2 {un} is an approximate f.p. sequence of

P and S , then by Lemma 3.4 we have ζ ∈ Fix(P) ∩ Fix(S ). Whence, ψ∆(un) ⊂ Fix(P) ∩ Fix(S ).
Then, we prove that ψ∆(un) is a singleton set. Let l and K are ∆−limits of the subsequences

{
unl

}
and

{
unk

}
of {un}, respectively.

By Lemma 2.1, Ak(
{
unk

}
) = {k} and Al(

{
unl

}
) = {l}.

By Lemma 3.3, we have lim
k→∞

d(unk , S (unk)) = 0 = lim
k→∞

d(unk , P(unk)).
And lim

l→∞
d(unl , S (unl)) = 0 = lim

l→∞
d(unl , P(unl)).

By Lemma 3.4, we round off that l and k are comm.f.p.(s) of P and S .
Now, we prove that k = l. Suppose k , l, then by the uniqueness of asymptotic center, we obtain

lim sup
n→∞

d(un, k) = lim sup
k→∞

d(unk , k)

< lim sup
k→∞

d(unk , l)

= lim sup
n→∞

d(un, l)

= lim sup
l→∞

d(unl , l)

< lim sup
l→∞

d(unl , k)

= lim sup
n→∞

d(un, k),

arrives at a contradiction. Whence k = l.
Thus, the sequence {un}∆− converges to a comm.f.p. of P and S . �
Using the criterion (AV) on the mappings P and S , we set up the following result.

Theorem 3.2. (Strong convergent result) Suppose that P, S are two self grz. α− nonexpansive
mappings given on a nonempty closed convex subset K of a complete u.c.hbc.s. X with a monotone
modulus of uniform convexity η. If Fix(P)∩ Fix(S ) is nonempty and P and S obey criterion (AV), then
the sequence {un}, which is given by Ishikawa iteration (1.1) converges strongly to a comm.f.p. of P
and S .

Proof. By Lemma 3.1, Fix(P)∩Fix(S ) is a closed subset of X. By using criterion (AV) and Lemma 3.3,
we obtain lim

n→∞
d(un, Fix(P) ∩ Fix(S )) = 0.

By Lemma 3.2, we have un → ζ as n→ ∞, for some ζ ∈ Fix(P) ∩ Fix(S ). �

Theorem 3.3. (Strong convergent result) Suppose that P, S are two self grz. α− nonexpansive
mappings given on a nonempty closed convex subset K of a complete u.c.hbc.s. X with a monotone
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modulus of uniform convexity η, let {un} be a sequence given by Ishikawa iteration (1.1). If
Fix(P) ∩ Fix(S ) is nonempty, then the sequence {un} converges strongly to a comm.f.p. of P and S
iff lim inf

n→∞
d(un, Fix(P) ∩ Fix(S )) = 0, where d(u, Fix(P) ∩ Fix(S )) is the distance from u to the

comm.f.p. set Fix(P) ∩ Fix(S ).

Proof. Assume that {un} converges strongly to ζ ∈ Fix(P) ∩ Fix(S ). Whence, it is clear that
lim inf

n→∞
d(un, Fix(P)∩ Fix(S )) = 0. Conversely, suppose that lim inf

n→∞
d(un, Fix(P)∩ Fix(S )) = 0. As by

Lemma 3.2, lim
n→∞

d(un, Fix(P) ∩ Fix(S )) exists, then lim
n→∞

d(un, Fix(P) ∩ Fix(S )) = 0.

Now, without loss of generality, assume
{
unk

}
to be a subsequence of {un}, such that d(unk , ζk) <

1
2k ,

for all k ≥ 1, where {ζk} is a sequence in Fix(P) ∩ Fix(S ). By Lemma 3.2, we obtain

d(unk+1 , ζk) ≤ d(unk , ζk) ≤
1
2k (3.11)

Next, we prove that {ζk} is a Cauchy sequence in Fix(P) ∩ Fix(S ). From (3.11), we deduce

d(ζk+1, ζk) ≤ d(ζk+1, unk+1) + d(unk+1 , ζk)

<
1

2k+1 +
1
2k

<
1

2k−1 .

This shows that {ζk} is a Cauchy sequence in Fix(P)∩ Fix(S ). As by Lemma 3.1, Fix(P)∩ Fix(S ) is a
closed subset of X, {ζk} converges to a comm.f.p. ζ of P and S . Since d(unk , ζ) ≤ d(unk , ζk)+d(ζk, ζ)→ 0
as k → ∞,
then

lim
k→∞

d(unk , ζ) = 0.

By Lemma 3.2, lim
n→∞

d(un, ζ) exists, whence, the sequence {un} is convergent to ζ. �

In 2017, Pant and Shukla shown an interesting example of the grz. α− nonexpansive mapping in
the linear case of hyperbolic metric space and presented certain comparative convergence behaviors
with regards to some powerful iteration procedures including the famous Mann and Ishikawa iterations
among others. The next example is given to support our results. We use MATLAB to check the
convergence of the mappings P and S to a common fixed point. Thereafter we expose the results in the
following Table 1 and Figure 1.
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Table 1. Influence of corfficients and initial guesses.

Influence of initial gusses with tn = 1
n+5 and sn = n

n+5 coefficients
Initial gusses Convergence in number of iterations
u1 = 1

4 101

u1 = 1
8 101

u1 = 1
10 101

Influence of initial gusse u1 = 1
4

Coefficients Convergence in number of iterations
tn = 1

(3n+7)
3
2
, sn = 2n

7n+10 29

tn = 2n
(5n+2)3 , sn = 5n

(7n+1)
5
4

2

tn =
√

n

(n+5)
5
2
, sn = 1

√
n+5

288

Figure 1. Convergence behavior of two grz. α- nonexpansive mappings.

Example 3.1. Consider the real line R as a hyperbolic metric space and K be the subset of R, K =

[−1, 1] with the usual norm |.| and let P : K → K be defined as:

P(u) =



u
2
, if u ∈ [−1, 0)

−u, if u ∈ [0, 1] \
{

1
2

}
0, if u =

1
2
.

and S (u) =


u, if u ∈ [−1, 1)
1
2
, if u = 1.

Then P and S are grz. 1
2− nonexpansive mapping. Moreover, Fix(P)={0} and Fix(S )=[−1, 1), then we

deduce Fix(P) ∩ Fix (S )= {0}, i.e., 0 is a comm.f.p. of P and S .
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Proof. First, we show that P is a grz. 1
2 -nonexpansive mapping, by following the same steps in [22].

With α = 1
2 , we have a different cases:

Case 1: when u, v ∈ [−1, 0), we get

αd(P(u), v) + αd(P(v), u) + (1 − 2α)d(u, v) =
1
2

∣∣∣∣∣u2 − v
∣∣∣∣∣ +

1
2

∣∣∣∣∣v2 − u
∣∣∣∣∣

=
1
2

∣∣∣∣∣u2 − v
∣∣∣∣∣ +

1
2

∣∣∣∣∣u − v
2

∣∣∣∣∣
≥

1
2

∣∣∣∣∣u2 − v + u −
v
2

∣∣∣∣∣
=

3
4
|u − v|

≥
1
2
|u − v| = d(P(u) − P(v)).

Case 2: when u ∈ [−1, 0), v ∈ [0, 1] \
{

1
2

}
, we get

since u < 0 and v ≥ 0,

d(P(u), P(v)) =

∣∣∣∣∣u2 − v
∣∣∣∣∣ =


u
2

+ v, if
|u|
2
< v,

−
u
2
− v, if

|u|
2
≥ v.

In the first case, we conclude

αd(P(u), v) + αd(P(v), u) + (1 − 2α)d(u, v) =
1
2

∣∣∣∣∣u2 − v
∣∣∣∣∣ +

1
2
|−v − u|

≥
1
2

(
v −

u
2

)
+

1
2

(v + u)

=
u
4

+ v

≥
u
2

+ v = d(P(u), P(v)).

In the second case, we deduce

αd(P(u), v) + αd(P(v), u) + (1 − 2α)d(u, v) =
1
2

∣∣∣∣∣u2 − v
∣∣∣∣∣ +

1
2
|−v − u|

≥
1
2

(
v −

u
2

)
+

1
2

(−v − u)

= −
3
4

u

≥ −
u
2
− v = d(P(u), P(v)).

Case 3: when u ∈ [−1, 0) and v = 1
2 , then

αd(P(u), v) + αd(P(v), u) + (1 − 2α)d(u, v) =
1
2

∣∣∣∣∣u2 − 1
2

∣∣∣∣∣ +
1
2
|0 − u|
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=
1
2

(
1
2
−

u
2

)
−

1
2

u

=
3
4

u +
1
4

≥ −
u
2

= d(P(u), P(v)).

Case 4: when u, v ∈ [0, 1] \
{

1
2

}
and u ≤ v, we have

αd(P(u), v) + αd(P(v), u) + (1 − 2α)d(u, v) =
1
2
|−u − v| +

1
2
|−v − u|

=
1
2

(u + v) +
1
2

(v + u)

= (v + u) ≥ v − u = d(P(u), P(v)).

Case 5: when u ∈ [0, 1] \
{

1
2

}
, v = 1

2 , we have

αd(P(u), v) + αd(P(v), u) + (1 − 2α)d(u, v) =
1
2

∣∣∣∣∣−u −
1
2

∣∣∣∣∣ +
1
2
|0 − u|

=
1
2

(
u +

1
2

)
+

1
2

u

= u +
1
4
≥ u = d(P(u), P(v)).

Second, we show that S is a grz. 1
2 -nonexpansive mapping. With α = 1

2 , we have the following cases:
Case 1: when u, v ∈ [−1, 1) then

d(S (u), S (v)) = |u − v| ,

d(S (u), v) = |u − v| ,

d(S (v), u) = |v − u| ,

d(u, v) = |u − v| .

Thus,

d(S (u), S (v)) = |u − v| ≤
1
2
|u − v| +

1
2
|u − v| = |u − v| .

Case 2: when u ∈ [−1, 1) , v = 1, then

d(S (u), S (v)) =

∣∣∣∣∣u − 1
2

∣∣∣∣∣ ≤ |u| + 1
2
,

d(S (u), v) = |u − 1| ≤ |u| + 1,

d(S (v), u) =

∣∣∣∣∣12 − u
∣∣∣∣∣ ≤ 1

2
+ |u| ,

d(u, v) = |u − 1| ≤ |u| + 1.
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Thus,

d(S (u), S (v)) ≤
1
2

+
|u|
2

+
1
4

+
|u|
2

=
3
4

+ |u| .

Case 3: when u = 1, v = 1, then

d(S (u), S (v)) =

∣∣∣∣∣12 − 1
2

∣∣∣∣∣ = 0,

d(S (u), v) =

∣∣∣∣∣12 − 1
∣∣∣∣∣ =

1
2
,

d(S (v), u) =

∣∣∣∣∣12 − 1
∣∣∣∣∣ =

1
2
,

d(u, v) = |1 − 1| = 0.

Thus,

d(S (u), S (v)) ≤
1
2

(
1
2

)
+

1
2

(
1
2

)
=

1
4

+
1
4

=
1
2
.

�

4. Conclusions

This paper focused on investigating the strong and ∆− convergence of the Ishikawa iteration process
which was proposed in [3] to a common fixed point of two generalized α− nonexpansive mappings.
A ∆− convergence result in Theorem 3.1 generalized Theorem 3.8 in [2] as well as two strong
convergence results in Theorem 3.2 and Theorem 3.3 are presented by appending additional condition
on the mappings. These results correspond to the idea of Theorem 2.7 in [6] and Theorem 3.11 in [26],
in that order. Furthermore, we illustrate our results by exhibiting a numerical example. A graphical
representation showed the convergence behavior by using Ishikawa iteration of two generalized α−

nonexpansive mappings. We noted that our results achieved herein can be refined to larger spaces.
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