In the present paper, we discuss the solutions of the following double phase problem
−div(|∇u|p−2∇u+μ(x)|∇u|q−2∇u)+|u|p−2u+μ(x)|u|q−2u=f(x,u),x∈RN,
where N≥2, 1<p<q<N and 0≤μ∈C0,α(RN),α∈(0,1]. Based on the theory of the double phase Sobolev spaces W1,H(RN), we prove the existence of at least two non-trivial weak solutions.
Citation: Yanfeng Li, Haicheng Liu. A multiplicity result for double phase problem in the whole space[J]. AIMS Mathematics, 2022, 7(9): 17475-17485. doi: 10.3934/math.2022963
[1] | Shuai Li, Tianqing An, Weichun Bu . Existence results for Schrödinger type double phase variable exponent problems with convection term in $ \mathbb R^{N} $. AIMS Mathematics, 2024, 9(4): 8610-8629. doi: 10.3934/math.2024417 |
[2] | Wei Ma, Qiongfen Zhang . Existence of solutions for Kirchhoff-double phase anisotropic variational problems with variable exponents. AIMS Mathematics, 2024, 9(9): 23384-23409. doi: 10.3934/math.20241137 |
[3] | Lujuan Yu, Beibei Wang, Jianwei Yang . An eigenvalue problem related to the variable exponent double-phase operator. AIMS Mathematics, 2024, 9(1): 1664-1682. doi: 10.3934/math.2024082 |
[4] | Jae-Myoung Kim, Yun-Ho Kim . Multiple solutions to the double phase problems involving concave-convex nonlinearities. AIMS Mathematics, 2023, 8(3): 5060-5079. doi: 10.3934/math.2023254 |
[5] | Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112 |
[6] | Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad . Double controlled $ M $-metric spaces and some fixed point results. AIMS Mathematics, 2022, 7(8): 15298-15312. doi: 10.3934/math.2022838 |
[7] | Li Wang, Jun Wang, Daoguo Zhou . Concentration of solutions for double-phase problems with a general nonlinearity. AIMS Mathematics, 2023, 8(6): 13593-13622. doi: 10.3934/math.2023690 |
[8] | Samina Batul, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer, Suhad Subhi Aiadi . Best proximity point results for Prešić type nonself operators in $ b $-metric spaces. AIMS Mathematics, 2022, 7(6): 10711-10730. doi: 10.3934/math.2022598 |
[9] | Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247 |
[10] | Zehra Yucedag . Variational approach for a Steklov problem involving nonstandard growth conditions. AIMS Mathematics, 2023, 8(3): 5352-5368. doi: 10.3934/math.2023269 |
In the present paper, we discuss the solutions of the following double phase problem
−div(|∇u|p−2∇u+μ(x)|∇u|q−2∇u)+|u|p−2u+μ(x)|u|q−2u=f(x,u),x∈RN,
where N≥2, 1<p<q<N and 0≤μ∈C0,α(RN),α∈(0,1]. Based on the theory of the double phase Sobolev spaces W1,H(RN), we prove the existence of at least two non-trivial weak solutions.
In recent years, the differential equations and variational problems driven by the so-called double phase operator have been greatly studied. The existence of solutions for double phase problems on bounded domains have been greatly discussed, see for example [1,2,3,4,5,6,7,8,9]. For unbounded domains, Liu and Dai [10], Liu and Winkert [11], Robert[12], Ge and Pucci[13] and Shen, Wang, Chi and Ge [14] investigated the existence and multiplicity of solutions for double phase problem.
In this paper we study the following double phase problem:
−div(|∇u|p−2∇u+μ(x)|∇u|q−2∇u)+|u|p−2u+μ(x)|u|q−2u=f(x,u),x∈RN, |
where 1<p<q<N and
qp≤1+αN,0≤μ∈C0,α(RN),α∈(0,1]. | (1.1) |
The first work concerning the ground state solution for problem (P), was that of Liu and Dai [10]. More specifically, they studied the existence of at least three nontrivial solutions of (P) under the following assumption on f:
(h1) f∈C(RN×R,R) and there exists γ∈(q,p∗) such that
|f(x,t)|≤k(x)|t|γ−1,∀(x,t)∈RN×R, |
where p∗=NpN−p, k(x)≥0, k∈Lθ(RN)∩L∞(RN) with 1θ+γτ=1, here θ>1 and τ∈(γ,p∗].
