Processing math: 100%
Research article

A multiplicity result for double phase problem in the whole space

  • Received: 21 May 2022 Revised: 20 July 2022 Accepted: 25 July 2022 Published: 28 July 2022
  • MSC : 35D30, 35J20, 35J60

  • In the present paper, we discuss the solutions of the following double phase problem

    div(|u|p2u+μ(x)|u|q2u)+|u|p2u+μ(x)|u|q2u=f(x,u),xRN,

    where N2, 1<p<q<N and 0μC0,α(RN),α(0,1]. Based on the theory of the double phase Sobolev spaces W1,H(RN), we prove the existence of at least two non-trivial weak solutions.

    Citation: Yanfeng Li, Haicheng Liu. A multiplicity result for double phase problem in the whole space[J]. AIMS Mathematics, 2022, 7(9): 17475-17485. doi: 10.3934/math.2022963

    Related Papers:

    [1] Shuai Li, Tianqing An, Weichun Bu . Existence results for Schrödinger type double phase variable exponent problems with convection term in $ \mathbb R^{N} $. AIMS Mathematics, 2024, 9(4): 8610-8629. doi: 10.3934/math.2024417
    [2] Wei Ma, Qiongfen Zhang . Existence of solutions for Kirchhoff-double phase anisotropic variational problems with variable exponents. AIMS Mathematics, 2024, 9(9): 23384-23409. doi: 10.3934/math.20241137
    [3] Lujuan Yu, Beibei Wang, Jianwei Yang . An eigenvalue problem related to the variable exponent double-phase operator. AIMS Mathematics, 2024, 9(1): 1664-1682. doi: 10.3934/math.2024082
    [4] Jae-Myoung Kim, Yun-Ho Kim . Multiple solutions to the double phase problems involving concave-convex nonlinearities. AIMS Mathematics, 2023, 8(3): 5060-5079. doi: 10.3934/math.2023254
    [5] Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112
    [6] Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad . Double controlled $ M $-metric spaces and some fixed point results. AIMS Mathematics, 2022, 7(8): 15298-15312. doi: 10.3934/math.2022838
    [7] Li Wang, Jun Wang, Daoguo Zhou . Concentration of solutions for double-phase problems with a general nonlinearity. AIMS Mathematics, 2023, 8(6): 13593-13622. doi: 10.3934/math.2023690
    [8] Samina Batul, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer, Suhad Subhi Aiadi . Best proximity point results for Prešić type nonself operators in $ b $-metric spaces. AIMS Mathematics, 2022, 7(6): 10711-10730. doi: 10.3934/math.2022598
    [9] Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247
    [10] Zehra Yucedag . Variational approach for a Steklov problem involving nonstandard growth conditions. AIMS Mathematics, 2023, 8(3): 5352-5368. doi: 10.3934/math.2023269
  • In the present paper, we discuss the solutions of the following double phase problem

    div(|u|p2u+μ(x)|u|q2u)+|u|p2u+μ(x)|u|q2u=f(x,u),xRN,

    where N2, 1<p<q<N and 0μC0,α(RN),α(0,1]. Based on the theory of the double phase Sobolev spaces W1,H(RN), we prove the existence of at least two non-trivial weak solutions.



    In recent years, the differential equations and variational problems driven by the so-called double phase operator have been greatly studied. The existence of solutions for double phase problems on bounded domains have been greatly discussed, see for example [1,2,3,4,5,6,7,8,9]. For unbounded domains, Liu and Dai [10], Liu and Winkert [11], Robert[12], Ge and Pucci[13] and Shen, Wang, Chi and Ge [14] investigated the existence and multiplicity of solutions for double phase problem.

    In this paper we study the following double phase problem:

    div(|u|p2u+μ(x)|u|q2u)+|u|p2u+μ(x)|u|q2u=f(x,u),xRN,

    where 1<p<q<N and

    qp1+αN,0μC0,α(RN),α(0,1]. (1.1)

    The first work concerning the ground state solution for problem (P), was that of Liu and Dai [10]. More specifically, they studied the existence of at least three nontrivial solutions of (P) under the following assumption on f:

    (h1) fC(RN×R,R) and there exists γ(q,p) such that

    |f(x,t)|k(x)|t|γ1,(x,t)RN×R,

    where p=NpNp, k(x)0, kLθ(RN)L(RN) with 1θ+γτ=1, here θ>1 and τ(γ,p].

