Research article Special Issues

Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation

  • Received: 21 September 2022 Revised: 17 November 2022 Accepted: 23 November 2022 Published: 29 November 2022
  • MSC : 46S40, 54H25, 47H10

  • The aim of this article is to obtain common fixed points of locally contractive mappings in the setting of bicomplex valued metric spaces. Our investigations generalize some conventional theorems of literature. Furthermore, we supply a significant example to manifest the authenticity of the proved results. As an application, we solve the solution of the integral equation by using our main result.

    Citation: Nabil Mlaiki, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Dania Santina. Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation[J]. AIMS Mathematics, 2023, 8(2): 3897-3912. doi: 10.3934/math.2023194

    Related Papers:

  • The aim of this article is to obtain common fixed points of locally contractive mappings in the setting of bicomplex valued metric spaces. Our investigations generalize some conventional theorems of literature. Furthermore, we supply a significant example to manifest the authenticity of the proved results. As an application, we solve the solution of the integral equation by using our main result.



    加载中


    [1] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40 (1892), 413–467. https://doi.org/10.1007/BF01443559 doi: 10.1007/BF01443559
    [2] G. B. Price, An introduction to multicomplex spaces and functions, Boca Raton: CRC Press, 1991. https://doi.org/10.1201/9781315137278
    [3] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
    [4] J. Choi, S. K. Datta, T. Biswas, M. N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces, Honam Math. J., 39 (2017), 115–126. https://doi.org/10.5831/HMJ.2017.39.1.115 doi: 10.5831/HMJ.2017.39.1.115
    [5] I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdiscip. Math., 22 (2019), 1071–1082, https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318
    [6] I. Beg, S. K. Datta, D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 717–727. http://dx.doi.org/10.22075/ijnaa.2019.19003.2049 doi: 10.22075/ijnaa.2019.19003.2049
    [7] A. J. Gnanaprakasam, S. M. Boulaaras, G. Mani, B. Cherif, S. A. Idris, Solving system of linear equations via bicomplex valued metric space, Demonstr. Math., 54 (2021), 474–487. https://doi.org/10.1515/dema-2021-0046 doi: 10.1515/dema-2021-0046
    [8] Z. Gu, G. Mani, A. J. Gnanaprakasam, Y. Li, Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space, Mathematics, 9 (2021), 1584. https://doi.org/10.3390/math9141584 doi: 10.3390/math9141584
    [9] G. Mani, A. J. Gnanaprakasam, K. Javed, M. Arshad, F. Jarad, Solving a Fredholm integral equation via coupled fixed point on bicomplex partial metric space, AIMS Math., 7 (2022), 15402–15416. https://doi.org/10.3934/math.2022843 doi: 10.3934/math.2022843
    [10] R. Ramaswamy, G. Mani, A. J. Gnanaprakasam, O. A. A. Abdelnaby, S. Radenović, An application to fixed-point results in tricomplex-valued metric spaces using control functions, Mathematics, 10 (2022), 3344. https://doi.org/10.3390/math10183344 doi: 10.3390/math10183344
    [11] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Compt. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
    [12] W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
    [13] K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
    [14] A. Ahmad, C. Klin-Eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
    [15] A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
    [16] C. Klin-Eam, C. Suanoom, Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 604215, https://doi.org/10.1155/2013/604215 doi: 10.1155/2013/604215
    [17] M. K. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 549504. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504
    [18] M. Humaira, G. Sarwar, N. V. Kishore, Fuzzy fixed point results for $\varphi $ contractive mapping with applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815 doi: 10.1155/2018/5303815
    [19] Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with Homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
    [20] A. A. Mukheimer, Some common fixed point theorems in complex valued $b$-metric spaces, Sci. World J., 2014 (2014), 587825. https://doi.org/10.1155/2014/587825 doi: 10.1155/2014/587825
    [21] J. Kumar, S. Vashistha, Common fixed point theorem for generalized contractive type paps on complex valued $b$-metric spaces, Int. J. Math. Anal., 9 (2015), 2327–2334. http://dx.doi.org/10.12988/ijma.2015.57179 doi: 10.12988/ijma.2015.57179
    [22] K. P. R. Rao, P. R. Swamy, J. R. Prasad, A common fixed point theorem in complex valued $b$-metric spaces, Bull. Math. Stat. Res., 1 (2013), 1–8.
    [23] Naimatullah, M. S. Shagari, A. Azam, Fixed point theorems in complex valued extended $b$-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
    [24] A. H. Albargi, J. Ahmad, Common $\alpha $-fuzzy fixed point results for Kannan type contractions with application, J. Funct. Spaces, 2022 (2022), 5632119. https://doi.org/10.1155/2022/5632119 doi: 10.1155/2022/5632119
    [25] J. C. P. Raj, A. A. Xavier, J. M. Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended $b$-metric spaces, Int. J. Nonlinear Anal. Appl., 13 (2022), 3479–3490. https://dx.doi.org/10.22075/ijnaa.2020.20025.2118 doi: 10.22075/ijnaa.2020.20025.2118
    [26] N. Ullah, M. S. Shagari, T. A. Khan, A. U. Khan, M. A. U. Khan, Common fixed point theorems in complex valued non-negative extended $b$-metric space, J. Anal. Appl. Math., 2021 (2021), 35–47. https://doi.org/10.2478/ejaam-2021-0004 doi: 10.2478/ejaam-2021-0004
    [27] N. Ullah, M. S. Shagari, Fixed point results in complex valued extended $b$-metric spaces and related applications, Ann. Math. Comput. Sci., 1 (2021), 1–11.
    [28] A. E. Shammaky, J. Ahmad, A. F. Sayed, On fuzzy fixed point results in complex valued extended $b$-metric spaces with application, J. Math., 2021 (2021), 9995897. https://doi.org/10.1155/2021/9995897 doi: 10.1155/2021/9995897
    [29] N. Singh, D. Singh, A. Badal, V. Joshi, Fixed point theorems in complex valued metric spaces, J. Egypt. Math. Soc., 24 (2016), 402–409. https://doi.org/10.1016/j.joems.2015.04.005 doi: 10.1016/j.joems.2015.04.005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1040) PDF downloads(61) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog