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Abstract: In the present paper, we discuss the solutions of the following double phase problem

—div(Vul” Vu + u(O)IVul” Va) + Jul u + p(0)lulu = f(x,u), x € RV,

0,a

where N > 2,1 < p<g<Nand0 < u € C"(RY), a € (0,1]. Based on the theory of the double
phase Sobolev spaces W (RY), we prove the existence of at least two non-trivial weak solutions.
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1. Introduction

In recent years, the differential equations and variational problems driven by the so-called double
phase operator have been greatly studied. The existence of solutions for double phase problems on
bounded domains have been greatly discussed, see for example [1-9]. For unbounded domains, Liu
and Dai [10], Liu and Winkert [11], Robert [12], Ge and Pucci [13] and Shen, Wang, Chi and Ge [14]
investigated the existence and multiplicity of solutions for double phase problem.

In this paper we study the following double phase problem:

—div([Vul” Vi + u()|Vul V) + |ul” " u + gl u = f(x,u), x € RV, (P)

where 1 < p < g < N and

T1+2 0<pec”®Y), ae®1]. (1.1)
p N

The first work concerning the ground state solution for problem (P), was that of Liu and Dai [10].
More specifically, they studied the existence of at least three nontrivial solutions of (P) under the
following assumption on f:
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(h) f € CRY x R, R) and there exists y € (g, p*) such that

1f(x, 0l < kol
=L k(x)>0,keL (RN) NL (RN) with 1 5t 7

0 uniformly in x.

Y(x,t) € RY xR,

where p* =
(h, )hm (x i

W

=1,here 8 > 1 and 7 € (y, p*].

(h3) hm E I(“lf,’) = +oo uniformly in x.
—+00

(ha) f =
It must be point out that (4;) is subcritical growth condition, (43) means that f(x, u) is superlinear
at infinity; (h4) is a well-known Nehari-type condition. In the present paper, we will further study the

existence of two non-trivial weak solutions of (P) under the following sublinear growth condition:
(h) f € CRY xR, R) and there exists y € (1, p) such that

f 0l < k@l

where k(x) > 0, k € L'(RY) N L™ (RY) with £ + £ = 1.
(hs) There exists a C > 1 large enough, ¢, > 0, x, € RN, 0 < r < 1 such that f(x,?) = 0, for any
xeRN,0<f| <6and

is strictly increasing on (—oo, 0) and (0, 4+00).

Y(x,1) € RY xR,

fx,ty>clt—6]"', ¥x € B (x,),t € (5 1],

7

) ,%}andmﬂ:max{l, sup  u(x)}.
XEBzr(xo)

q
copr

. 1
where 0 < § < mm{—(—
2 yZY+l(Cq+rq)mH

Remark 1.1. There are many functions f(x, ¢) satisfying (h;)" and (hs). For example,

0, if0<|f <S5,
f(x7 t) = kl (.X')(l - 6‘))’—1’ if t = 67
ki(x) (=t =67, ifr< -6,

where k;(x) > 0, k € CRY) N L'RY) N L™ (RY) w1th + 7 =1land inf k(x) > cy> 0. Indeed,

X€EB,(xg)
< k()" if 0 <] <o,
=k (x)(t -0 < k(x) < (le ifo<t<1+6,
DI o=t = 67 < () < 1()|t|ylif—1—5<t<—5,
= k(%) < k(0" if 7] =1+,
< k()" if |t >1+0.

Hence, we have |f(x, )| < k(x)|f~! with k(x) = k;(x)(1 + 5 Lyand f(x,0) = ki(x)(t =6 > (t -
o)t 1nf )kl(x) =co(t—0) ' forallx € B(x,)and 6 <t < 1.

V Xo

The main result of this paper establishes the following Theorem 1.2.
Theorem 1.2. Assume that hypotheses (1.1), (hy)" and (hs) hold. Then the problem (P) has at least two

distinct nontrivial weak solutions u,, u, in W]’H(RN ) and u,(x) < u,(x) for a.e. x € RV,
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Sketch of the proof. We introduce the following functions
H(x,t) =17 + u(x)t?