(h2) limt→0f(x,t)|t|p−1=0 uniformly in x.
(h3) limt→+∞F(x,t)|t|q=+∞ uniformly in x.
(h4) f(x,t)|t|q−1 is strictly increasing on (−∞,0) and (0,+∞).
It must be point out that (h1) is subcritical growth condition, (h3) means that f(x,u) is superlinear at infinity; (h4) is a well-known Nehari-type condition. In the present paper, we will further study the existence of two non-trivial weak solutions of (P) under the following sublinear growth condition:
(h1)′ f∈C(RN×R,R) and there exists γ∈(1,p) such that
|f(x,t)|≤k(x)|t|γ−1,∀(x,t)∈RN×R, |
where k(x)≥0, k∈Lθ(RN)∩L∞(RN) with 1θ+γp∗=1.
(h5) There exists a C>1 large enough, c0>0, x0∈RN, 0<r<1 such that f(x,t)=0, for any x∈RN, 0<|t|≤δ and
f(x,t)≥c0|t−δ|γ−1,∀x∈Br(x0),t∈(δ,1], |
where 0<δ<min{12(c0prqγ2γ+1(Cq+rq)mμ)1p−γ,12} and mμ=max{1,supx∈B2r(x0)μ(x)}.
Remark 1.1. There are many functions f(x,t) satisfying (h1)′ and (h5). For example,
f(x,t)={0,if0≤|t|<δ,k1(x)(t−δ)γ−1,ift≥δ,k1(x)(−t−δ)γ−1,ift≤−δ, |
where k1(x)≥0, k∈C(RN)∩Lθ(RN)∩L∞(RN) with 1θ+γp∗=1 and infx∈Br(x0)k(x)≥c0>0. Indeed,
|f(x,t)|{≤k1(x)|t|γ−1,if0≤|t|≤δ,=k1(x)(t−δ)γ−1<k1(x)<k1(x)δγ−1|t|γ−1,ifδ<t<1+δ,=k1(x)(−t−δ)γ−1<k1(x)<k1(x)δγ−1|t|γ−1,if−1−δ<t<−δ,=k1(x)<k1(x)|t|γ−1,if|t|=1+δ,<k1(x)|t|γ−1,if|t|>1+δ. |
Hence, we have |f(x,t)|≤k(x)|t|γ−1 with k(x)=k1(x)(1+1δγ−1) and f(x,t)=k1(x)(t−δ)γ−1≥(t−δ)γ−1infx∈Br(x0)k1(x)=c0(t−δ)γ−1 for all x∈Br(x0) and δ<t≤1.
The main result of this paper establishes the following Theorem 1.2.
Theorem 1.2. Assume that hypotheses (1.1), (h1)′ and (h5) hold. Then the problem (P) has at least two distinct nontrivial weaksolutions u0,˜u0 in W1,H(RN) and ˜u0(x)≤u0(x) for a.e. x∈RN.