    (h2) limt0f(x,t)|t|p1=0 uniformly in x.

    (h3) limt+F(x,t)|t|q=+ uniformly in x.

    (h4) f(x,t)|t|q1 is strictly increasing on (,0) and (0,+).

    It must be point out that (h1) is subcritical growth condition, (h3) means that f(x,u) is superlinear at infinity; (h4) is a well-known Nehari-type condition. In the present paper, we will further study the existence of two non-trivial weak solutions of (P) under the following sublinear growth condition:

    (h1) fC(RN×R,R) and there exists γ(1,p) such that

    |f(x,t)|k(x)|t|γ1,(x,t)RN×R,

    where k(x)0, kLθ(RN)L(RN) with 1θ+γp=1.

    (h5) There exists a C>1 large enough, c0>0, x0RN, 0<r<1 such that f(x,t)=0, for any xRN, 0<|t|δ and

    f(x,t)c0|tδ|γ1,xBr(x0),t(δ,1],

    where 0<δ<min{12(c0prqγ2γ+1(Cq+rq)mμ)1pγ,12} and mμ=max{1,supxB2r(x0)μ(x)}.

    Remark 1.1. There are many functions f(x,t) satisfying (h1) and (h5). For example,

    f(x,t)={0,if0|t|<δ,k1(x)(tδ)γ1,iftδ,k1(x)(tδ)γ1,iftδ,

    where k1(x)0, kC(RN)Lθ(RN)L(RN) with 1θ+γp=1 and infxBr(x0)k(x)c0>0. Indeed,

    |f(x,t)|{k1(x)|t|γ1,if0|t|δ,=k1(x)(tδ)γ1<k1(x)<k1(x)δγ1|t|γ1,ifδ<t<1+δ,=k1(x)(tδ)γ1<k1(x)<k1(x)δγ1|t|γ1,if1δ<t<δ,=k1(x)<k1(x)|t|γ1,if|t|=1+δ,<k1(x)|t|γ1,if|t|>1+δ.

    Hence, we have |f(x,t)|k(x)|t|γ1 with k(x)=k1(x)(1+1δγ1) and f(x,t)=k1(x)(tδ)γ1(tδ)γ1infxBr(x0)k1(x)=c0(tδ)γ1 for all xBr(x0) and δ<t1.

    The main result of this paper establishes the following Theorem 1.2.

    Theorem 1.2. Assume that hypotheses (1.1), (h1) and (h5) hold. Then the problem (P) has at least two distinct nontrivial weaksolutions u0,˜u0 in W1,H(RN) and ˜u0(x)u0(x) for a.e. xRN.

    Sketch of the proof. We introduce the following functions

    H(x,t)=tp+μ(x)tq

    for all (x,t)RN×[0,+). Now, let us consider the Musielak-Orlicz space

    LH(RN)={u:RNRismeasurableandRNH(x,|u|)dx<+}

    endowed with the norm

    |u|H=inf{τ>0:RNH(x,|u|τ)dx1}

    and the usual Musielak-Orlicz Sobolev space

    W1,H(RN)={uLH(RN):|u|LH(RN)}

    equipped with the Luxemburg norm given by

    u=inf{τ>0:RN(H(x,|u|τ)+H(x,|u|τ))dx1}.

    Under Assumption 1.1, we have the following facts:

    W1,H(RN)isseparablereflexiveBanachspace (1.2)

    (see [10,Theorem 2.7 (ii)]) and the following continuous embedding hold

    W1,H(RN)Lϑ(RN)forallϑ[p,p] (1.3)

    (see [10,Theorem 2.7 (iii)]); and from [10,Proposition 2.6] we directly obtain that

    min{up,uq}ρ(u)max{up,uq},uW1,H(RN), (1.4)

    where ρ(u):=RN[H(x,|u|)+H(x,|u|)]dx.