for all (x,) € RN x [0, +00). Now, let us consider the Musielak-Orlicz space

LH(RN) ={u: RY — R is measurable and H(x, |ul)dx < +o0}
RN

endowed with the norm
lul, =inf{r>0: f H(x, M)d)c <1}
RN T

and the usual Musielak-Orlicz Sobolev space
W Ry = {ueL"®RY): |Vul € L"(RY)}
equipped with the Luxemburg norm given by

lul| = inf {T >0 : f (H(x, @) + H(x, M))a’x <1}
RN T T

Under Assumption 1.1, we have the following facts:
w’ (R") is separable reflexive Banach space
(see [10, Theorem 2.7 (ii)]) and the following continuous embedding hold
W ®RY) < L' RY) for all 9 € [p, p']
(see [10, Theorem 2.7 (ii1)]); and from [10, Proposition 2.6] we directly obtain that
min{[lull”, i} < p(u) < max{lull”, |}, Yu € W™ ®RY),

where p(u) := fRN [H(x,|Vul) + H(x, |ul)]dx.

We introduce the following two functionals in w (RM) :

JQu) = f (21vul + 2w + L+ 2,
RV P q P q

Ku) = f F(x,u)dx,
RN

where F(x,1) = fo t f(x, s)ds. Consider the C '_functional Q: w (RY) — R defined by

() = J(u) — Ku).

We split the proof into several steps.
Step 1. The functional ¢ is weakly lower semi-continuous in W RN).

(1.2)

(1.3)

(1.4)
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First, by Proposition 3.1 (ii) in [10], we known that K is weakly continuous in w (RM). Thus, it is
enough to show that functional J is weakly lower semi-continuous in W (RY). Let u, — u weakly in
W (RM). Since J is convex, we deduced that the following inequality holds:

J' (), uy — uy < J(uy) — J(u).

Then we get that
0 =liminf(J'(u), u, — u)
n—+oo
<liminf[J(u,) — J(u)]
n—+oo
=liminf J(u,) — J(u),
n—+co

which implies that
J(u) < liminf J(u,).
n—+oo

Step 2. The functional ¢ is coercive.
1

Set M = max {1, (%)W7 } Then for any u € W™ (RY), we have

R R ) e IR
RN

-6 |V|+’Q|V|+ ||+@||) (15)
R 2p q

| B
+ fg | —|u| ~ F(x, u))dx+ j; 2 (ZM —F(x,u))dx

where Q; = {x € RY : Ju(x)| > M} and Q, = RM\Q,.
On the one hand, it is easy to compute directly that

fg(%lulp—F(x,u))dxzf lu |(i—&| " )dx > 0. (1.6)

On the other hand, by using Young’s inequality, for &€ € (0, 1) we estimate

e l%(em(x)m”f.

Y ~ Oy
Then we deduce that
1 p P k Y
f (=l = F(x,u))dx > f (M_M)dx
Q 2p o 2p y
ulP 1 k(x)\o 1 L
Zf (5, 5 () — 5 el Jax
Q 2p 9’)’ &£ p
W Wl k15
:f( — g~ e )" Jda
(973 2p Oye p
W M7k 12
Zf( - — - —& ul" )dx
Q 2]7 9’)/8 p
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X
LetO<e< min{l,(p*ﬁg;p )’ } Then

1, k(x)’
ff;z (5|u| - F(x, u))dx > —f Bre dx = =Cy. (1.7)

Consequently, using (1.6) and (1.7) in (1.5) finally yields we obtain that

1 p q P q
o) 25 f (1Vel” + IVl + lul” + p()lul)dx - C,,

so that by (1.4) it follows that ¢(u#) — +oo as |[u|]| — +oo.
Therefore, using Steps 1 and 2, and applying the Weierstrass Theorem, we deduce that there exists
a global minimizer u, € W"H(RN ) of . The following Step 3 to show that u, # 0.

Step 3. We have o(u,) = inf ¢(u) <0.
uew" ®RN)

Let ¢ € C:(Bzr(xo)) such that é(x) = 1, x € B/(x,); 0 < &(x) < 1, |[VE(x)| < &, x € RY. Denote
t = 20, then by assumption (hs), we obtain

f F(x,t&)dx = f F(x,t&)dx = f f f(x, s)dsdx
BN By, (xg) By, (xg)
f f (s—0)" 'dsdx

By, (xp)

2r

and so

1) = [ ( )(EIVREI + L0l + el + 5 g ax

- f F(x,t&)dx

By ()

£
<—m, f
p B, (x0)

2t c’
S?(l + 7)m#|192,_(x0)| -
It follows from Step 3 that u, € Wl’H(RN ) is a non-trivial weak solution of problem (P). It remains

to show that there exists another non-trivial weak solution of problem (P).

2r

Step 4. There exists a critical point 1, € WI’H(RN ) of ¢.
Let
— X, 1), if f] < |u, (%),
Fup 2 [0 <)
S uy(x)), it |1 > |uy (0],

and F(x,7) = [ ' 7(x, s)ds. Then it follows from f € C(RY x R, R) that f(x,r) : RY xR — R is a
Carathéodory function and

If(x, 0l < kol
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Similarly to Proposition 3.1 (i) in [10], we get that the functional

f(u) = f f(x, u)dx

R

is of class C' (W™ (RY),R), and
(R (), v) = f e, wpvex

for all u,v € W™ (RY). Next, we define the functional @ : W' (RY) - R by
@(u) = J(u) - K(u).

The same arguments as those used for functional ¢ imply that ¢ € C 1 (WHH(RN),R) and @ is coercive.
And by the definition of ¢, we get
o(u,) = ¢(u,) < 0.
In the following, we determine a critical point %y € W' (R") of &, such that ¢(u,) > 0 via the Mountain
Pass Theorem.
First, we will show that there exists 0 < r, < min{1, [|l#,||} such that

inf o(v) > 0 = ¢(0). (1.8)

vew " ®Nyilvll=r,

Using (hy)" and (hs), for any u € WI’H(RN) with 0 < ||u|| < min{l, ||y ||} we have
— 1 P ( ) ( ) ot
Bl = f (=Ivul’ + ’“‘—|V L+ “—| )z - f Flx,w)dx
RN P P RN

1
2—||u||q - f F(x, u)dx
q {x€RN:[u(x)|>6}

Loy (= _
> L - f Fx, u(x))dx - f Fx, u(x))dx (1.9)
q Q3 Q

1 p k k(x
z—nun—f@u»d—f M ol dx

q Q Y o 7

1., 257

>—||ul| = —— f k(0)lu(x)[ dx,
q Y {x€RN:|u(x)|>6}

where Q3 = {x € RV : [u(x)| < lu,(O)} N {x € RN : Ju(x)| > 6}, Q4 = {x € RN : |u(x)| > |u,(x)]} N {x €
N lu(x)| > 6}. Since g < p*, then there exists ¢ < T < p* such that WI’H(RN ) is continuously
embedded in L'(RY). Thus, there exists a positive constant C. such that

ul. < C.llull, Yue W™ ®R").

Using Holder’s inequality and the above estimate, we obtain

f k(o) u(x)| dx
{x€RN:|u(x)|>6}

1

<( f kol dx)” ( f ()l dx) (1.10)
{x€RN:|u(x)|>5} {xeRN:|u(x)|>6)

1
o Ty e
<( f k)l dx) Cllull”,
{x€RN:|u(x)|>6}
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where L + % =1.
By inequalities (1.9) and (1.10), we infer that it is enough to show that

f k(x)|" dx — 0, as [lull > 0
{x€RN:|u(x)|>6}

in order to prove (1.8). Indeed, taking into account the fact that k € L™ (R"), yields

6 f (k(x)) dx < f (k(x))” ()| dx
{xeRNzlu(x)|>6} {xeRNzlu(x)|>6}

<k ()|’ dx

{xeRN:|u(x)|>5}

o q L’ q
<Ikl, u(o)| dx < k| [C llull",
RN

which implies that
f k() dx — 0, as ||ull — O.
(xRN :|u(x)|>5}

In view of Mountain Pass Theorem (see Ambrosetti-Rabinowitz [15] with the variant given by
Theorem 1.15 in Willem [16]), there exists a sequence {u,} C WI’H(RN ), such that

o(u,) — ¢ >0 and ¢'(u,) = 0,

h = inf [
where ¢ 1ﬂr€1r trel%&ic] ©(A(1)), and

I'={1eC(0,1],W" " ®R")): A0) = 0,A(1) = u,}.