Sketch of the proof. We introduce the following functions
H(x,t)=tp+μ(x)tq |
for all (x,t)∈RN×[0,+∞). Now, let us consider the Musielak-Orlicz space
LH(RN)={u:RN→Rismeasurableand∫RNH(x,|u|)dx<+∞} |
endowed with the norm
|u|H=inf{τ>0:∫RNH(x,|u|τ)dx≤1} |
and the usual Musielak-Orlicz Sobolev space
W1,H(RN)={u∈LH(RN):|∇u|∈LH(RN)} |
equipped with the Luxemburg norm given by
‖u‖=inf{τ>0:∫RN(H(x,|∇u|τ)+H(x,|u|τ))dx≤1}. |
Under Assumption 1.1, we have the following facts:
W1,H(RN)isseparablereflexiveBanachspace | (1.2) |
(see [10,Theorem 2.7 (ii)]) and the following continuous embedding hold
W1,H(RN)↪Lϑ(RN)forallϑ∈[p,p∗] | (1.3) |
(see [10,Theorem 2.7 (iii)]); and from [10,Proposition 2.6] we directly obtain that
min{‖u‖p,‖u‖q}≤ρ(u)≤max{‖u‖p,‖u‖q},∀u∈W1,H(RN), | (1.4) |
where ρ(u):=∫RN[H(x,|∇u|)+H(x,|u|)]dx.
We introduce the following two functionals in W1,H(RN):
J(u)=∫RN(1p|∇u|p+μ(x)q|∇u|q+1p|u|p+μ(x)q|u|q)dx,K(u)=∫RNF(x,u)dx, |
where F(x,t)=∫t0f(x,s)ds. Consider the C1-functional φ:W1,H(RN)→R defined by
φ(u)=J(u)−K(u). |
We split the proof into several steps.
Step 1. The functional φ is weakly lower semi-continuous in W1,H(RN).
First, by Proposition 3.1 (ii) in [10], we known that K is weakly continuous in W1,H(RN). Thus, it is enough to show that functional J is weakly lower semi-continuous in W1,H(RN). Let un⇀u weakly in W1,H(RN). Since J is convex, we deduced that the following inequality holds:
⟨J′(u),un−u⟩≤J(un)−J(u). |
Then we get that
0=lim infn→+∞⟨J′(u),un−u⟩≤lim infn→+∞[J(un)−J(u)]=lim infn→+∞J(un)−J(u), |
which implies that
J(u)≤lim infn→+∞J(un). |
Step 2. The functional φ is coercive.
Set M=max{1,(2p|k|∞γ)1p−γ}. Then for any u∈W1,H(RN), we have
φ(u)=∫RN(1p|∇u|p+μ(x)q|∇u|q+1p|u|p+μ(x)q|u|q)dx−∫RNF(x,u)dx=∫RN(1p|∇u|p+μ(x)q|∇u|q+12p|u|p+μ(x)q|u|q)dx+∫Ω1(12p|u|p−F(x,u))dx+∫Ω2(12p|u|p−F(x,u))dx, | (1.5) |
where Ω1={x∈RN:|u(x)|≥M} and Ω2=RN∖Ω1.
On the one hand, it is easy to compute directly that
∫Ω1(12p|u|p−F(x,u))dx≥∫Ω1|u|p(12p−|k|∞γ|u|γ−p)dx≥0. | (1.6) |
On the other hand, by using Young's inequality, for ε∈(0,1) we estimate
k(x)|u(x)|γγ≤1θγ(k(x)ε)θ+1p∗(ε|u(x)|γ)p∗γ. |
Then we deduce that
∫Ω2(12p|u|p−F(x,u))dx≥∫Ω2(|u|p2p−k(x)|u|γγ)dx≥∫Ω2(|u|p2p−1θγ(k(x)ε)θ−1p∗(ε|u(x)|γ)p∗γ)dx=∫Ω2(|u|p∗|u|p−p∗2p−k(x)θθγεθ−1p∗εp∗γ|u(x)|p∗)dx≥∫Ω2(|u|p∗Mp−p∗2p−k(x)θθγεθ−1p∗εp∗γ|u(x)|p∗)dx. |
Let 0<ε<min{1,(p∗Mp−p∗2p)γp∗}. Then
∫Ω2(12p|u|p−F(x,u))dx≥−∫Ω2k(x)θθγεθdx≥−C0. | (1.7) |
Consequently, using (1.6) and (1.7) in (1.5) finally yields we obtain that
φ(u)≥12q∫RN(|∇u|p+μ(x)|∇u|q+|u|p+μ(x)|u|q)dx−C0, |
so that by (1.4) it follows that φ(u)→+∞ as ‖u‖→+∞.