    We introduce the following two functionals in W1,H(RN):

    J(u)=RN(1p|u|p+μ(x)q|u|q+1p|u|p+μ(x)q|u|q)dx,K(u)=RNF(x,u)dx,

    where F(x,t)=t0f(x,s)ds. Consider the C1-functional φ:W1,H(RN)R defined by

    φ(u)=J(u)K(u).

    We split the proof into several steps.

    Step 1. The functional φ is weakly lower semi-continuous in W1,H(RN).

    First, by Proposition 3.1 (ii) in [10], we known that K is weakly continuous in W1,H(RN). Thus, it is enough to show that functional J is weakly lower semi-continuous in W1,H(RN). Let unu weakly in W1,H(RN). Since J is convex, we deduced that the following inequality holds:

    J(u),unuJ(un)J(u).

    Then we get that

    0=lim infn+J(u),unulim infn+[J(un)J(u)]=lim infn+J(un)J(u),

    which implies that

    J(u)lim infn+J(un).

    Step 2. The functional φ is coercive.

    Set M=max{1,(2p|k|γ)1pγ}. Then for any uW1,H(RN), we have

    φ(u)=RN(1p|u|p+μ(x)q|u|q+1p|u|p+μ(x)q|u|q)dxRNF(x,u)dx=RN(1p|u|p+μ(x)q|u|q+12p|u|p+μ(x)q|u|q)dx+Ω1(12p|u|pF(x,u))dx+Ω2(12p|u|pF(x,u))dx, (1.5)

    where Ω1={xRN:|u(x)|M} and Ω2=RNΩ1.

    On the one hand, it is easy to compute directly that

    Ω1(12p|u|pF(x,u))dxΩ1|u|p(12p|k|γ|u|γp)dx0. (1.6)

    On the other hand, by using Young's inequality, for ε(0,1) we estimate

    k(x)|u(x)|γγ1θγ(k(x)ε)θ+1p(ε|u(x)|γ)pγ.

    Then we deduce that

    Ω2(12p|u|pF(x,u))dxΩ2(|u|p2pk(x)|u|γγ)dxΩ2(|u|p2p1θγ(k(x)ε)θ1p(ε|u(x)|γ)pγ)dx=Ω2(|u|p|u|pp2pk(x)θθγεθ1pεpγ|u(x)|p)dxΩ2(|u|pMpp2pk(x)θθγεθ1pεpγ|u(x)|p)dx.

    Let 0<ε<min{1,(pMpp2p)γp}. Then

    Ω2(12p|u|pF(x,u))dxΩ2k(x)θθγεθdxC0. (1.7)

    Consequently, using (1.6) and (1.7) in (1.5) finally yields we obtain that

    φ(u)12qRN(|u|p+μ(x)|u|q+|u|p+μ(x)|u|q)dxC0,

    so that by (1.4) it follows that φ(u)+ as u+.

    Therefore, using Steps 1 and 2, and applying the Weierstrass Theorem, we deduce that there exists a global minimizer u0W1,H(RN) of φ. The following Step 3 to show that u00.

    Step 3. We have φ(u0)=infuW1,H(RN)φ(u)<0.

    Let ξC0(B2r(x0)) such that ξ(x)1, xBr(x0); 0ξ(x)1, |ξ(x)|Cr, xRN. Denote t=2δ, then by assumption (h5), we obtain

    RNF(x,tξ)dx=B2r(x0)F(x,tξ)dx=B2r(x0)tξ0f(x,s)dsdxc0B2r(x0)2δδ(sδ)γ1dsdx=c0B2r(x0)1γ(t2)γdx=c0γ2γtγ|B2r(x0)|,

    and so

    φ(tξ)=B2r(x0)(1p|tξ|p+μ(x)q|tξ|q+1p|tξ|p+μ(x)q|tξ|q)dxB2r(x0)F(x,tξ)dxtppmμB2r(x0)(|ξ|p+|ξ|q+|ξ|p+|ξ|q)dxc0γ2γtγ|B2r(x0)|2tpp(1+Cqrq)mμ|B2r(x0)|c0γ2γtγ|B2r(x0)|<0.

    It follows from Step 3 that u0W1,H(RN) is a non-trivial weak solution of problem (P). It remains to show that there exists another non-trivial weak solution of problem (P).