Since the functional ¢ is coercive, we obtain that {u,} is bounded in W]’H(RN ), and passing to a
subsequence, still denoted by {u,}, we may assume that there exists a u, € w (RM), such that u,, — u,
weakly in W™ (RY). By (1.3), we deduce that

W RY) o L ®Y).
Thus, there is a positive constant M > 0 such that
max{[ual ., [l .., [ ly, 14, ],} < M.
We first will prove that the u, — u, in w (RM). Recall that

() = I @y)s ty = Uy =@ () — @ @y ),y — )
K () — K (@1,), ty — 0y )-

Then it is enough to show that

lim (K'(u,) — K'(@,), u, —10,) = 0.
n—+oo

AIMS Mathematics Volume 7, Issue 9, 17475-17485.
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Denote Q, = {x € R" : [x| < j} and Qj = R"\Q,, j € N. Then by the fact that k € L' (RY), we deduce
that

k|, . = 0as j— +oo,

L'@)

and so for given ¢ € (0, 1), there exists j, > 0 big enough such that

&
kK, <-—.
| |L9(Q;O) SM

We also known that u, — u, in Ly(QjO) because the embedding WI’H(Q_I,O) — LV(Q/.O) is compact. It
follows that there exists n, > 0, such that

— &
uolLy(QjO) < W’
By a straightforward computation we deduce that

KK () — K' (@), ty — )|

=) f (f(x, u,) — f(x,ﬁo)(un —u,)dx

lu,, — VYn > ny.

< f k() (™ + Tty — T, |dx
Q.

J0

+ f KOl + 1, lat, — T ldx

Q.
Jo

=:L+DL.

Applying Holder’s inequality and condition (k,)’, we have

Iy <l f Q™+ Pty Tl
Q.
./0

v-1 y-1 —_—
<kleolflead ™| | ]lun—uOLymj)
e, ) e, ) 0
0 Jo
—1 y-1 —~
<l [l
[l + ol B =Tl

<Nkl M, — £

< —_
ol

L (Qjo) 2
and

h< f Kl + 7, ity — T ldx

Q.
Yo
y—1 y-1 —_
<l B [ O e A
0 RN L) AR L)
=S 7 S A (17 B A
L@ 17" @y @y 0 @y
<4k, . M
L(Qjo)
&
<-—.
2
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Consequently, we obtain that _ _
|<K/(un) - K,(’:Zo)7 Uy _Fl:{()>| <g,
when n > n,. By the arbitrariness of €, we get
lim (K’ (u,) — K' (), u, = ;) = 0.
n—+co
Noting that
nl_igloo<al(un) - F‘;’(ﬁo)a Uy _FI:[O> =0.
Then we obtain
lim (J'(u,) — J'(u,), u, — u,y = 0.
n—+oo

Due to Proposition 1.2 (ii) in [10], we have that u, — @, in W (RV). Since g € C'(W""(RY),RV), we
observe that u, is a non-trivial critical point of ¢ because ¢(,) = ¢ > 0 and ¢'(u,) = 0.
Finally, we will show that 7, (x) < u,(x) for a.e. x € R¥. Indeed, it is easy to check that

0 =@ @,) — ¢'(u,), @ — 1,)")
- f ) (VeI Vi, — Vu, | Vu, IV @, — u,)*
+y[ﬂiVﬁo|qzvu0 — \Vu, | Vu, IV, - u,)*
+[0a, |, — |, @, - )t
palli T, — |, )G, — )" )dx
- fR (Fl ) = fxu)Gr, — u,)* dx
- f[_ (997, = 90, ¥0,)¥, )

+u(ViL, |V, — V| V)V, — )t

R A ) CATA

ity T = Ty )@, = ) )dx,
where (&, — u,)* = max{0,%, — u,} and [u, > u,] = {x € RY : % (x) > u,(x)}. Obviously, the each term
on the right hand side of above equality is non-negative, then we conclude that

p—2— -2
f (I’Joll u, — |uo|p u)(lj[() - uo)dx = O’
[ty 2,

which implies that u(x) = u,(x) for a.e. x € {x € RV : %, (x) > u,(x)}. Consequently, u,(x) < u,(x), for
a.e. x € R, This immediately yields
fx) = f(x, %) and K@) = K(,).
Then we obtain
e(u,) = ¢(u,) and ¢'(u,) = ¢'(u,),
which yields that u, is a critical point of ¢, and so a weak solution of problem (P). Recall that ¢(u,) =

¢ > 0> ¢(u,). Thus we see that u, is non-trivial. Therefore, u, # u, and this completes the proof of
Theorem 1.2. O
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2. Conclusions

In this paper, we have discussed a class of sublinear double phase problem in R". Some new criteria

to guarantee that the existence of two non-trivial weak solutions for the considered problem (P) is
established by using the Weierstrass Theorem and Mountain Pass Theorem. Our results are obtained
to improve and supplement some corresponding results.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1.