Therefore, using Steps 1 and 2, and applying the Weierstrass Theorem, we deduce that there exists a global minimizer u0∈W1,H(RN) of φ. The following Step 3 to show that u0≠0.
Step 3. We have φ(u0)=infu∈W1,H(RN)φ(u)<0.
Let ξ∈C∞0(B2r(x0)) such that ξ(x)≡1, x∈Br(x0); 0≤ξ(x)≤1, |∇ξ(x)|≤Cr, x∈RN. Denote t=2δ, then by assumption (h5), we obtain
∫RNF(x,tξ)dx=∫B2r(x0)F(x,tξ)dx=∫B2r(x0)∫tξ0f(x,s)dsdx≥c0∫B2r(x0)∫2δδ(s−δ)γ−1dsdx=c0∫B2r(x0)1γ(t2)γdx=c0γ2γtγ|B2r(x0)|, |
and so
φ(tξ)=∫B2r(x0)(1p|∇tξ|p+μ(x)q|∇tξ|q+1p|tξ|p+μ(x)q|tξ|q)dx−∫B2r(x0)F(x,tξ)dx≤tppmμ∫B2r(x0)(|∇ξ|p+|∇ξ|q+|ξ|p+|ξ|q)dx−c0γ2γtγ|B2r(x0)|≤2tpp(1+Cqrq)mμ|B2r(x0)|−c0γ2γtγ|B2r(x0)|<0. |
It follows from Step 3 that u0∈W1,H(RN) is a non-trivial weak solution of problem (P). It remains to show that there exists another non-trivial weak solution of problem (P).
Step 4. There exists a critical point ˜u0∈W1,H(RN) of φ.
Let
˜f(x,t)={f(x,t),if|t|≤|u0(x)|,f(x,u0(x)),if|t|>|u0(x)|, |
and ˜F(x,t)=∫t0˜f(x,s)ds. Then it follows from f∈C(RN×R,R) that ˜f(x,t):RN×R→R is a Carathéodory function and
|˜f(x,t)|≤k(x)|t|γ−1. |
Similarly to Proposition 3.1 (i) in [10], we get that the functional
˜K(u)=∫RN˜F(x,u)dx |
is of class C1(W1,H(RN),R), and
⟨˜K′(u),v⟩=∫RN˜f(x,u)vdx |
for all u,v∈W1,H(RN). Next, we define the functional ˜φ:W1,H(RN)→R by
˜φ(u)=J(u)−˜K(u). |
The same arguments as those used for functional φ imply that ˜φ∈C1(W1,H(RN),R) and ˜φ is coercive. And by the definition of ˜φ, we get
˜φ(u0)=φ(u0)<0. |
In the following, we determine a critical point ˜u0∈W1,H(RN) of ˜φ, such that ˜φ(˜u0)>0 via the Mountain Pass Theorem.
First, we will show that there exists 0<r0<min{1,‖u0‖} such that
infv∈W1,H(RN);‖v‖=r0˜φ(v)>0=˜φ(0). | (1.8) |
Using (h1)′ and (h5), for any u∈W1,H(RN) with 0<‖u‖<min{1,‖u0‖} we have
˜φ(u)=∫RN(1p|∇u|p+μ(x)q|∇u|q+1p|u|p+μ(x)q|u|q)dx−∫RN˜F(x,u)dx≥1q‖u‖q−∫{x∈RN:|u(x)|>δ}˜F(x,u)dx≥1q‖u‖q−∫Ω3˜F(x,u(x))dx−∫Ω4˜F(x,u(x))dx≥1q‖u‖q−∫Ω3k(x)γ|u(x)|γdx−∫Ω4k(x)γ|u0(x)|γdx≥1q‖u‖q−2δγ−qγ∫{x∈RN:|u(x)|>δ}k(x)|u(x)|qdx, | (1.9) |
where Ω3={x∈RN:|u(x)|≤|u0(x)|}∩{x∈RN:|u(x)|>δ}, Ω4={x∈RN:|u(x)|>|u0(x)|}∩{x∈RN:|u(x)|>δ}. Since q<p∗, then there exists q<τ<p∗ such that W1,H(RN) is continuously embedded in Lτ(RN). Thus, there exists a positive constant Cτ such that
|u|τ≤Cτ‖u‖,∀u∈W1,H(RN). |
Using Hölder's inequality and the above estimate, we obtain
∫{x∈RN:|u(x)|>δ}k(x)|u(x)|qdx≤(∫{x∈RN:|u(x)|>δ}|k(x)|τ′dx)1τ′(∫{x∈RN:|u(x)|>δ}|u(x)|τdx)qτ≤(∫{x∈RN:|u(x)|>δ}|k(x)|τ′dx)1τ′Cqτ‖u‖q, | (1.10) |
where 1τ′+qτ=1.