    Step 4. There exists a critical point ˜u0W1,H(RN) of φ.

    Let

    ˜f(x,t)={f(x,t),if|t||u0(x)|,f(x,u0(x)),if|t|>|u0(x)|,

    and ˜F(x,t)=t0˜f(x,s)ds. Then it follows from fC(RN×R,R) that ˜f(x,t):RN×RR is a Carathéodory function and

    |˜f(x,t)|k(x)|t|γ1.

    Similarly to Proposition 3.1 (i) in [10], we get that the functional

    ˜K(u)=RN˜F(x,u)dx

    is of class C1(W1,H(RN),R), and

    ˜K(u),v=RN˜f(x,u)vdx

    for all u,vW1,H(RN). Next, we define the functional ˜φ:W1,H(RN)R by

    ˜φ(u)=J(u)˜K(u).

    The same arguments as those used for functional φ imply that ˜φC1(W1,H(RN),R) and ˜φ is coercive. And by the definition of ˜φ, we get

    ˜φ(u0)=φ(u0)<0.

    In the following, we determine a critical point ˜u0W1,H(RN) of ˜φ, such that ˜φ(˜u0)>0 via the Mountain Pass Theorem.

    First, we will show that there exists 0<r0<min{1,u0} such that

    infvW1,H(RN);v=r0˜φ(v)>0=˜φ(0). (1.8)

    Using (h1) and (h5), for any uW1,H(RN) with 0<u<min{1,u0} we have

    ˜φ(u)=RN(1p|u|p+μ(x)q|u|q+1p|u|p+μ(x)q|u|q)dxRN˜F(x,u)dx1quq{xRN:|u(x)|>δ}˜F(x,u)dx1quqΩ3˜F(x,u(x))dxΩ4˜F(x,u(x))dx1quqΩ3k(x)γ|u(x)|γdxΩ4k(x)γ|u0(x)|γdx1quq2δγqγ{xRN:|u(x)|>δ}k(x)|u(x)|qdx, (1.9)

    where Ω3={xRN:|u(x)||u0(x)|}{xRN:|u(x)|>δ}, Ω4={xRN:|u(x)|>|u0(x)|}{xRN:|u(x)|>δ}. Since q<p, then there exists q<τ<p such that W1,H(RN) is continuously embedded in Lτ(RN). Thus, there exists a positive constant Cτ such that

    |u|τCτu,uW1,H(RN).

    Using Hölder's inequality and the above estimate, we obtain

    {xRN:|u(x)|>δ}k(x)|u(x)|qdx({xRN:|u(x)|>δ}|k(x)|τdx)1τ({xRN:|u(x)|>δ}|u(x)|τdx)qτ({xRN:|u(x)|>δ}|k(x)|τdx)1τCqτuq, (1.10)

    where 1τ+qτ=1.

    By inequalities (1.9) and (1.10), we infer that it is enough to show that

    {xRN:|u(x)|>δ}|k(x)|τdx0,asu0

    in order to prove (1.8). Indeed, taking into account the fact that kL(RN), yields

    δq{xRN:|u(x)|>δ}(k(x))τdx{xRN:|u(x)|>δ}(k(x))τ|u(x)|qdx|k|τ{xRN:|u(x)|>δ}|u(x)|qdx|k|τRN|u(x)|qdx|k|τCqquq,

    which implies that

    {xRN:|u(x)|>δ}|k(x)|τdx0,asu0.

    In view of Mountain Pass Theorem (see Ambrosetti-Rabinowitz[15] with the variant given by Theorem 1.15 in Willem[16]), there exists a sequence {un}W1,H(RN), such that

    ˜φ(un)c>0and˜φ(un)0,

    where c=infλΓmaxt[0,1]˜φ(λ(t)), and

    Γ={λC([0,1],W1,H(RN)):λ(0)=0,λ(1)=u0}.

    Since the functional ˜φ is coercive, we obtain that {un} is bounded in W1,H(RN), and passing to a subsequence, still denoted by {un}, we may assume that there exists a ˜u0W1,H(RN), such that un˜u0 weakly in W1,H(RN). By (1.3), we deduce that

    W1,H(RN)Lp(RN).

    Thus, there is a positive constant M>0 such that

    max{|un|γ,|un|p,|˜u0|γ,|˜u0|p}M.

    We first will prove that the un˜u0 in W1,H(RN). Recall that

    J(un)J(˜u0),un˜u0=˜φ(un)˜φ(˜u0),un˜u0+˜K(un)˜K(˜u0),un˜u0.

    Then it is enough to show that

    limn+˜K(un)˜K(˜u0),un˜u0=0.

    Denote Ωj={xRN:|x|j} and Ωcj=RNΩj, jN. Then by the fact that kLθ(RN), we deduce that

    |k|Lθ(Ωcj)0asj+,

    and so for given ε(0,1), there exists j0>0 big enough such that

    |k|Lθ(Ωcj0)<ε8Mγ.

    We also known that un˜u0 in Lγ(Ωj0) because the embedding W1,H(Ωj0)Lγ(Ωj0) is compact. It follows that there exists n0>0, such that

    |un˜u0|Lγ(Ωj0)<ε4|k|Mγ1,n>n0.

    By a straightforward computation we deduce that

    |˜K(un)˜K(˜u0),un˜u0|=|RN(˜f(x,un)˜f(x,˜u0)(un˜u0)dx|Ωj0k(x)(|un|γ1+|˜u0|γ1)|un˜u0|dx+Ωcj0k(x)(|un|γ1+|˜u0|γ1)|un˜u0|dx=:I1+I2.

    Applying Hölder's inequality and condition (h1), we have

    I1|k|Ωj0(|un|γ1+|˜u0|γ1)|un˜u0|dx|k|[||un|γ1|Lγγ1(Ωj0)+||un|γ1|Lγγ1(Ωj0)]|un˜u0|Lγ(Ωj0)|k|[|un|γ1Lγ(RN)+|un|γ1Lγ(RN)]|un˜u0|Lγ(Ωj0)2|k|Mγ1|un˜u0|Lγ(Ωj0)<ε2

    and

    I2Ωcj0k(x)(|un|γ1+|˜u0|γ1)|un˜u0|dx|k|Lθ(Ωcj0)[||un|γ1|Lpγ1(RN)+||un|γ1|Lpγ1(RN)]|un˜u0|Lp(RN)|k|Lθ(Ωcj0)[|un|γ1Lp(RN)+|un|γ1Lp(RN)](|un|Lp(RN)+|˜u0|Lp(RN))4|k|Lθ(Ωcj0)Mγ<ε2.

    Consequently, we obtain that

    |˜K(un)˜K(˜u0),un˜u0|<ε,

    when nn0. By the arbitrariness of ε, we get

    limn+˜K(un)˜K(˜u0),un˜u0=0.

    Noting that

    limn+˜φ(un)˜φ(˜u0),un˜u0=0.

    Then we obtain

    limn+J(un)J(˜u0),un˜u0=0.

    Due to Proposition 1.2 (ii) in [10], we have that un˜u0 in W1,H(RN). Since ˜φC1(W1,H(RN),RN), we observe that ˜u0 is a non-trivial critical point of ˜φ because ˜φ(˜u0)=c>0 and ˜φ(˜u0)=0.

    Finally, we will show that ˜u0(x)u0(x) for a.e. xRN. Indeed, it is easy to check that

    0=˜φ(˜u0)φ(u0),(˜u0u0)+=RN([|˜u0|p2˜u0|u0|p2u0](˜u0u0)++μ[|˜u0|q2˜u0|u0|q2u0](˜u0u0)++[|˜u0|p2˜u0|u0|p2u](˜u0u0)++μ[|˜u0|q2˜u0|u0|q2u0](˜u0u0)+)dxRN(˜f(x,˜u0)f(x,u0))(˜u0u0)+dx=[˜u0u0]((|˜u0|p2˜u0|u0|p2u0)(˜u0u0)++μ(|˜u0|q2˜u0|u0|q2u0)(˜u0u0)++(|˜u0|p2˜u0|u0|p2u])(˜u0u0)++μ(|˜u0|q2˜u0|u0|q2u0)(˜u0u0)+)dx,

    where (˜u0u0)+=max{0,˜u0u0} and [˜u0u0]={xRN:˜u0(x)u0(x)}. Obviously, the each term on the right hand side of above equality is non-negative, then we conclude that

    [˜u0u0](|˜u0|p2˜u0|u0|p2u)(˜u0u0)dx=0,

    which implies that ˜u0(x)=u0(x) for a.e. x{xRN:˜u0(x)u0(x)}. Consequently, ˜u0(x)u0(x), for a.e. xRN. This immediately yields

    ˜f(x,˜u0)=f(x,˜u0)and˜K(˜u0)=K(˜u0).

    Then we obtain

    φ(˜u0)=˜φ(˜u0)andφ(˜u0)=˜φ(˜u0),

    which yields that ˜u0 is a critical point of φ, and so a weak solution of problem (P). Recall that φ(˜u0)=c>0>φ(u0). Thus we see that ˜u0 is non-trivial. Therefore, ˜u0u0 and this completes the proof of Theorem 1.2.

    In this paper, we have discussed a class of sublinear double phase problem in RN. Some new criteria to guarantee that the existence of two non-trivial weak solutions for the considered problem (P) is established by using the Weierstrass Theorem and Mountain Pass Theorem. Our results are obtained to improve and supplement some corresponding results.

    All authors declare no conflicts of interest in this paper.



    [1] B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294–315. http://dx.doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007
    [2] X. F. Cao, B. Ge, W. S. Yuan, Existence and nonexistence of solutions for the double phase problem, Results Math., 76 (2021), 132. http://dx.doi.org/10.1007/S00025-021-01444-Z doi: 10.1007/S00025-021-01444-Z
    [3] W. L. Liu, G. W. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. http://dx.doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006
    [4] K. Perera, M. Squassina, Existence results for double phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. http://dx.doi.org/10.1142/S0219199717500237 doi: 10.1142/S0219199717500237
    [5] F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. http://dx.doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7
    [6] Z. H. Liu, N. S. Papageorgiou, Double phase Dirichlet problems with unilateral constraints, J. Differ. Equations, 316 (2022), 249–269. http://dx.doi.org/10.1016/j.jde.2022.01.040 doi: 10.1016/j.jde.2022.01.040
    [7] N. S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Commun. Contemp. Math., 23 (2021), 20500006. http://dx.doi.org/10.1142/S0219199720500066 doi: 10.1142/S0219199720500066
    [8] L. Gasinski, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal., 195 (2020), 111739. http://dx.doi.org/10.1016/j.na.2019.111739 doi: 10.1016/j.na.2019.111739
    [9] A. Crespo-Blanco, L. Gasinski, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equations, 323 (2022), 182–228. http://dx.doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029
    [10] W. Liu, G. Dai, Multiplicity results for double phase problems in RN, J. Math. Phys., 61 (2020), 091508. http://dx.doi.org/10.1063/5.0020702 doi: 10.1063/5.0020702
    [11] W. L. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in singular double phase problems in RN, J. Math. Anal. Appl., 507 (2022), 125762. http://dx.doi.org/10.1016/j.jmaa.2021.125762 doi: 10.1016/j.jmaa.2021.125762
    [12] R. Steglinski, Infinitely many solutions for double phase problem with unbounded potential in RN, Nonlinear Anal., 214 (2022), 112580. http://dx.doi.org/10.1016/j.na.2021.112580 doi: 10.1016/j.na.2021.112580
    [13] B. Ge, P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods, Adv. Differential Equ., 27 (2022), 1–30.
    [14] J. H. Shen, L. Y. Wang, K. Chi, B. Ge, Existence and multiplicity of solutions for a quasilinear double phase problem on the whole space, Complex Var. Elliptic, 2021. http://dx.doi.org/10.1080/17476933.2021.1988585
    [15] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [16] M. Willem, Minimax theorems, Boston, MA: Birkhauser, 1996.
  • This article has been cited by:

    1. Anouar Bahrouni, Alessio Fiscella, Patrick Winkert, Critical logarithmic double phase equations with sign-changing potentials in RN, 2025, 0022247X, 129311, 10.1016/j.jmaa.2025.129311
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1587) PDF downloads(66) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog