The aim of this article is to introduce a generalized Hausdorff distance function in the setting of a bicomplex valued metric space. Using this, we obtain common fixed point theorems for generalized contractions. Our outcomes extend and generalize some conventional fixed point results in the literature. We also furnish a significant example to express the genuineness of the presented results. As an application, we derive some common fixed point results for self mappings, including the leading results of [Demonstr. Math., 54 (2021), 474-487] and [Int. J. Nonlinear Anal. Appl., 12 (2021), 717-727].
Citation: Afrah Ahmad Noman Abdou. Common fixed point theorems for multi-valued mappings in bicomplex valued metric spaces with application[J]. AIMS Mathematics, 2023, 8(9): 20154-20168. doi: 10.3934/math.20231027
[1] | Asifa Tassaddiq, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Durdana Lateef, Farha Lakhani . On common fixed point results in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(3): 5522-5539. doi: 10.3934/math.2023278 |
[2] | Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630 |
[3] | Nabil Mlaiki, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Dania Santina . Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation. AIMS Mathematics, 2023, 8(2): 3897-3912. doi: 10.3934/math.2023194 |
[4] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[5] | Tayebe Lal Shateri, Ozgur Ege, Manuel de la Sen . Common fixed point on the bv(s)-metric space of function-valued mappings. AIMS Mathematics, 2021, 6(2): 1065-1074. doi: 10.3934/math.2021063 |
[6] | Shunyou Xia, Chongyi Zhong, Chunrong Mo . A common fixed point theorem and its applications in abstract convex spaces. AIMS Mathematics, 2025, 10(3): 5236-5245. doi: 10.3934/math.2025240 |
[7] | Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172 |
[8] | Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif . Applications and theorem on common fixed point in complex valued b-metric space. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019 |
[9] | Yahya Almalki, Fahim Ud Din, Muhammad Din, Muhammad Usman Ali, Noor Jan . Perov-fixed point theorems on a metric space equipped with ordered theoretic relation. AIMS Mathematics, 2022, 7(11): 20199-20212. doi: 10.3934/math.20221105 |
[10] | Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić . Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111 |
The aim of this article is to introduce a generalized Hausdorff distance function in the setting of a bicomplex valued metric space. Using this, we obtain common fixed point theorems for generalized contractions. Our outcomes extend and generalize some conventional fixed point results in the literature. We also furnish a significant example to express the genuineness of the presented results. As an application, we derive some common fixed point results for self mappings, including the leading results of [Demonstr. Math., 54 (2021), 474-487] and [Int. J. Nonlinear Anal. Appl., 12 (2021), 717-727].
Gauss gave the theory of complex numbers in 17th century, but his research work was not on record. Later on, Cauchy initiated an in-depth review of complex numbers in the year 1840, and he is familiar as a successful originator of complex analysis. The study of complex numbers had its beginning because the solution of the quadratic equation ax2+bx+c=0 did not exist for b2−4ac<0 in the set of real numbers. Under this background, Euler was the first mathematician who presented the symbol i for √−1, with the property, i2=−1.
On the other hand, the beginning of bicomplex numbers was set up by Segre [1], and they provide a commutative replacement to the skew field of quaternions. These numbers extrapolated complex numbers more firmly and precisely to quaternions. For a better extensive study of investigation in bicomplex numbers, we refer the readers to [2]. In 2007, Huang et al. [3] presented the notion of a cone metric space (CMS) as an expansion of a traditional metric space (MS) and determined fixed point results for contractive mappings. Later on, Azam et al. [4] introduced the concept of a complex valued metric space (CVMS) as a particular case of a CMS. Mebawondu et al. [5] investigated the existence of solutions of differential equations by fixed point results in complex valued b-metric spaces. Vairaperumal et al. [6] established some common fixed point results for rational contractions in complex valued extended b-metric spaces. Okeke et al. [7] introduced the notion of complex valued convex metric spaces and proved certain fixed point results. In 2017, Choi et al. [8] introduced the notion of bicomplex valued metric spaces (bi-CVMS) by combining bicomplex numbers and CVMS. They proved some common fixed point theorems for weakly compatible mappings. Subsequently, Jebril et al. [9] used the idea of this novel space and presented theorems for two self mappings in the framework of bi-CVMS. In 2021, Beg et al. [10] reinforced the conception of bi-CVMS and proved extrapolated fixed point results. Afterward, Gnanaprakasam et al. [11] presented results for a contractive type condition in the framework of bi-CVMSs and explored the solution of linear equations. Later on, Tassaddiq et al. [12] involved control functions in the contractive inequality and established common fixed point results. Recently, Albargi et al. [13] obtained common fixed points of six self mapping in the setting of bi-CVMS. Mlaiki et al. [14] introduced locally contractive mappings in bi-CVMS and proved common fixed point theorems. For more details on CVMS and bi-CVMS, we refer the readers to [15,16,17,18,19,20,21,22,23,24,25,26,27,28].
In this research work, we introduce a generalized Hausdorff distance function in the framework of bi-CVMS and obtain common fixed point theorems for generalized contractions. We also furnish a significant example to illustrate the originality of the obtained results.
We represent by C0, C1 and C2 the set of real numbers, the set of complex numbers and the set of bicomplex numbers, respectively. Segre [1] defined the idea of a bicomplex number as follows:
ℓ=a1+a2i1+a3i2+a4i1i2, |
where a1,a2,a3,a4∈C0, and the independent units i1,i2 are such that i21=i22=−1 and i1i2=i2i1. We define the set of bicomplex numbers C2 as
C2={ℓ:ℓ=a1+a2i1+a3i2+a4i1i2:a1,a2,a3,a4∈C0}, |
that is,
C2={ℓ:ℓ=z1+i2z2:z1,z2∈C1}, |
where z1=a1+a2i1∈C1 and z2=a3+a4i1∈C1. If ℓ=z1+i2z2, ρ=ω1+i2ω2 ∈C2, then the sum is
ℓ±ρ=(z1+i2z2)±(ω1+i2ω2)=(z1±ω1)+i2((z2±ω2)), |
and the product is
ℓ⋅ρ=(z1+i2z2)⋅(ω1+i2ω2)=(z1ω1−z2ω2)+i2(z1ω2+z2ω1). |
There are four idempotent elements in C2, which are, 0,1,e1=1+i1i22 and e2=1−i1i22, out of which e1 and e2 are nontrivial such that e1+e2=1 and e1e2=0. Every bicomplex number z1+i2z2 can uniquely be expressed as a combination of e1and e2, namely,
ℓ=z1+i2z2=(z1−i1z2)e1+(z1+i1z2)e2. |
This description of ℓ is familiar as the idempotent representation of ℓ, and the complex coefficients ℓ1 =(z1−i1z2) and ℓ2= (z1+i1z2) are known as idempotent components of the bicomplex number ℓ.