By inequalities (1.9) and (1.10), we infer that it is enough to show that
∫{x∈RN:|u(x)|>δ}|k(x)|τ′dx→0,as‖u‖→0 |
in order to prove (1.8). Indeed, taking into account the fact that k∈L∞(RN), yields
δq∫{x∈RN:|u(x)|>δ}(k(x))τ′dx≤∫{x∈RN:|u(x)|>δ}(k(x))τ′|u(x)|qdx≤|k|τ′∞∫{x∈RN:|u(x)|>δ}|u(x)|qdx≤|k|τ′∞∫RN|u(x)|qdx≤|k|τ′∞Cqq‖u‖q, |
which implies that
∫{x∈RN:|u(x)|>δ}|k(x)|τ′dx→0,as‖u‖→0. |
In view of Mountain Pass Theorem (see Ambrosetti-Rabinowitz[15] with the variant given by Theorem 1.15 in Willem[16]), there exists a sequence {un}⊂W1,H(RN), such that
˜φ(un)→c>0and˜φ′(un)→0, |
where c=infλ∈Γmaxt∈[0,1]˜φ(λ(t)), and
Γ={λ∈C([0,1],W1,H(RN)):λ(0)=0,λ(1)=u0}. |
Since the functional ˜φ is coercive, we obtain that {un} is bounded in W1,H(RN), and passing to a subsequence, still denoted by {un}, we may assume that there exists a ˜u0∈W1,H(RN), such that un⇀˜u0 weakly in W1,H(RN). By (1.3), we deduce that
W1,H(RN)↪Lp∗(RN). |
Thus, there is a positive constant M>0 such that
max{|un|γ,|un|p∗,|˜u0|γ,|˜u0|p∗}≤M. |
We first will prove that the un→˜u0 in W1,H(RN). Recall that
⟨J′(un)−J′(˜u0),un−˜u0⟩=⟨˜φ′(un)−˜φ′(˜u0),un−˜u0⟩+⟨˜K′(un)−˜K′(˜u0),un−˜u0⟩. |
Then it is enough to show that
limn→+∞⟨˜K′(un)−˜K′(˜u0),un−˜u0⟩=0. |
Denote Ωj={x∈RN:|x|≤j} and Ωcj=RN∖Ωj, j∈N. Then by the fact that k∈Lθ(RN), we deduce that
|k|Lθ(Ωcj)→0asj→+∞, |
and so for given ε∈(0,1), there exists j0>0 big enough such that
|k|Lθ(Ωcj0)<ε8Mγ. |
We also known that un→˜u0 in Lγ(Ωj0) because the embedding W1,H(Ωj0)↪Lγ(Ωj0) is compact. It follows that there exists n0>0, such that
|un−˜u0|Lγ(Ωj0)<ε4|k|∞Mγ−1,∀n>n0. |
By a straightforward computation we deduce that
|⟨˜K′(un)−˜K′(˜u0),un−˜u0⟩|=|∫RN(˜f(x,un)−˜f(x,˜u0)(un−˜u0)dx|≤∫Ωj0k(x)(|un|γ−1+|˜u0|γ−1)|un−˜u0|dx+∫Ωcj0k(x)(|un|γ−1+|˜u0|γ−1)|un−˜u0|dx=:I1+I2. |
Applying Hölder's inequality and condition (h1)′, we have
