Processing math: 100%
Research article Special Issues

Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation

  • The aim of this article is to obtain common fixed points of locally contractive mappings in the setting of bicomplex valued metric spaces. Our investigations generalize some conventional theorems of literature. Furthermore, we supply a significant example to manifest the authenticity of the proved results. As an application, we solve the solution of the integral equation by using our main result.

    Citation: Nabil Mlaiki, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Dania Santina. Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation[J]. AIMS Mathematics, 2023, 8(2): 3897-3912. doi: 10.3934/math.2023194

    Related Papers:

    [1] Asifa Tassaddiq, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Durdana Lateef, Farha Lakhani . On common fixed point results in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(3): 5522-5539. doi: 10.3934/math.2023278
    [2] Amer Hassan Albargi . Common fixed point theorems on complex valued extended b-metric spaces for rational contractions with application. AIMS Mathematics, 2023, 8(1): 1360-1374. doi: 10.3934/math.2023068
    [3] Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif . Applications and theorem on common fixed point in complex valued b-metric space. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019
    [4] Afrah Ahmad Noman Abdou, Ebtisam Salem Alharbi, Jamshaid Ahmad . Solving Urysohn integral equations by common fixed point results in complex valued metric spaces. AIMS Mathematics, 2023, 8(8): 17585-17602. doi: 10.3934/math.2023897
    [5] Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630
    [6] Muhammad Rashid, Muhammad Sarwar, Muhammad Fawad, Saber Mansour, Hassen Aydi . On generalized b-contractions and related applications. AIMS Mathematics, 2023, 8(9): 20892-20913. doi: 10.3934/math.20231064
    [7] Afrah Ahmad Noman Abdou . Common fixed point theorems for multi-valued mappings in bicomplex valued metric spaces with application. AIMS Mathematics, 2023, 8(9): 20154-20168. doi: 10.3934/math.20231027
    [8] Tahair Rasham, Najma Noor, Muhammad Safeer, Ravi Prakash Agarwal, Hassen Aydi, Manuel De La Sen . On dominated multivalued operators involving nonlinear contractions and applications. AIMS Mathematics, 2024, 9(1): 1-21. doi: 10.3934/math.2024001
    [9] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [10] Anam Arif, Muhammad Nazam, Aftab Hussain, Mujahid Abbas . The ordered implicit relations and related fixed point problems in the cone b-metric spaces. AIMS Mathematics, 2022, 7(4): 5199-5219. doi: 10.3934/math.2022290
  • The aim of this article is to obtain common fixed points of locally contractive mappings in the setting of bicomplex valued metric spaces. Our investigations generalize some conventional theorems of literature. Furthermore, we supply a significant example to manifest the authenticity of the proved results. As an application, we solve the solution of the integral equation by using our main result.



    The emergence of complex numbers was established in the 17th century by Sir Carl Fredrich Gauss but his work was not on record; then, in the year 1840 Augustin Louis Cauchy started doing analysis of complex numbers, and he is known to be an effective founder of complex analysis. The theory of complex numbers has its source in that the solution of ax2+bx+c=0 was not worthwhile for b24ac<0, in the set of real numbers. Under this backdrop, Euler was the first mathematician who presented the symbol i, for 1 with the property i2=1.

    On the other hand, the beginning of bicomplex numbers was set up by Segre [1] who provided a commutative substitute to the skew field of quaternions. These numbers generalize complex numbers more firmly and precisely to quaternions. For a comprehensive review of investigations into bicomplex numbers, we refer the researchers to [2]. In 2011, Azam et al. [3] gave the concept of a complex valued metric space (CVMS) as a generalization of a classical metric space. In 2017, Choi et al. [4] combined the concepts of bicomplex numbers and CVMSs and introduced the notion of bicomplex valued metric spaces (bi-CVMSs); they established common fixed point results for weakly compatible mappings. Jebril et al. [5], utilized this notion of newly introduced space and obtained common fixed point results under rational contractions for a pair of mappings in the environment of bi-CVMSs. Subsequently, Beg et al. [6] strengthened the concept of bi-CVMS and proved generalized fixed point theorems. Later on, Gnanaprakasam et al. [7] established some common fixed point results for rational contraction in bi-CVMSs and solved a system of linear equations as application of their main result. For more details in the direction of CVMSs and bi-CVMSs, we refer the researchers to [8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29].