An element ℓ=z1+i2z2∈C2 is invertible if there exists ρ∈C2 such that ℓρ=1. In this way, the element ρ is the multiplicative inverse of ℓ. As a consequence, ℓ is the multiplicative inverse of ρ.
An element ℓ=z1+i2z2∈C2 is non-singular if and only if |z21+z22|≠0 and singular if and only if |z21+z22|=0. The inverse of ℓ is defined as
ℓ−1=ρ=z1−i2z2z21+z22. |
Zero is the only member in C0 that does not possess a multiplicative inverse, and in C1, 0=0+i0 is the only member that does not possess a multiplicative inverse. We represent the sets of singular members of C0 and C1 by W0 and W1, respectively. There are many members in C2 that do not have multiplicative inverse. We represent this set by W2, and evidently W0 =W1⊂W2.
A bicomplex number ℓ=a1+a2i1+a3i2+a4i1i2∈C2 is said to be degenerated if the matrix
(a1a2a3a4)2×2 |
is degenerated. In that case, ℓ−1 exists, and it is also degenerated.
The norm ‖⋅‖ of C2 is a positive real valued function, and ‖⋅‖:C2→C+0 is defined by
‖ℓ‖=‖z1+i2z2‖={|z1|2+|z2|2}12=[|(z1−i1z2)|2+|(z1+i1z2)|22]12=(a21+a22+a23+a24)12, |
where ℓ=a1+a2i1+a3i2+a4i1i2=z1+i2z2∈C2.
A linear space C2 with regard to norm ‖⋅‖ is a normed linear space, and since C2 is complete, thus C2 is the Banach space. If ℓ,ρ∈C2, then
‖ℓρ‖≤√2‖ℓ‖‖ρ‖ |
holds instead of
‖ℓρ‖≤‖ℓ‖‖ρ‖. |
Therefore C2 is not the Banach algebra. The partial order relation ⪯i2 on C2 is defined as follows:
Let C2 be the set of bicomplex numbers and ℓ=z1+i2z2, ρ=ω1+i2ω2∈C2. Then
ℓ⪯i2ρ⇔ Re(z1)⪯Re(ω1) and Im(z2)⪯Im(ω2). |
It follows that
ℓ⪯i2ρ |
if one of these assertions is satisfied:
(a) z1=ω1, z2≺ω2,(b) z1≺ω1, z2=ω2,(c) z1≺ω1, z2≺ω2,(d) z1=ω1, z2=ω2. |
In particular, we can write ℓ⋨i2ρ if ℓ⪯i2ρ and ℓ≠ρ, that is, one of (a), (b) and (c) is satisfied, and we will write ℓ=ρ if only (d) is satisfied. For any two bicomplex numbers ℓ, ρ∈C2, we can verify the followings:
(ⅰ) ℓ⪯i2ρ⟹‖ℓ‖≤‖ρ‖,
(ⅱ) ‖ℓ+ρ‖≤‖ℓ‖+‖ρ‖,
(ⅲ) ‖aℓ‖≤a‖ρ‖, where a is a non-negative real number,
(ⅳ) ‖ℓρ‖≤√2‖ℓ‖‖ρ‖,
(ⅴ) ‖ℓ−1‖=‖ℓ‖−1,
(ⅵ) ‖ℓρ‖=‖ℓ‖‖ρ‖.
Choi et al. [8] defined the notion of a bi-CVMS as follows.
Definition 2.1. [8] Let O≠∅ and κ:O×O→C2 be a function satisfying
(i) 0⪯i2κ(σ,ϱ) and κ(σ,ϱ)=0 ⇔σ=ϱ,
(ii) κ(σ,ϱ)=κ(ρ,ϱ),
(iii) κ(σ,ϱ)⪯i2κ(σ,ν)+κ(ν,ϱ),
for all σ,ϱ,ν∈O. Then (O,κ) is a bi-CVMS.
Example 2.1. [10] Let O=C2 and σ,ϱ∈O. Define κ:O×O→C2 by
κ(σ,ϱ)=|z1−ω1|+i2|z2−ω2| |
where σ=z1+i2z2, ϱ=ω1+i2ω2∈C2. Then, (O,κ) is a bi-CVMS.
Lemma 2.1. [10] Let {σn} ⊆(O,κ). Then, {σn} converges to ℓ if and only if ‖κ(σn,σ)‖→0 as n→∞.
Lemma 2.2. [10] Let {σn} ⊆(O,κ). Then, {σn} is a Cauchy sequence if and only if ‖κ(σn,σn+m)‖→0 as n→∞, where m∈N.
Let (O,κ) be a bi-CVMS. We denote by N(O) (resp. CB(O)) the collection of nonempty (resp. the collection of nonempty, closed and bounded) subsets of (O,κ). Now, we denote generalized Hausdorff distance function as ℘ and define
℘(ℓ)={ρ∈C2: ℓ⪯i2ρ} |
for ℓ∈ C2, and
℘(σ,B)=∪ϱ∈B℘(κ(σ,ϱ))=∪ϱ∈B{ℓ∈C2: κ(σ,ϱ)⪯i2ℓ} |
for σ∈ O and B∈CB(O). For A,B∈CB(O), we denote
℘(A,B)=(∩σ∈A ℘(σ,B))∩(∩ϱ∈B ℘(σ,A)). |
Remark 2.1. Let (O,κ) be a bi-CVMS. If we take a2=a3=a4, then (O,κ) is a metric space. Furthermore, for A,B∈CB(O),
H(A,B)=inf℘(A,B) |
is the Hausdorff distance induced by κ.
Let ℶ:O→CB(O) be a multi-valued mapping. For σ∈O, and A∈CB(O), define
Wσ(A)={κ(σ,ϱ):ϱ∈A}. |
Thus, for σ,ϱ∈O
Wσ(ℶϱ)={κ(σ,ϱ):ϱ∈ℶϱ}. |
Definition 2.2. Let (O,κ) be a bi-CVMS. A nonempty subset A of O is called bounded from below if there exists ℓ∈C2, such that ℓ⪯i2ρ, for all ρ∈A.
Definition 2.3. Let (O,κ) be a bi-CVMS. A mapping L:O→2C2 is said to be bounded from below if for σ∈O, if there exists ℓσ∈C such that
ℓσ⪯i2ρ, for allρ∈Lσ. |
Definition 2.4. Let (O,κ) be a bi-CVMS. A mapping ℶ:O→CB(O) is said to have lower bound (l.b) property on (O,κ), if for any σ∈O, the multi-valued mapping Lσ:O→2C2 defined by,
Lσ(ℶϱ)=Wσ(ℶϱ) |
is bounded from below, that is, for σ,ϱ∈O, there exists lσ(ℶϱ)∈C such that;
lσ(ℶϱ)⪯i2ρ |
for all ρ∈Wσ(ℶϱ), where lσ(ℶϱ) is called the lower bound of ℶ associated with (σ,ϱ).
Definition 2.5. Let (O,κ) be a bi-CVMS. A mapping ℶ:O→CB(O) is said to satisfy greatest lower bound (g.l.b) property on (O,κ) if a greatest lower bound of Wσ(ℶϱ) exists in C2, for all σ,ϱ∈O. We represent by κ(σ,ℶϱ) the g.l.b. of Wσ(ℶϱ), that is,
κ(σ,ℶϱ)=inf{κ(σ,μ):μ∈ℶϱ}. |
Throughout this section, we consider (O,κ) as a complete bi-CVMS, and the mappings ℶ1,ℶ2:O→CB(O) satisfy the g.l.b. property.
Theorem 3.1. Let (O,κ) be a complete bi-CVMS, and let ℶ1,ℶ2:(O,κ)→CB(O) be such that
ℵ1κ(σ,ϱ)+ℵ2κ(σ,ℶ1σ)κ(ϱ,ℶ2ϱ)1+κ(σ,ϱ)+ℵ3κ(ϱ,ℶ1σ)κ(σ,ℶ2ϱ)1+κ(σ,ϱ)∈℘(ℶ1σ,ℶ2ϱ) | (3.1) |
for all σ,ϱ∈O and ℵ1,ℵ2,ℵ3∈[0,1) with ℵ1+√2ℵ2+√2ℵ3<1. Then, there exists ϖ∈O such that ϖ∈ℶ1ϖ∩ℶ2ϖ.
Proof. Let σ0 ∈O be an arbitrary point and σ1∈ℶ1σ0. From (3.1), we have
ℵ1κ(σ0,σ1)+ℵ2κ(σ0,ℶ1σ0)κ(σ1,ℶ2σ1)1+κ(σ0,σ1)+ℵ3κ(σ1,ℶ1σ0)κ(σ0,ℶ2σ1)1+κ(σ0,σ1)∈℘(ℶ1σ0,ℶ2σ1). |
This implies that
ℵ1κ(σ0,σ1)+ℵ2κ(σ0,ℶ1σ0)κ(σ1,ℶ2σ1)1+κ(σ0,σ1)+ℵ3κ(σ1,ℶ1σ0)κ(σ0,ℶ2σ1)1+κ(σ0,σ1)∈∩σ∈ℶ1σ0 ℘(σ,ℶ2σ1) |
ℵ1κ(σ0,σ1)+ℵ2κ(σ0,ℶ1σ0)κ(σ1,ℶ2σ1)1+κ(σ0,σ1)+ℵ3κ(σ1,ℶ1σ0)κ(σ0,ℶ2σ1)1+κ(σ0,σ1)∈ ℘(σ,ℶ2σ1) |
for σ∈ℶ1σ0. Since σ1∈ℶ1σ0, we have
ℵ1κ(σ0,σ1)+ℵ2κ(σ0,ℶ1σ0)κ(σ1,ℶ2σ1)1+κ(σ0,σ1)+ℵ3κ(σ1,ℶ1σ0)κ(σ0,ℶ2σ1)1+κ(σ0,σ1)∈ ℘(σ1,ℶ2σ1). |
This implies that
ℵ1κ(σ0,σ1)+ℵ2κ(σ0,ℶ1σ0)κ(σ1,ℶ2σ1)1+κ(σ0,σ1)+ℵ3κ(σ1,ℶ1σ0)κ(σ0,ℶ2σ1)1+κ(σ0,σ1)∈∪σ∈ℶ2σ1 ℘(σ1,σ). |
So, there exists σ2∈ℶ2σ1 and we have
ℵ1κ(σ0,σ1)+ℵ2κ(σ0,ℶ1σ0)κ(σ1,ℶ2σ1)1+κ(σ0,σ1)+ℵ3κ(σ1,ℶ1σ0)κ(σ0,ℶ2σ1)1+κ(σ0,σ1)∈℘(κ(σ1,σ2)). |
Therefore,
κ(σ1,σ2)⪯i2ℵ1κ(σ0,σ1)+ℵ2κ(σ0,ℶ1σ0)κ(σ1,ℶ2σ1)1+κ(σ0,σ1)+ℵ3κ(σ1,ℶ1σ0)κ(σ0,ℶ2σ1)1+κ(σ0,σ1). |
Since the pair (ℶ1,ℶ2) satisfies g.l.b. property, we get
κ(σ1,σ2)⪯i2ℵ1κ(σ0,σ1)+ℵ2κ(σ0,σ1)κ(σ1,σ2)1+κ(σ0,σ1)+ℵ3κ(σ1,σ1)κ(σ0,σ2)1+κ(σ0,σ1) |
=ℵ1κ(σ0,σ1)+ℵ2κ(σ0,σ1)κ(σ1,σ2)1+κ(σ0,σ1). |
This implies
‖κ(σ1,σ2)‖≤ℵ1‖κ(σ0,σ1)‖+ℵ2‖κ(σ0,σ1)κ(σ1,σ2)1+κ(σ0,σ1)‖≤ℵ1‖κ(σ0,σ1)‖+√2ℵ2‖κ(σ0,σ1)‖‖1+κ(σ0,σ1)‖‖κ(σ1,σ2)‖≤ℵ1‖κ(σ0,σ1)‖+√2ℵ2‖κ(σ1,σ2)‖ |
because ‖κ(σ0,σ1)‖‖1+κ(σ0,σ1)‖<1. This yields
‖κ(σ1,σ2)‖≤ℵ11−√2ℵ2‖κ(σ0,σ1)‖. | (3.2) |
Similarly, for σ2∈ℶ2σ1 and from (3.1), we have
ℵ1κ(σ1,σ2)+ℵ2κ(σ2,ℶ1σ2)κ(σ1,ℶ2σ1)1+κ(σ2,σ1) |
+ℵ3κ(σ1,ℶ1σ2)κ(σ2,ℶ2σ1)1+κ(σ2,σ1)∈℘(ℶ1σ2,ℶ2σ1)=℘(ℶ2σ1,ℶ1σ2). |
This implies that
ℵ1κ(σ1,σ2)+ℵ2κ(σ2,ℶ1σ2)κ(σ1,ℶ2σ1)1+κ(σ2,σ1)+ℵ3κ(σ1,ℶ1σ2)κ(σ2,ℶ2σ1)1+κ(σ2,σ1)∈∩σ∈ℶ2σ1 ℘(σ,ℶ1σ2) |
ℵ1κ(σ1,σ2)+ℵ2κ(σ2,ℶ1σ2)κ(σ1,ℶ2σ1)1+κ(σ2,σ1)+ℵ3κ(σ1,ℶ1σ2)κ(σ2,ℶ2σ1)1+κ(σ2,σ1)∈ ℘(σ,ℶ1σ2) |
for σ∈ℶ2σ1. Since σ2∈ℶ2σ1, we have
ℵ1κ(σ1,σ2)+ℵ2κ(σ2,ℶ1σ2)κ(σ1,ℶ2σ1)1+κ(σ2,σ1)+ℵ3κ(σ1,ℶ1σ2)κ(σ2,ℶ2σ1)1+κ(σ2,σ1)∈ ℘(σ2,ℶ1σ2). |
This implies that
ℵ1κ(σ1,σ2)+ℵ2κ(σ2,ℶ1σ2)κ(σ1,ℶ2σ1)1+κ(σ2,σ1)+ℵ3κ(σ1,ℶ1σ2)κ(σ2,ℶ2σ1)1+κ(σ2,σ1)∈∪σ∈ℶ1σ2 ℘(σ2,σ). |
So, there exists σ3∈ℶ1σ2, and we have
ℵ1κ(σ1,σ2)+ℵ2κ(σ2,ℶ1σ2)κ(σ1,ℶ2σ1)1+κ(σ2,σ1)+ℵ3κ(σ1,ℶ1σ2)κ(σ2,ℶ2σ1)1+κ(σ2,σ1)∈ ℘(κ(σ2,σ3)). |
Therefore,
κ(σ2,σ3)⪯i2ℵ1κ(σ1,σ2)+ℵ2κ(σ2,ℶ1σ2)κ(σ1,ℶ2σ1)1+κ(σ2,σ1)+ℵ3κ(σ1,ℶ1σ2)κ(σ2,ℶ2σ1)1+κ(σ2,σ1). |
Since the pair (ℶ1,ℶ2) satisfies g.l.b. property, we get
κ(σ2,σ3)⪯i2ℵ1κ(σ1,σ2)+ℵ2κ(σ2,σ3)κ(σ1,σ2)1+κ(σ2,σ1)+ℵ3κ(σ1,σ3)κ(σ2,σ2)1+κ(σ2,σ1) |
=ℵ1κ(σ1,σ2)+ℵ2κ(σ2,σ3)κ(σ1,σ2)1+κ(σ1,σ2). |
This implies
‖κ(σ2,σ3)‖≤ℵ1‖κ(σ1,σ2)‖+ℵ2‖κ(σ2,σ3)κ(σ1,σ2)1+κ(σ1,σ2)‖≤ℵ1‖κ(σ1,σ2)‖+√2ℵ2‖κ(σ1,σ2)‖‖1+κ(σ1,σ2)‖‖κ(σ2,σ3)‖≤ℵ1‖κ(σ1,σ2)‖+√2ℵ2‖κ(σ2,σ3)‖ |
since ‖κ(σ1,σ2)‖‖1+κ(σ1,σ2)‖<1. This yields
‖κ(σ2,σ3)‖≤ℵ11−√2ℵ2‖κ(σ1,σ2)‖. | (3.3) |
Let ℵ11−√2ℵ2=ℵ<1. Then, from (3.2) and (3.3), we have
‖κ(σ2,σ3)‖≤ℵ‖κ(σ1,σ2)‖≤ℵ2‖κ(σ1,σ2)‖. |
Thus, we can generate a sequence {σn} in O such that
σ2n+1∈ℶ1σ2n and σ2n+2∈ℶ2σ2n+1, |
and
‖κ(σn,σn+1)‖≤ℵ‖κ(σn−1,σn)‖≤...≤ℵn‖κ(σ0,σ1)‖. |
for n∈N. Now, for m>n and by the triangle inequality, we have
‖κ(σn,σm)‖≤ℵn‖κ(σ0,σ1)‖+ℵn+1‖κ(σ0,σ1)‖+⋅⋅⋅+ℵm−1‖κ(σ0,σ1)‖≤[ℵn+ℵn+1+⋅⋅⋅+ℵm−1]‖κ(σ0,σ1)‖. |
Now, by taking n→∞, we get
‖κ(σn,σm)‖→0. |
Thus, {σn} is a Cauchy sequence in O by Lemma 2.2. Therefore there exists ϖ∈O such that limn→∞σn=ϖ. Then, also, limn→∞σ2n=ϖ, and limn→∞σ2n+1=ϖ. Now, we show that ϖ∈ℶ1ϖ and ϖ∈ℶ2ϖ. From (3.1), we have
ℵ1κ(σ2n,ϖ)+ℵ2κ(σ2n,ℶ1σ2n)κ(ϖ,ℶ2ϖ)1+κ(σ2n,ϖ)+ℵ3κ(ϖ,ℶ1σ2n)κ(σ2n,ℶ2ϖ)1+κ(σ2n,ϖ)∈℘(ℶ1σ2n,ℶ2ϖ), |
which implies that
ℵ1κ(σ2n,ϖ)+ℵ2κ(σ2n,ℶ1σ2n)κ(ϖ,ℶ2ϖ)1+κ(σ2n,ϖ)+ℵ3κ(ϖ,ℶ1σ2n)κ(σ2n,ℶ2ϖ)1+κ(σ2n,ϖ)∈∩σ∈ℶ1σ2n ℘(σ,ℶ2ϖ) |