I1≤|k|∞∫Ωj0(|un|γ−1+|˜u0|γ−1)|un−˜u0|dx≤|k|∞[||un|γ−1|Lγγ−1(Ωj0)+||un|γ−1|Lγγ−1(Ωj0)]|un−˜u0|Lγ(Ωj0)≤|k|∞[|un|γ−1Lγ(RN)+|un|γ−1Lγ(RN)]|un−˜u0|Lγ(Ωj0)≤2|k|∞Mγ−1|un−˜u0|Lγ(Ωj0)<ε2 |
and
I2≤∫Ωcj0k(x)(|un|γ−1+|˜u0|γ−1)|un−˜u0|dx≤|k|Lθ(Ωcj0)[||un|γ−1|Lp∗γ−1(RN)+||un|γ−1|Lp∗γ−1(RN)]|un−˜u0|Lp∗(RN)≤|k|Lθ(Ωcj0)[|un|γ−1Lp∗(RN)+|un|γ−1Lp∗(RN)](|un|Lp∗(RN)+|˜u0|Lp∗(RN))≤4|k|Lθ(Ωcj0)Mγ<ε2. |
Consequently, we obtain that
|⟨˜K′(un)−˜K′(˜u0),un−˜u0⟩|<ε, |
when n≥n0. By the arbitrariness of ε, we get
limn→+∞⟨˜K′(un)−˜K′(˜u0),un−˜u0⟩=0. |
Noting that
limn→+∞⟨˜φ′(un)−˜φ′(˜u0),un−˜u0⟩=0. |
Then we obtain
limn→+∞⟨J′(un)−J′(˜u0),un−˜u0⟩=0. |
Due to Proposition 1.2 (ii) in [10], we have that un→˜u0 in W1,H(RN). Since ˜φ∈C1(W1,H(RN),RN), we observe that ˜u0 is a non-trivial critical point of ˜φ because ˜φ(˜u0)=c>0 and ˜φ′(˜u0)=0.
Finally, we will show that ˜u0(x)≤u0(x) for a.e. x∈RN. Indeed, it is easy to check that
0=⟨˜φ′(˜u0)−φ′(u0),(˜u0−u0)+⟩=∫RN([|∇˜u0|p−2∇˜u0−|∇u0|p−2∇u0]∇(˜u0−u0)++μ[|∇˜u0|q−2∇˜u0−|∇u0|q−2∇u0]∇(˜u0−u0)++[|˜u0|p−2˜u0−|u0|p−2u](˜u0−u0)++μ[|˜u0|q−2˜u0−|u0|q−2u0](˜u0−u0)+)dx−∫RN(˜f(x,˜u0)−f(x,u0))(˜u0−u0)+dx=∫[˜u0≥u0]((|∇˜u0|p−2∇˜u0−|∇u0|p−2∇u0)∇(˜u0−u0)++μ(|∇˜u0|q−2∇˜u0−|∇u0|q−2∇u0)∇(˜u0−u0)++(|˜u0|p−2˜u0−|u0|p−2u])(˜u0−u0)++μ(|˜u0|q−2˜u0−|u0|q−2u0)(˜u0−u0)+)dx, |
where (˜u0−u0)+=max{0,˜u0−u0} and [˜u0≥u0]={x∈RN:˜u0(x)≥u0(x)}. Obviously, the each term on the right hand side of above equality is non-negative, then we conclude that
∫[˜u0≥u0](|˜u0|p−2˜u0−|u0|p−2u)(˜u0−u0)dx=0, |
which implies that ˜u0(x)=u0(x) for a.e. x∈{x∈RN:˜u0(x)≥u0(x)}. Consequently, ˜u0(x)≤u0(x), for a.e. x∈RN. This immediately yields
˜f(x,˜u0)=f(x,˜u0)and˜K(˜u0)=K(˜u0). |
Then we obtain
φ(˜u0)=˜φ(˜u0)andφ′(˜u0)=˜φ′(˜u0), |
which yields that ˜u0 is a critical point of φ, and so a weak solution of problem (P). Recall that φ(˜u0)=c>0>φ(u0). Thus we see that ˜u0 is non-trivial. Therefore, ˜u0≠u0 and this completes the proof of Theorem 1.2.