    In this article, we obtain common fixed points of locally contractive mappings of rational expressions in bi-CVMSs. We also provide a significant example to show the originality of obtained results. As an application, we explore the solutions of integral equations.

    We represent C0, C1 and C2 as the set of real, complex and bicomplex numbers respectively. Segre [1] defined the notion of a bicomplex number as follows:

    =a1+a2i1+a3i2+a4i1i2

    where a1,a2,a3,a4C0, and the independent units i1 and i2 are such that i21=i22=1 and i1i2=i2i1, we represent the set of bicomplex numbers by C2 and it is defined as

    C2={:=a1+a2i1+a3i2+a4i1i2:a1,a2,a3,a4C0}

    that is

    C2={:=z1+i2z2:z1,z2C1}

    where z1=a1+a2i1C1 and z2=a3+a4i1C1. If =z1+i2z2 and =ω1+i2ω2 are any two bicomplex numbers then the sum is

    ±=(z1+i2z2)±(ω1+i2ω2)=(z1±ω1)+i2(z2±ω2)

    and the product is

    =(z1+i2z2)(ω1+i2ω2)=(z1ω1z2ω2)+i2(z1ω2+z2ω1).

    There are four idempotent elements in C2, which are, 0,1,e1=1+i1i22 and e2=1i1i22 out of which e1 and e2 are nontrivial such that e1+e2=1 and e1e2=0. Every bicomplex number z1+i2z2 can uniquely be given as the combination of e1and e2, namely

    =z1+i2z2=(z1i1z2)e1+(z1+i1z2)e2.

    This characterization of is studied as the idempotent characterization of C2 and the complex coefficients 1 =(z1i1z2) and 2= (z1+i1z2) are familar as idempotent components of .

    A member =z1+i2z2C2 is called invertible if there exists one more member C2 such that =1 and is called the multiplicative inverse of . Accordingly is called the multiplicative inverse of . A member which has an inverse in C2 is called the nonsingular element of C2 and a member which does not have an inverse in C2 is called the singular element of C2.

    A member =z1+i2z2C2 is nonsingular iff |z21+z22|0 and singular iff |z21+z22|=0. The inverse of is defined as

    1==z1i2z2z21+z22.

    Note that 0 in C0 and 0=0+i0 in C1 are the only members which do not have a multiplicative inverse. We represent the set of a singular elements of C0 and C1 by 0 and 1 respectively. But in C2, there are more than one members which do not have multiplicative inverse. We represent the set of singular member of C2 by 2. Evidently 0 =12.

    A bicomplex number =a1+a2i1+a3i2+a4i1i2C2 is said to be degenerated if the matrix

    (a1a2a3a4)2×2

    is degenerated. In that case 1 exists and this is also degenerated.

    The norm :C2C+0 is defined by

    =z1+i2z2={|z1|2+|z2|2}12=[|(z1i1z2)|2+|(z1+i1z2)|22]12=(a21+a22+a23+a24)12,

    where =a1+a2i1+a3i2+a4i1i2=z1+i2z2C2.

    The linear space C2 with reference to defined norm is a norm linear space, also C2 is complete, hence C2 is the Banach space. If ,C2, then

    2

    holds instead of

    therefore C2 is not the Banach algebra. The partial order relation i2 on C2 is defined as follows:

    i2 Re(z1)Re(ω1) and  Im(z2)Im(ω2)

    where =z1+i2z2 and =ω1+i2ω2C2.

    It follows that

    i2

    if one of these assertions is satisfied:

    (i) (z1)=ω1, z2ω2,(ii) z1ω1, z2=ω2,(iii) z1ω1, z2ω2,(iv) z1=ω1, z2=ω2.

    Specially, we can write i2 if i2 and ; that is, one of the assertions (i)–(iii) is satisfied and we will write i2 if only (iii) is satisfied. For , C2, we have

    (i) i2,

    (ii) ++,

    (iii) aa, where a is a non negative real number,

    (iv) 2,

    (v) 1=1,

    (vi) =, if is a degenerated bicomplex number.

    Choi et al. [4] defined the bi-CVMS as follows:

    Definition 1. ([4]) Let W and d:W×WC2 be a mapping satisfying

    (i) 0i2d(,) and d(,)=0 =,

    (ii) d(,)=d(,),

    (iii) d(,)i2d(,ν)+d(ν,)

    for all ,,νW; then, (W,d) is a bi-CVMS.

    Example 1. ([6]) Let W=C2 and ,W. Define d:W×WC2 by

    d(,)=|z1ω1|+i2|z2ω2|

    where =z1+i2z2, =ω1+i2ω2C2. Then, (W,d) is a bi-CVMS.

    Lemma 1. ([6]) Let (W,d) be a bi-CVMS and let {n} W. Then {n} converges to if and only if d(n,)0 as n.

    Lemma 2. ([6]) Let (W,d) be a bi-CVMS and let {n} W. Then {n} is a Cauchy sequence if and only if  d(n,n+m)0 as n,  where mN.

    Now we present our main result in this way.

    Theorem 1. Let (W,d) be a complete bi-CVMS and 1,2:WW. Suppose that there exist 1,2,3,4,5[0,1) with 1+2(2+3+24+25)<1 such that

    d(1u,2ϱ)i21d(u,ϱ)+2d(u,1u)d(ϱ,2ϱ)1+d(u,ϱ)+3d(ϱ,1u)d(u,2ϱ)1+d(u,ϱ)
    +4d(u,1u)d(u,2ϱ)1+d(u,ϱ)+5d(ϱ,1u)d(ϱ,2ϱ)1+d(u,ϱ) (4.1)

    for all u0,u,ϱ¯B(u0,ρ), ρC2 and

    d(u0,1u0)|(1λ)ρ (4.2)

    where

    λ=max{(1+2412224),(1+2512225)},

    then there exists a unique point u¯B(u0,ρ) such that u=1u=2u.

    Proof. Let u0 W and define

    u2n+1=1u2n and u2n+2=2u2n+1,

    for n=0,1,2,. Now we show that un¯B(u0,ρ), for all nN. By the fact that

    λ=max{(1+2412224),(1+2512225)}<1

    and given the inequality (4.2), we have

    d(u0,1u0)|ρ.

    It implies that u1¯B(u0,ρ). Let u2,...,uj¯B(u0,ρ) for some jN. If j=2n+1, where n=0,1,2,j12 or j=2n+2, where n=0,1,2,,j22; then, by (4.1), we have 

    d(u2n+1,u2n+2)=d(1u2n,2u2n+1)i21d(u2n,u2n+1)+2d(u2n+1,2u2n+1)d(u2n,1u2n)1+d(u2n,u2n+1)+3d(u2n,2u2n+1)d(u2n+1,1u2n)1+d(u2n,u2n+1)+4d(u2n,2u2n+1)d(u2n,1u2n)1+d(u2n,u2n+1)+5d(u2n+1,2u2n+1)d(u2n+1,1u2n)1+d(u2n,u2n+1).

    Now u2n+1=1u2n implies that d(u2n+1,1u2n)=0, so we have

    d(u2n+1,u2n+2)i21d(u2n,u2n+1)+2d(u2n+1,u2n+2)d(u2n,u2n+1)1+d(u2n,u2n+1)
    +4d(u2n,u2n+2)d(u2n,u2n+1)1+d(u2n,u2n+1).

    This implies that

    |d(u2n+1,u2n+2)|1|d(u2n,u2n+1)|+22d(u2n+1,u2n+2)d(u2n,u2n+1)1+d(u2n,u2n+1)+24d(u2n,u2n+2)d(u2n,u2n+1)1+d(u2n,u2n+1).

    Since 1+d(u2n,u2n+1)>d(u2n,u2n+1), we have

    d(u2n+1,u2n+2)|1d(u2n,u2n+1)+22d(u2n+1,u2n+2)+24d(u2n,u2n+2),

    which implies that by triangular inequality

    |d(u2n+1,u2n+2)|(1+24)(12224)|d(u2n,u2n+1)|. (4.3)

    Similarly, we get 

    d(u2n+2,u2n+3)=d(1u2n+2,2u2n+1)i21d(u2n+2,u2n+1)+2d(u2n+1,2u2n+1)d(u2n+2,1u2n+2)1+d(u2n+2,u2n+1)+3d(u2n+2,2u2n+1)d(u2n+1,1u2n+2)1+d(u2n+2,u2n+1)+4d(u2n+2,2u2n+1)d(u2n+2,1u2n+2)1+d(u2n+2,u2n+1)+5d(u2n+1,2u2n+1)d(u2n+1,1u2n+2)1+d(u2n+2,u2n+1).