ℵ1κ(σ2n,ϖ)+ℵ2κ(σ2n,ℶ1σ2n)κ(ϖ,ℶ2ϖ)1+κ(σ2n,ϖ)+ℵ3κ(ϖ,ℶ1σ2n)κ(σ2n,ℶ2ϖ)1+κ(σ2n,ϖ)∈ ℘(σ,ℶ2ϖ) |
for σ∈ℶ1σ2n. Since σ2n+1∈ℶ1σ2n, we have
ℵ1κ(σ2n,ϖ)+ℵ2κ(σ2n,ℶ1σ2n)κ(ϖ,ℶ2ϖ)1+κ(σ2n,ϖ)+ℵ3κ(ϖ,ℶ1σ2n)κ(σ2n,ℶ2ϖ)1+κ(σ2n,ϖ)∈℘(σ2n+1,ℶ2ϖ). |
By definition
ℵ1κ(σ2n,ϖ)+ℵ2κ(σ2n,ℶ1σ2n)κ(ϖ,ℶ2ϖ)1+κ(σ2n,ϖ) |
+ℵ3κ(ϖ,ℶ1σ2n)κ(σ2n,ℶ2ϖ)1+κ(σ2n,ϖ)∈℘(σ2n+1,ℶ2ϖ)=∪σ/∈ℶ2ϖ℘(κ(σ2n+1,σ/)). |
There exists σn∈ℶ2ϖ such that
ℵ1κ(σ2n,ϖ)+ℵ2κ(σ2n,ℶ1σ2n)κ(ϖ,ℶ2ϖ)1+κ(σ2n,ϖ)+ℵ3κ(ϖ,ℶ1σ2n)κ(σ2n,ℶ2ϖ)1+κ(σ2n,ϖ)∈ ℘(κ(σ2n+1,σn)). |
By definition
κ(σ2n+1,ϖn)⪯i2ℵ1κ(σ2n,ϖ)+ℵ2κ(σ2n,ℶ1σ2n)κ(ϖ,ℶ2ϖ)1+κ(σ2n,ϖ)+ℵ3κ(ϖ,ℶ1σ2n)κ(σ2n,ℶ2ϖ)1+κ(σ2n,ϖ). |
Since the pair (ℶ1,ℶ2) satisfies g.l.b. property, we get
κ(σ2n+1,ϖn)⪯i2ℵ1κ(σ2n,ϖ)+ℵ2κ(σ2n,σ2n+1)κ(ϖ,ϖn)1+κ(σ2n,ϖ)+ℵ3κ(ϖ,σ2n+1)κ(σ2n,ϖn)1+κ(σ2n,ϖ). | (3.4) |
By the triangle inequality, we have
κ(ϖ,ϖn)⪯i2κ(ϖ,σ2n+1)+κ(σ2n+1,ϖn). |
Now, using (3.4), we have
κ(ϖ,ϖn)⪯i2κ(ϖ,σ2n+1)+κ(σ2n+1,ϖn) ⪯i2κ(ϖ,σ2n+1)+ℵ1κ(σ2n,ϖ) +ℵ2κ(σ2n,σ2n+1)κ(ϖ,ϖn)1+κ(σ2n,ϖ)+ℵ3κ(ϖ,σ2n+1)κ(σ2n,ϖn)1+κ(σ2n,ϖ) |
which implies
‖κ(ϖ,ϖn)‖≤‖κ(ϖ,σ2n+1)‖+ℵ1‖κ(σ2n,ϖ)‖+ℵ2‖κ(σ2n,σ2n+1)κ(ϖ,ϖn)1+κ(σ2n,ϖ)‖+ℵ3‖κ(ϖ,σ2n+1)κ(σ2n,ϖn)1+κ(σ2n,ϖ)‖≤‖κ(ϖ,σ2n+1)‖+ℵ1‖κ(σ2n,ϖ)‖+√2ℵ2‖κ(σ2n,σ2n+1)1+κ(σ2n,ϖ)‖‖κ(ϖ,ϖn)‖+√2ℵ3‖κ(ϖ,σ2n+1)1+κ(σ2n,ϖ)‖‖κ(σ2n,ϖn)‖. |
Taking the limit as n→∞, we have ‖κ(ϖ,ϖn)‖→0 as n→∞. Thus, ϖn→ϖ as n→∞. Since ℶ2ϖ is closed, we have ϖ∈ℶ2ϖ. Similarly, we can prove that ϖ∈ℶ1ϖ. Therefore, ϖ is a common fixed point of ℶ1 and ℶ2.
Corollary 3.1. Let (O,κ) be a complete bi-CVMS and let ℶ:(O,κ)→CB(O) be a multi-valued mapping with g.l.b. property such that
ℵ1κ(σ,ϱ)+ℵ2κ(σ,ℶσ)κ(ϱ,ℶϱ)1+κ(σ,ϱ)+ℵ3κ(ϱ,ℶσ)κ(σ,ℶϱ)1+κ(σ,ϱ)∈℘(ℶσ,ℶϱ) | (3.5) |
for all σ,ϱ∈O and ℵ1,ℵ2,ℵ3∈[0,1) with ℵ1+√2ℵ2+√2ℵ3<1. Then, there exists ϖ∈O such that ϖ∈ℶϖ.
Proof. Take ℶ1=ℶ2=ℶ in Theorem 3.1.
Corollary 3.2. Let (O,κ) be a complete bi-CVMS and let ℶ1,ℶ2:(O,κ)→CB(O) be such that
ℵ1κ(σ,ϱ)+ℵ2κ(σ,ℶ1σ)κ(ϱ,ℶ2ϱ)1+κ(σ,ϱ)∈℘(ℶ1σ,ℶ2ϱ) | (3.6) |
for all σ,ϱ∈O and ℵ1,ℵ2∈[0,1) with ℵ1+√2ℵ2<1. Then, there exists ϖ∈O such that ϖ∈ℶ1ϖ∩ℶ2ϖ.
Proof. Take ℵ3=0 in Theorem 3.1.
Corollary 3.3. Let (O,κ) be a complete bi-CVMS and ℶ:(O,κ)→CB(O) be such that
ℵ1κ(σ,ϱ)+ℵ2κ(σ,ℶσ)κ(ϱ,ℶϱ)1+κ(σ,ϱ)∈℘(ℶσ,ℶϱ) | (3.7) |
for all σ,ϱ∈O and ℵ1,ℵ2∈[0,1) with ℵ1+√2ℵ2<1. Then, there exists ϖ∈O such that ϖ∈ℶϖ.
Proof. Take ℶ1=ℶ2=ℶ in Corollary 3.2.
Corollary 3.4. Let (O,κ) be a complete bi-CVMS and ℶ1,ℶ2:O→CB(O) be such that
ℵ1κ(σ,ϱ)+ℵ3κ(ϱ,ℶ1σ)κ(σ,ℶ2ϱ)1+κ(σ,ϱ)∈℘(ℶ1σ,ℶ2ϱ) | (3.8) |
for all σ,ϱ∈O and ℵ1,ℵ3∈[0,1) with ℵ1+√2ℵ3<1. Then, there exists ϖ∈O such that ϖ∈ℶ1ϖ∩ℶ2ϖ.
Proof. Take ℵ2=0 in Theorem 3.1.
Corollary 3.5. Let (O,κ) be a complete bi-CVMS and let ℶ:(O,κ)→CB(O) be such that
ℵ1κ(σ,ϱ)+ℵ3κ(ϱ,ℶσ)κ(σ,ℶϱ)1+κ(σ,ϱ)∈℘(ℶσ,ℶϱ) | (3.9) |
for all σ,ϱ∈O and ℵ1,ℵ3∈[0,1) with \aleph _{1}+\sqrt{2}\aleph _{3} < 1. Then, there exists \varpi \in \mathcal{O} such that \varpi \in \beth \varpi .
Proof. Set \beth _{1} = \beth _{2} = \beth in Corollary 3.4.
Corollary 3.6. Let (\mathcal{O}, \kappa) be a complete bi-CVMS and let \beth _{1}, \beth _{2}:(\mathcal{O}, \kappa)\rightarrow CB(\mathcal{O}) be such that
\begin{equation} \aleph _{1}\kappa (\sigma , \varrho )\in \wp (\beth _{1}\sigma , \beth _{2}\varrho ) \end{equation} | (3.10) |
for all \sigma, \varrho \in \mathcal{O} and \aleph _{1}\in \lbrack 0, 1) with \aleph _{1} < 1. Then, there exists \varpi \in \mathcal{O} such that \varpi \in \beth _{1}\varpi \cap \beth _{2}\varpi .
Proof. Choose \aleph _{2} = \aleph _{3} = 0 in Theorem 3.1.
Corollary 3.7. Let (\mathcal{O}, \kappa) be a complete bi-CVMS and let \beth :(\mathcal{O}, \kappa)\rightarrow CB(\mathcal{O}) be such that
\begin{equation} \aleph _{1}\kappa (\sigma , \varrho )\in \wp (\beth \sigma , \beth \varrho ) \end{equation} | (3.11) |
for all \sigma, \varrho \in \mathcal{O} and \aleph _{1}\in \lbrack 0, 1). Then, there exists \varpi \in \mathcal{O} such that \varpi \in \beth \varpi .
Proof. Take \beth _{1} = \beth _{2} = \beth in Corollary 3.6.
Example 3.1. Let \mathcal{O} = [0, 1] . \ Define \kappa :\mathcal{O}\times \mathcal{O} \rightarrow \mathbb{C} _{2} by
\begin{equation*} \kappa (\sigma , \varrho ) = (1+i_{2})\left \vert \sigma -\varrho \right \vert. \end{equation*} |
Then, (\mathcal{O}, \kappa) is a complete bi-CVMS. Consider the mappings \beth _{1}, \beth _{2}:\mathcal{O}\rightarrow CB(\mathcal{O}) defined by
\begin{equation*} \beth _{1}\sigma = [0, \frac{1}{5}\sigma ]\text{ and }\beth _{2}\sigma = [0, \frac{1}{10}\sigma ]. \end{equation*} |
If \sigma = \varrho = 0, then obviously the contractive condition is satisfied. Now, we assume that \sigma < \varrho Then, we have
\begin{eqnarray*} \kappa \left( \sigma , \varrho \right) & = &(1+i_{2})\left \vert \varrho -\sigma \right \vert , \\ \kappa \left( \sigma , \beth _{1}\sigma \right) & = &(1+i_{2})\left \vert \sigma -\frac{\sigma }{6}\right \vert , \\ \kappa \left( \varrho , \beth _{2}\varrho \right) & = &(1+i_{2})\left \vert \varrho -\frac{\varrho }{12}\right \vert , \\ \kappa \left( \varrho , \beth _{1}\sigma \right) & = &(1+i_{2})\left \vert \varrho -\frac{\sigma }{6}\right \vert , \\ \kappa \left( \sigma , \beth _{2}\varrho \right) & = &(1+i_{2})\left \vert \sigma -\frac{\varrho }{12}\right \vert , \end{eqnarray*} |
and
\begin{equation*} \wp \left( \beth _{1}\sigma , \beth _{2}\varrho \right) = \wp \left( (1+i_{2})\left \vert \frac{\sigma }{6}-\frac{\varrho }{12}\right \vert \right) . \end{equation*} |
Consider,
\begin{eqnarray*} &&\aleph _{1}\kappa \left( \sigma , \varrho \right) +\aleph _{2}\frac{\kappa \left( \sigma , \beth _{1}\sigma \right) \kappa \left( \varrho , \beth _{2}\varrho \right) }{1+\kappa \left( \sigma , \varrho \right) }+\aleph _{3} \frac{\kappa \left( \varrho , \beth _{1}\sigma \right) \kappa \left( \sigma , \beth _{2}\varrho \right) }{1+\kappa \left( \sigma , \varrho \right) } \\ & = &\aleph _{1}\left \vert \varrho -\sigma \right \vert +\aleph _{2}\frac{ \left \vert \sigma -\frac{\sigma }{6}\right \vert \left \vert \varrho -\frac{ \varrho }{12}\right \vert }{1+\left \vert \varrho -\sigma \right \vert } +\aleph _{3}\frac{\left \vert \varrho -\frac{\sigma }{6}\right \vert \left \vert \sigma -\frac{\varrho }{12}\right \vert }{1+\left \vert \varrho -\sigma \right \vert }. \end{eqnarray*} |
Then, for any values of \aleph _{2} and \aleph _{3} and \aleph _{1} = \frac{ 1}{6} , we have
\begin{equation*} \left \vert \frac{\sigma }{6}-\frac{\varrho }{12}\right \vert \leq \frac{1}{6 }\left \vert \varrho -\sigma \right \vert +\aleph _{2}\frac{\left \vert \sigma -\frac{\sigma }{6}\right \vert \left \vert \varrho -\frac{\varrho }{12 }\right \vert }{1+\left \vert \varrho -\sigma \right \vert }+\aleph _{3} \frac{\left \vert \varrho -\frac{\sigma }{6}\right \vert \left \vert \sigma - \frac{\varrho }{12}\right \vert }{1+\left \vert \varrho -\sigma \right \vert }. \end{equation*} |
Hence,
\begin{equation*} \aleph _{1}\kappa (\sigma , \varrho )+\aleph _{2}\frac{\kappa \left( \sigma , \beth _{1}\sigma \right) \kappa \left( \varrho , \beth _{2}\varrho \right) }{ 1+\kappa \left( \sigma , \varrho \right) }+\aleph _{3}\frac{\kappa \left( \varrho , \beth _{1}\sigma \right) \kappa \left( \sigma , \beth _{2}\varrho \right) }{1+\kappa \left( \sigma , \varrho \right) }\in \wp (\beth _{1}\sigma , \beth _{2}\varrho ). \end{equation*} |
Thus, all the axioms of Theorem 3.1 hold, and the pair ( \beth _{1}, \beth _{2}) has a fixed point 0 .
Now, if we consider \beth _{1}(\sigma) = \left \{ \sigma \right \} and \beth _{2}(\varrho) = \{ \varrho \} in Theorem 3.1, then we can derive the key result of Gnanaprakasam et al. [11] in this manner.
Corollary 3.8. [11] Let (\mathcal{O}, \kappa) be a complete bi-CVMS and let \beth _{1}, \beth _{2}:(\mathcal{O}, \kappa)\rightarrow (\mathcal{O}, \kappa) be such that
\begin{equation*} \kappa (\beth _{1}\sigma , \beth _{2}\varrho )\preceq _{i_{2}}\aleph _{1}\kappa (\sigma , \varrho )+\aleph _{2}\frac{\kappa \left( \sigma , \beth _{1}\sigma \right) \kappa \left( \varrho , \beth _{2}\varrho \right) }{ 1+\kappa \left( \sigma , \varrho \right) }+\aleph _{3}\frac{\kappa \left( \varrho , \beth _{1}\sigma \right) \kappa \left( \sigma , \beth _{2}\varrho \right) }{1+\kappa \left( \sigma , \varrho \right) } \end{equation*} |
for all \sigma, \varrho \in \mathcal{O} and \aleph _{1}, \aleph _{2}, \aleph _{3}\in \lbrack 0, 1) with \aleph _{1}+\sqrt{2}\aleph _{2}+ \sqrt{2}\aleph _{3} < 1. Then, there exists \varpi \in \mathcal{O} such that \varpi = \beth _{1}\varpi = \beth _{2}\varpi .
Corollary 3.9. Let (\mathcal{O}, \kappa) be a complete bi-CVMS and let \beth :(\mathcal{O}, \kappa)\rightarrow (\mathcal{O}, \kappa) be such that
\begin{equation*} \kappa (\beth \sigma , \beth \varrho )\preceq _{i_{2}}\aleph _{1}\kappa (\sigma , \varrho )+\aleph _{2}\frac{\kappa \left( \sigma , \beth \sigma \right) \kappa \left( \varrho , \beth \varrho \right) }{1+\kappa \left( \sigma , \varrho \right) }+\aleph _{3}\frac{\kappa \left( \varrho , \beth \sigma \right) \kappa \left( \sigma , \beth \varrho \right) }{1+\kappa \left( \sigma , \varrho \right) } \end{equation*} |
for all \sigma, \varrho \in \mathcal{O} and \aleph _{1}, \aleph _{2}, \aleph _{3}\in \lbrack 0, 1) with \aleph _{1}+\sqrt{2}\aleph _{2}+ \sqrt{2}\aleph _{3} < 1. Then, there exists \varpi \in \mathcal{O} such that \varpi = \beth \varpi .
Proof. Take \beth _{1} = \beth _{2} = \beth in Corollary 3.8.
Corollary 3.10. Let (\mathcal{O}, \kappa) be a complete bi-CVMS and let \beth _{1}, \beth _{2}:(\mathcal{O}, \kappa)\rightarrow (\mathcal{O}, \kappa) be such that
\begin{equation*} \kappa (\beth _{1}\sigma , \beth _{2}\varrho )\preceq _{i_{2}}\aleph _{1}\kappa (\sigma , \varrho )+\aleph _{2}\frac{\kappa \left( \sigma , \beth _{1}\sigma \right) \kappa \left( \varrho , \beth _{2}\varrho \right) }{ 1+\kappa \left( \sigma , \varrho \right) } \end{equation*} |
for all \sigma, \varrho \in \mathcal{O} and \aleph _{1}, \aleph _{2}\in \lbrack 0, 1) with \aleph _{1}+\sqrt{2}\aleph _{2} < 1. Then, there exists \varpi \in \mathcal{O} such that \varpi = \beth _{1}\varpi = \beth _{2}\varpi .
Proof. Take \aleph _{3} = 0 in Corollary 3.8.
Corollary 3.11. [10] Let (\mathcal{O}, \kappa) be a complete bi-CVMS and let \beth :(\mathcal{O}, \kappa)\rightarrow (\mathcal{O}, \kappa) be such that
\begin{equation*} \kappa (\beth \sigma , \beth \varrho )\preceq _{i_{2}}\aleph _{1}\kappa (\sigma , \varrho )+\aleph _{2}\frac{\kappa \left( \sigma , \beth \sigma \right) \kappa \left( \varrho , \beth \varrho \right) }{1+\kappa \left( \sigma , \varrho \right) } \end{equation*} |
for all \sigma, \varrho \in \mathcal{O} and \aleph _{1}, \aleph _{2}\in \lbrack 0, 1) with \aleph _{1}+\sqrt{2}\aleph _{2} < 1. Then, there exists \varpi \in \mathcal{O} such that \varpi = \beth \varpi .
Proof. Take \beth _{1} = \beth _{2} = \beth in the above Corollary.
In this paper, we have introduced a generalized Hausdorff distance function in the setting of bi-CVMS and obtained common fixed point results for rational contractions. We hope that the established theorems in this paper will form contemporary associations for researchers who are working in bi-CVMS. As an application of our main results, we have derived some results for self mappings in the context of bi-CVMS, including the leading results of [Demonstr. Math., 54 (2021), 474–487] and [Int. J. Nonlinear Anal. Appl., 12 (2021), 717–727].
The author declares she has not used Artificial Intelligence (AI) tools in the creation of this article.
This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-21-DR-68). The author, therefore, thanks the University of Jeddah for its technical and financial support.
The author declares that she has no conflict of interest.
[1] |
C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40 (1892), 413–467. https://doi.org/10.1007/BF01443559 doi: 10.1007/BF01443559
![]() |
[2] | G. B. Price, An introduction to multicomplex spaces and functions, Boca Raton: CRC Press, 1991. https://doi.org/10.1201/9781315137278 |
[3] |
L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
![]() |
[4] |
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
![]() |
[5] |
A. A. Mebawondu, H. A. Abass, M. O. Aibinu, O. K. Narain, Existence of solution of differential equation via fixed point in complex valued b-metric spaces, Nonlinear Funct. Anal. Appl., 26 (2021), 303–322. https://doi.org/10.22771/nfaa.2021.26.02.05 doi: 10.22771/nfaa.2021.26.02.05
![]() |
[6] |
V. Vairaperumal, J. Carmel Pushpa Raj, J. Maria Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Nonlinear Funct. Anal. Appl., 26 (2021), 685–700. https://doi.org/10.22771/nfaa.2021.26.04.03 doi: 10.22771/nfaa.2021.26.04.03
![]() |
[7] |
G. A. Okeke, S. H. Khan, J. K. Kim, Fixed point theorems in complex valued convex metric spaces, Nonlinear Funct. Anal. Appl., 26 (2021), 117–135. https://doi.org/10.22771/nfaa.2021.26.01.09 doi: 10.22771/nfaa.2021.26.01.09
![]() |
[8] |
J. Choi, S. K. Datta, T. Biswas, M. N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces, Honam Math. J., 39 (2017), 115–126. https://doi.org/10.5831/HMJ.2017.39.1.115 doi: 10.5831/HMJ.2017.39.1.115
![]() |
[9] |
I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdiscip. Math., 22 (2019), 1071–1082. https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318
![]() |
[10] |
I. Beg, S. K. Datta, D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 717–727. https://doi.org/10.22075/ijnaa.2019.19003.2049 doi: 10.22075/ijnaa.2019.19003.2049
![]() |
[11] |
A. J. Gnanaprakasam, S. M. Boulaaras, G. Mani, B. Cherif, S. A. Idris, Solving system of linear equations via bicomplex valued metric space, Demonstr. Math., 54 (2021), 474–487. https://doi.org/10.1515/dema-2021-0046 doi: 10.1515/dema-2021-0046
![]() |
[12] |
A. Tassaddiq, J. Ahmad, A. E. Al-Mazrooei, D. Lateef, F. Lakhani, On common fixed point results in bicomplex valued metric spaces with application, AIMS Mathematics, 8 (2023), 5522–5539. https://doi.org/10.3934/math.2023278 doi: 10.3934/math.2023278
![]() |
[13] |
A. H. Albargi, A. E. Shammaky, J. Ahmad, Common fixed point results in bicomplex valued metric spaces with application, Mathematics, 11 (2023), 1207. https://doi.org/10.3390/math11051207 doi: 10.3390/math11051207
![]() |
[14] |
N. Mlaiki, J. Ahmad, A. E. Al-Mazrooei, D. Santina, Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation, AIMS Mathematics, 8 (2023), 3897–3912. https://doi.org/10.3934/math.2023194 doi: 10.3934/math.2023194
![]() |
[15] |
Z. Mitrovic, G. Mani, A. J. Gnanaprakasam, R. George, The existence of a solution of a nonlinear Fredholm integral equations over bicomplex b-metric spaces, Gulf J. Math., 14 (2022), 69–83. https://doi.org/10.56947/gjom.v14i1.984 doi: 10.56947/gjom.v14i1.984
![]() |
[16] |
G. Mani, A. J. Gnanaprakasam, O. Ege, N. Fatima, N. Mlaiki, Solution of Fredholm integral equation via common fixed point theorem on bicomplex valued b-metric space, Symmetry, 15 (2023), 297. https://doi.org/10.3390/sym15020297 doi: 10.3390/sym15020297
![]() |
[17] |
Z. H. Gu, G. Mani, A. J. Gnanaprakasam, Y. J. Li, Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space, Mathematics, 9 (2021), 1584. https://doi.org/10.3390/math9141584 doi: 10.3390/math9141584
![]() |
[18] |
C. Klin-eam, C. Suanoom, Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 604215. https://doi.org/10.1155/2013/604215 doi: 10.1155/2013/604215
![]() |
[19] |
F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
![]() |
[20] |
W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
![]() |
[21] |
K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
![]() |
[22] |
J. Ahmad, C. Klin-eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
![]() |
[23] |
M. S. Abdullahi, A. Azam, Multivalued fixed points results via rational type contractive conditions in complex valued metric spaces, J. Int. Math. Virtual Inst., 7 (2017), 119–146. https://doi.org/10.7251/JIMVI1701119A doi: 10.7251/JIMVI1701119A
![]() |
[24] |
A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
![]() |
[25] |
M. A. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 549504. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504
![]() |
[26] |
M. Humaira, G. N. V. Kishore, Fuzzy fixed point results for \varphi contractive mapping with applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815 doi: 10.1155/2018/5303815
![]() |
[27] |
J. Carmel Pushpa Raj, A. Arul Xavier, J. Maria Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Int. J. Nonlinear Anal. Appl., 13 (2022), 3479–3490. https://doi.org/10.22771/nfaa.2021.26.04.03 doi: 10.22771/nfaa.2021.26.04.03
![]() |
[28] |
L. C. Ceng, N. J. Huang, C. F. Wen, On generalized global fractional-order composite dynamical systems with set-valued perturbations, J. Nonlinear Var. Anal., 6 (2022), 149–163. https://doi.org/10.23952/jnva.6.2022.1.09 doi: 10.23952/jnva.6.2022.1.09
![]() |
1. | Badriah Alamri, Fixed Point Theory in Bicomplex Metric Spaces: A New Framework with Applications, 2024, 12, 2227-7390, 1770, 10.3390/math12111770 |