In this paper, we have discussed a class of sublinear double phase problem in RN. Some new criteria to guarantee that the existence of two non-trivial weak solutions for the considered problem (P) is established by using the Weierstrass Theorem and Mountain Pass Theorem. Our results are obtained to improve and supplement some corresponding results.
All authors declare no conflicts of interest in this paper.
[1] |
B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294–315. http://dx.doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007
![]() |
[2] |
X. F. Cao, B. Ge, W. S. Yuan, Existence and nonexistence of solutions for the double phase problem, Results Math., 76 (2021), 132. http://dx.doi.org/10.1007/S00025-021-01444-Z doi: 10.1007/S00025-021-01444-Z
![]() |
[3] |
W. L. Liu, G. W. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. http://dx.doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006
![]() |
[4] |
K. Perera, M. Squassina, Existence results for double phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. http://dx.doi.org/10.1142/S0219199717500237 doi: 10.1142/S0219199717500237
![]() |
[5] |
F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. http://dx.doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7
![]() |
[6] |
Z. H. Liu, N. S. Papageorgiou, Double phase Dirichlet problems with unilateral constraints, J. Differ. Equations, 316 (2022), 249–269. http://dx.doi.org/10.1016/j.jde.2022.01.040 doi: 10.1016/j.jde.2022.01.040
![]() |
[7] |
N. S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Commun. Contemp. Math., 23 (2021), 20500006. http://dx.doi.org/10.1142/S0219199720500066 doi: 10.1142/S0219199720500066
![]() |
[8] |
L. Gasinski, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal., 195 (2020), 111739. http://dx.doi.org/10.1016/j.na.2019.111739 doi: 10.1016/j.na.2019.111739
![]() |
[9] |
A. Crespo-Blanco, L. Gasinski, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equations, 323 (2022), 182–228. http://dx.doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029
![]() |
[10] |
W. Liu, G. Dai, Multiplicity results for double phase problems in RN, J. Math. Phys., 61 (2020), 091508. http://dx.doi.org/10.1063/5.0020702 doi: 10.1063/5.0020702
![]() |
[11] |
W. L. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in singular double phase problems in RN, J. Math. Anal. Appl., 507 (2022), 125762. http://dx.doi.org/10.1016/j.jmaa.2021.125762 doi: 10.1016/j.jmaa.2021.125762
![]() |
[12] |
R. Steglinski, Infinitely many solutions for double phase problem with unbounded potential in RN, Nonlinear Anal., 214 (2022), 112580. http://dx.doi.org/10.1016/j.na.2021.112580 doi: 10.1016/j.na.2021.112580
![]() |
[13] | B. Ge, P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods, Adv. Differential Equ., 27 (2022), 1–30. |
[14] | J. H. Shen, L. Y. Wang, K. Chi, B. Ge, Existence and multiplicity of solutions for a quasilinear double phase problem on the whole space, Complex Var. Elliptic, 2021. http://dx.doi.org/10.1080/17476933.2021.1988585 |
[15] |
A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
![]() |
[16] | M. Willem, Minimax theorems, Boston, MA: Birkhauser, 1996. |
1. | Anouar Bahrouni, Alessio Fiscella, Patrick Winkert, Critical logarithmic double phase equations with sign-changing potentials in RN, 2025, 0022247X, 129311, 10.1016/j.jmaa.2025.129311 |