10.

11.

12.

B. Ge, D. J. Lv, J. F Lu, Multiple solutions for a class of double phase problem
without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294-315.
http://dx.doi.org/10.1016/j.na.2019.06.007

X. F. Cao, B. Ge, W. S. Yuan, Existence and nonexistence of solutions for the double phase
problem, Results Math., 76 (2021), 132. http://dx.doi.org/10.1007/S00025-021-01444-Z

W. L. Liu, G. W. Dai, Existence and multiplicity results for double phase problem, J. Differ.
Equations, 265 (2018), 4311-4334. http://dx.doi.org/10.1016/j.jde.2018.06.006

K. Perera, M. Squassina, Existence results for double phase problems via Morse theory, Commun.
Contemp. Math., 20 (2018), 1750023. http://dx.doi.org/10.1142/S0219199717500237

F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura
Appl., 195 (2016), 1917-1959. http://dx.doi.org/10.1007/s10231-015-0542-7

Z. H. Liu, N. S. Papageorgiou, Double phase Dirichlet problems with unilateral constraints, J.
Differ. Equations, 316 (2022), 249-269. http://dx.doi.org/10.1016/j.jde.2022.01.040

N. S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions for parametric double
phase Dirichlet problems, Commun. Contemp. Math., 23 (2021), 20500006.
http://dx.doi.org/10.1142/S0219199720500066

L. Gasinski, P. Winkert, Constant sign solutions for double phase problems with superlinear
nonlinearity, Nonlinear Anal., 195 (2020), 111739. http://dx.doi.org/10.1016/j.na.2019.111739

A. Crespo-Blanco, L. Gasinski, P. Harjulehto, P. Winkert, A new class of double phase variable
exponent problems: Existence and uniqueness, J. Differ. Equations, 323 (2022), 182-228.
http://dx.doi.org/10.1016/j.jde.2022.03.029

W. Liu, G. Dai, Multiplicity results for double phase problems in R", J. Math. Phys., 61 (2020),
091508. http://dx.doi.org/10.1063/5.0020702

W. L. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in
singular double phase problems in RN, J. Math. Anal. Appl, 507 (2022), 125762.
http://dx.doi.org/10.1016/j.jmaa.2021.125762

R. Steglinski, Infinitely many solutions for double phase problem with unbounded potential in R,
Nonlinear Anal., 214 (2022), 112580. http://dx.doi.org/10.1016/j.na.2021.112580

AIMS Mathematics Volume 7, Issue 9, 17475-17485.


http://dx.doi.org/http://dx.doi.org/10.1016/j.na.2019.06.007
http://dx.doi.org/http://dx.doi.org/10.1007/S00025-021-01444-Z
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2018.06.006
http://dx.doi.org/http://dx.doi.org/10.1142/S0219199717500237
http://dx.doi.org/http://dx.doi.org/10.1007/s10231-015-0542-7
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2022.01.040
http://dx.doi.org/http://dx.doi.org/10.1142/S0219199720500066
http://dx.doi.org/http://dx.doi.org/10.1016/j.na.2019.111739
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2022.03.029
http://dx.doi.org/http://dx.doi.org/10.1063/5.0020702
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmaa.2021.125762
http://dx.doi.org/http://dx.doi.org/10.1016/j.na.2021.112580

17485

13. B. Ge, P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods,
Adv. Differential Equ., 27 (2022), 1-30.

14.J. H. Shen, L. Y. Wang, K. Chi, B. Ge, Existence and multiplicity of solutions for
a quasilinear double phase problem on the whole space, Complex Var. Elliptic, 2021.
http://dx.doi.org/10.1080/17476933.2021.1988585

15. A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications,
J. Funct. Anal., 14 (1973), 349-381. http://dx.doi.org/10.1016/0022-1236(73)90051-7

16. M. Willem, Minimax theorems, Boston, MA: Birkhauser, 1996.

@ AIMS Press

AIMS Mathematics

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 7, Issue 9, 17475-17485.


http://dx.doi.org/http://dx.doi.org/10.1080/17476933.2021.1988585
http://dx.doi.org/http://dx.doi.org/10.1016/0022-1236(73)90051-7
http://creativecommons.org/licenses/by/4.0

	Introduction
	Conclusions