    Now u2n+2=2u2n+1 implies that d(u2n+2,2u2n+1)=0, we have

    d(u2n+2,u2n+3)i21d(u2n+2,u2n+1)+2d(u2n+1  ,  u2n+2    )d(u2n+2  ,  u2n+3    )1+d(u2n+2  ,  u2n+1    )
    +5d(u2n+1  ,  u2n+2    )d(u2n+1  ,  u2n+3    )1+d(u2n+2  ,  u2n+1    ).

    This implies that

    d(u2n+2,u2n+3)1d(u2n+2,u2n+1)+22d(u2n+1,u2n+2)d(u2n+2,u2n+3)1+d(u2n+1,u2n+2)+25d(u2n+1,u2n+2)d(u2n+1,u2n+3)1+d(u2n+2,u2n+1).

    Since 1+d(u2n+2,u2n+1)>d(u2n+2,u2n+1), we have

    d(u2n+2,u2n+3)1d(u2n+2,u2n+1)+22d(u2n+2,u2n+3)+25d(u2n+1,u2n+3).

    This implies the following given by triangular inequality

    |d(u2n+2,u2n+3)|(1+25)(12225)|d(u2n+2,u2n+1)|. (4.4)

    Putting

    λ=max{(1+2412224),(1+2512225)}<1,

    we obtain that

    d(uj,uj+1)λjd(u0,u1) for some jN. (4.5)

    Now

    d(u0,uj+1)d(u0,u1)+...+d(uj,uj+1)d(u0,u1)+...+λjd(u0,u1) =d(u0,u1)[1+...+λj1+λj](1λ)(ρ) (1λj+1)1λρ.

    This gives uj+1¯B(u0,ρ). Hence un¯B(u0,ρ) for all nN. One can easily prove that

    d(un, un+1λnd(u0, u1)

    for all n. Now for m>n and by the triangular inequality, we have

    d(un,um)λnd(u0,u1)+λn+1d(u0,u1)++λm1d(u0,u1)[λn+λn+1++λm1]d(u0,u1).

    Now, by taking n, we get

    d(un,um)0.

    By Lemma (2), we conclude that the sequence {un} is a Cauchy sequence in ¯B(u0,ρ). Consequently there exists u¯B(u0,ρ) such that limnun=u.  It follows that u=1u; otherwise, d(u,1u)=υ0 and we would then have

    υi2(d(u,u2n+2)+d(u2n+2,1u)   ) =d(u,u2n+2)+d(2u2n+1,1u)i2(d(u  ,  u2n+2)+1d(u2n+1  ,  u)+2d(u2n+1  ,  2u2n+1   ) d(u  ,  1u   ) 1+d(u  ,  u2n+1   ) +3d(u2n+1  ,  1u   ) d(u  ,  2u2n+1   ) 1+d(u  ,  u2n+1   ) +4d(u  ,  2u2n+1   ) d(u  ,  1u   ) 1+d(u  ,  u2n+1   ) +5d(u2n+1  ,  2u2n+1   ) d(u2n+1  ,  1u   ) 1+d(u  ,  u2n+1   )    ) 

    which implies that

      υ    (  d(u  ,  u2n+2)    +1  d(u2n+1  ,  u)    +22  d(u2n+1  ,  u2n+2   )       υ      1+d(u  ,  u2n+1   )     +23  d(u2n+1  ,  1u   )       d(u  ,  u2n+2   )       1+d(u  ,  u2n+1   )     +24  d(u  ,  u2n+2   )       υ      1+d(u  ,  u2n+1   )     +25  d(u2n+1  ,  u2n+2   )       d(u2n+1  ,  1u   )       1+d(u  ,  u2n+1   )        ) .

    That is υ=0, which is a contradiction. Thus u=1u. Similarly, we can prove that u=2u.

    Now we show the uniqueness of the common fixed point. We suppose u/ in W is another common fixed point of 1 and 2, that is u/=1u/=2u/ which is distinct from u that is uu/. Now by (4.1), we have

    d(u,u/)=d(1u,2u/)i21d(u,u/)+2d(u,1u)d(u/,2u/)1+d(u,u/)+3d(u/,1u)d(u,2u/)1+d(u,u/)+4d(u,1u)d(u,2u/)1+d(u,u/)+5d(u/,1u)d(u/,2u/)1+d(u,u/),

    so that

    d(u,u/)1d(u,u/)+22d(u,1u)d(u/,2u/)1+d(u,u/)+23d(u/,1u)d(u,2u/)1+d(u,u/)+24d(u,1u)d(u,2u/)1+d(u,u/)+25d(u/,1u)d(u/,2u/)1+d(u,u/).

    Since 1+d(u,u/)>d(u,u/), we have

    d(u,u/)(1+23)|d(u,u/)|.

    This is contradiction to 1+23<1. Hence, u/=u. Therefore u is a unique common fixed point of 1 and 2.

    Corollary 1. Let (W,d) be a complete bi-CVMS and :WW. Suppose that there exist 1,2,3,4, 5[0,1) with 1+2(2+3+24+25)<1 and satisfies

    d(u,ϱ)i21d(u,ϱ)+2d(u,u)d(ϱ,ϱ)1+d(u,ϱ)+3d(ϱ,u)d(u,ϱ)1+d(u,ϱ)
    +4d(u,u)d(u,ϱ)1+d(u,ϱ)+5d(ϱ,u)d(ϱ,ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), ρC2 and

    |d(u0,1u0)|(1λ)|ρ|

    where

    λ=max{(1+2412224),(1+2512225)},

    then there exists a unique point u¯B(u0,ρ) such that u=u.

    Proof. Take 1=2= in Theorem 1.

    We provide the following example in order to show the validity of our main result.

    Example 2. Let W=[0,) and define d:W×WC2  as follows:

    d(u1,u2)=(1+i2)|u1,u2|.

    Then, (W,d) is a complete bi-CVMS. Take u0=12 and ρ=12+12i2. Then ¯B(u0,ρ)=[0,1]. Define 1,2:WW as

    1u=u4

    and

    2u=u5.

    Then with 1=16,2=124,3=12,4=125 and 5=126, all the assumptions of Theorem 1 are satisfied; hence, 0¯B(u0,ρ) is a unique common fixed point of 1 and 2.

    Now we derive some results from our main Theorem 1 by setting some constants equal to zero.

    Corollary 2. Let (W,d) be a complete bi-CVMS and 1,2:WW. Suppose that there exist 1,2,3,4[0,1) with 1+2(2+3+24)<1 and 1, 2 satisfy

    d(1u,2ϱ)i21d(u,ϱ)+2d(u,1u)d(ϱ,2ϱ)1+d(u,ϱ)+3d(ϱ,1u)d(u,2ϱ)1+d(u,ϱ)+4d(u,1u)d(u,2ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,1u0)|(1λ)|ρ|

    where λ=max{(1+2412224),(1122)}; then, there exists a unique point u¯B(u0,ρ) such that u=1u=2u.

    Proof. Take 5=0 in Theorem 1.

    Corollary 3. Let (W,d) be a complete bi-CVMS and :WW. Suppose that there exist 1,2,3,4[0,1) with 1+2(2+3+24)<1 and satisfies

    d(u,ϱ)1d(u,ϱ)+2d(u,u)d(ϱ,ϱ)1+d(u,ϱ)+3d(ϱ,u)d(u,ϱ)1+d(u,ϱ)+4d(u,u)d(u,ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,u0)|(1λ)|ρ|

    where

    λ=max{(1+2412224),(1122)};

    then, there exists a unique point u¯B(u0,ρ) such that u=u.

    Proof. Take 1=2= in Corollary 2.

    Corollary 4. Let (W,d) be a complete bi-CVMS and 1,2:WW. Suppose that there exist 1,2,3,5[0,1) with 1+2(2+3+25)<1 and 1, 2 satisfy

    d(1u,2ϱ)i21d(u,ϱ)+2d(u,1u)d(ϱ,2ϱ)1+d(u,ϱ)+3d(ϱ,1u)d(u,2ϱ)1+d(u,ϱ)+5d(ϱ,1u)d(ϱ,2ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,1u0)|(1λ)|ρ|

    where

    λ=max{(1122),(1+2512225)};

    then, there exists a unique point u¯B(u0,ρ) such that u=1u=2u.

    Proof. Take 4=0 in Theorem 1.

    Corollary 5. Let (W,d) be a complete bi-CVMS and :WW. Suppose that there exist 1,2,3,5[0,1) with 1+2(2+3+25)<1 and satisfies

    d(u,ϱ)i21d(u,ϱ)+2d(u,u)d(ϱ,ϱ)1+d(u,ϱ)+3d(ϱ,u)d(u,ϱ)1+d(u,ϱ)+5d(ϱ,u)d(ϱ,ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,u0)|(1λ)|ρ|

    where

    λ=max{(1122),(1+2512225)};

    then, there exists a unique point u¯B(u0,ρ) such that u=u.

    Proof. Set 1=2= in Corollary 4.

    Corollary 6. Let (W,d) be a complete bi-CVMS and 1,2:WW. Suppose that there exist 1,2,3[0,1) with 1+2(2+3)<1 and 1, 2 satisfy

    d(1u,2ϱ)i21d(u,ϱ)+2d(u,1u)d(ϱ,2ϱ)1+d(u,ϱ)+3d(ϱ,1u)d(u,2ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,1u0)|(1λ)|ρ|

    where λ=1122; then, there exists a unique point u¯B(u0,ρ) such that u=1u=2u.

    Proof. Choose 4=5=0 in Theorem 1.

    Corollary 7. Let (W,d) be a complete bi-CVMS and :WW. Suppose that there exist 1,2,3[0,1) with 1+2(2+3)<1 and satisfies

    d(u,ϱ)i21d(u,ϱ)+2d(u,u)d(ϱ,ϱ)1+d(u,ϱ)+3d(ϱ,u)d(u,ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,u0)|(1λ)|ρ|

    where λ=1122; then, there exists a unique point u¯B(u0,ρ) such that u=u.

    Proof. Take 1=2= in Corollary 6.

    Corollary 8. Let (W,d) be a complete bi-CVMS and 1,2:WW. Suppose that there exist 1,2[0,1) with 1+22<1 and 1, 2 satisfy

    d(1u,2ϱ)i21d(u,ϱ)+2d(u,1u)d(ϱ,2ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,1u0)|(1λ)|ρ|

    where λ=1122; then, there exists a unique point u¯B(u0,ρ) such that u=1u=2u.

    Proof. Take 3=4=5=0 in Theorem 1.

    Corollary 9. Let (W,d) be a complete bi-CVMS and :WW. Suppose that there exist 1,2[0,1) with 1+22<1 and satisfies

    d(u,ϱ)i21d(u,ϱ)+2d(u,u)d(ϱ,ϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,u0)|(1λ)|ρ|

    where λ=1122; then, there exists a unique point u¯B(u0,ρ) such that u=u.

    Proof. Take 1=2= in Corollary 8.

    Now we establish the following result for two finite families of mappings as an application of Theorem 1.

    Theorem 2. If {i}m1 and {i}n1 are two finite pairwise commuting finite families with a self-mapping defined on a complex valued extended b-metric space with φ:W×W[1,) such that the mappings and (with =12m and =12n) satisfy (4.1) and (4.2); then, the component mappings of these {i}m1 and {i}n1 have a unique common fixed point.

    Proof. By Theorem 1, one can get u=u=u, which is unique. Now by pairwise commutativity of {i}m1 and {i}n1, (for every 1km) one can write ku=ku=ku and ku=ku=ku which manifest that ku, k is also a common fixed point of and . Now utilizing the uniqueness, one can write ku=u (for every k) which shows that u is a common fixed point of {i}m1. By doing the same strategy, we can prove that ku=u (1kn). Hence {i}m1 and {i}n1 have a unique common fixed point.

    Corollary 10. Let (W,d) be a complete bi-CVMS and F,G:WW. Suppose that there exist 1,2,3,4, 5[0,1) with 1+2(2+3+24+25)<1 and F, G satisfy

    d(Fmu,Gnϱ)i21d(u,ϱ)+2d(u,Fmu)d(ϱ,Gnϱ)1+d(u,ϱ)+3d(ϱ,Fmu)d(u,Gnϱ)1+d(u,ϱ)
    +4d(u,Fmu)d(u,Gnϱ)1+d(u,ϱ)+5d(ϱ,Fmu)d(ϱ,Gnϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,Gnu0)|(1λ)|ρ|

    where

    λ=max{(1+2412224),(1+2512225)};

    then, there exists a unique point u¯B(u0,ρ) such that u=Fu=Gu.

    Proof. Take 1=2==m=F and 1=2==n=G, in Theorem 2.

    Corollary 11. Let (W,d) be a complete bi-CVMS and :WW. Suppose that there exist 1,2,3,4,5[0,1) with 1+2(2+3+24+25)<1 and satisfies

    d(nu,nϱ)i21d(u,ϱ)+2d(unu)d(ϱ,nϱ)1+d(u,ϱ)+3d(ϱ,nu)d(u,nϱ)1+d(u,ϱ)
    +4d(u,nu)d(u,nϱ)1+d(u,ϱ)+5d(ϱ,nu)d(ϱ,nϱ)1+d(u,ϱ)

    for all u0,u,ϱ¯B(u0,ρ), 0ρC2 and

    |d(u0,nu0)|(1λ)|ρ|

    where

    λ=max{(1+2412224),(1+2512225)};

    then, there exists a unique point u¯B(u0,ρ) such that u=u.

    Take m=n and F=G= in Corollary 10.

    In this section, we show the importance and applicability of the established results.

    Let W=C([a,b],R), a>0 where C[a,b] denotes the set of all real continuous functions defined on the closed interval [a,b] and d:W×WC2 is defined as follows:

    d(u,ϱ)=(1+i)(|u(t)ϱ(t)|)

    for all u,ϱ W and t[a,b], where || is the usual real modulus. Then, (W,d) is a complete bi-CVMS. Consider the Urysohn integral equations

    u(t)=1babaK1(t,s,u(s))ds+g(t), (5.1)
    u(t)=1babaK2(t,s,u(s))ds+g(t), (5.2)

    where K1,K2:[a,b]×[a,b]×RR and g: [a,b]R are continuous and t[a,b]. We define partial order i2 in C2 as u(t)i2ϱ(t) if and only if uϱ.

    Theorem 3. Define the continuous mappings 1,2: W W by

    1u(t)=1babaK1(t,s,u(s))ds+g(t),
    2u(t)=1babaK2(t,s,u(s))ds+g(t),

    for all t[a,b]. Suppose the following inequality

    |K1(t,s,u(s))K2(t,s,ϱ(s))|1|u(s)ϱ(s)|

    holds, for all u,ϱW with uϱ and 1<1; then, the integral operators defined by (5.1) and (5.2) have a unique common solution.

    Proof. Consider

    (1+i2)|1u(t)2h(t)|=(1+i2)(1ba|baK1(t,s,u(s))dsbaK2(t,s,h(s))ds|)(1+i2)(1baba|K1(t,s,u(s))K2(t,s,h(s))|ds)(1+i2)(1baba|u(s)ϱ(s)|ds)ρ(1+i2)|u(s)ϱ(s)|.

    Thus,

    d(1u,2ϱ)i21d(u,ϱ).

    Now with 2=3=4=5=0, all the assumptions of Theorem (1) are satisfied and the integral equations (5.1) and (5.2) have a unique common solution.

    In this article, we have utilized the notion of bi-CVMS and secured common fixed point results for rational contractions on a closed ball. We have derived common fixed points and the fixed points of single valued mappings for contractions on a closed ball. We expect that the obtained consequences in this article will form up to date relations for researchers who are employing in bi-CVMS.

    The future work in this area will focus on studying the common fixed points of single valued and multivalued mappings in the setting of bi-CVMS. Differential and integral equations can be solved as applications of these results.

    The authors N. Mlaiki and D. Santina would like to thank Prince Sultan University for paying the publication fees for this work through TAS LAB.

    The authors declare that they have no conflicts of interest.



    [1] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann., 40 (1892), 413–467. https://doi.org/10.1007/BF01443559 doi: 10.1007/BF01443559
    [2] G. B. Price, An introduction to multicomplex spaces and functions, Boca Raton: CRC Press, 1991. https://doi.org/10.1201/9781315137278
    [3] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
    [4] J. Choi, S. K. Datta, T. Biswas, M. N. Islam, Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces, Honam Math. J., 39 (2017), 115–126. https://doi.org/10.5831/HMJ.2017.39.1.115 doi: 10.5831/HMJ.2017.39.1.115
    [5] I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdiscip. Math., 22 (2019), 1071–1082, https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318
    [6] I. Beg, S. K. Datta, D. Pal, Fixed point in bicomplex valued metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 717–727. http://dx.doi.org/10.22075/ijnaa.2019.19003.2049 doi: 10.22075/ijnaa.2019.19003.2049
    [7] A. J. Gnanaprakasam, S. M. Boulaaras, G. Mani, B. Cherif, S. A. Idris, Solving system of linear equations via bicomplex valued metric space, Demonstr. Math., 54 (2021), 474–487. https://doi.org/10.1515/dema-2021-0046 doi: 10.1515/dema-2021-0046
    [8] Z. Gu, G. Mani, A. J. Gnanaprakasam, Y. Li, Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space, Mathematics, 9 (2021), 1584. https://doi.org/10.3390/math9141584 doi: 10.3390/math9141584
    [9] G. Mani, A. J. Gnanaprakasam, K. Javed, M. Arshad, F. Jarad, Solving a Fredholm integral equation via coupled fixed point on bicomplex partial metric space, AIMS Math., 7 (2022), 15402–15416. https://doi.org/10.3934/math.2022843 doi: 10.3934/math.2022843
    [10] R. Ramaswamy, G. Mani, A. J. Gnanaprakasam, O. A. A. Abdelnaby, S. Radenović, An application to fixed-point results in tricomplex-valued metric spaces using control functions, Mathematics, 10 (2022), 3344. https://doi.org/10.3390/math10183344 doi: 10.3390/math10183344
    [11] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Compt. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
    [12] W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
    [13] K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
    [14] A. Ahmad, C. Klin-Eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
    [15] A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
    [16] C. Klin-Eam, C. Suanoom, Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 604215, https://doi.org/10.1155/2013/604215 doi: 10.1155/2013/604215
    [17] M. K. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 549504. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504
    [18] M. Humaira, G. Sarwar, N. V. Kishore, Fuzzy fixed point results for φ contractive mapping with applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815 doi: 10.1155/2018/5303815
    [19] Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with Homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
    [20] A. A. Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., 2014 (2014), 587825. https://doi.org/10.1155/2014/587825 doi: 10.1155/2014/587825
    [21] J. Kumar, S. Vashistha, Common fixed point theorem for generalized contractive type paps on complex valued b-metric spaces, Int. J. Math. Anal., 9 (2015), 2327–2334. http://dx.doi.org/10.12988/ijma.2015.57179 doi: 10.12988/ijma.2015.57179
    [22] K. P. R. Rao, P. R. Swamy, J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., 1 (2013), 1–8.
    [23] Naimatullah, M. S. Shagari, A. Azam, Fixed point theorems in complex valued extended b-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
    [24] A. H. Albargi, J. Ahmad, Common α-fuzzy fixed point results for Kannan type contractions with application, J. Funct. Spaces, 2022 (2022), 5632119. https://doi.org/10.1155/2022/5632119 doi: 10.1155/2022/5632119
    [25] J. C. P. Raj, A. A. Xavier, J. M. Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Int. J. Nonlinear Anal. Appl., 13 (2022), 3479–3490. https://dx.doi.org/10.22075/ijnaa.2020.20025.2118 doi: 10.22075/ijnaa.2020.20025.2118
    [26] N. Ullah, M. S. Shagari, T. A. Khan, A. U. Khan, M. A. U. Khan, Common fixed point theorems in complex valued non-negative extended b-metric space, J. Anal. Appl. Math., 2021 (2021), 35–47. https://doi.org/10.2478/ejaam-2021-0004 doi: 10.2478/ejaam-2021-0004
    [27] N. Ullah, M. S. Shagari, Fixed point results in complex valued extended b-metric spaces and related applications, Ann. Math. Comput. Sci., 1 (2021), 1–11.
    [28] A. E. Shammaky, J. Ahmad, A. F. Sayed, On fuzzy fixed point results in complex valued extended b-metric spaces with application, J. Math., 2021 (2021), 9995897. https://doi.org/10.1155/2021/9995897 doi: 10.1155/2021/9995897
    [29] N. Singh, D. Singh, A. Badal, V. Joshi, Fixed point theorems in complex valued metric spaces, J. Egypt. Math. Soc., 24 (2016), 402–409. https://doi.org/10.1016/j.joems.2015.04.005 doi: 10.1016/j.joems.2015.04.005
  • This article has been cited by:

    1. Afrah Ahmad Noman Abdou, Common fixed point theorems for multi-valued mappings in bicomplex valued metric spaces with application, 2023, 8, 2473-6988, 20154, 10.3934/math.20231027
    2. Afrah Ahmad Noman Abdou, Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces, 2023, 11, 2227-7390, 3249, 10.3390/math11143249
    3. A. Murali, K. Muthunagai, A. Tassaddiq, 2025, Chapter 35, 978-3-031-58640-8, 513, 10.1007/978-3-031-58641-5_35
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1386) PDF downloads(62) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog