The concept of cubic m-polar fuzzy set (CmPFS) is a new approach to fuzzy modeling with multiple membership grades in terms of fuzzy intervals as well as multiple fuzzy numbers. We define some fundamental properties and operations of CmPFSs. We define the topological structure of CmPFSs and the idea of cubic m-polar fuzzy topology (CmPF topology) with P-order (R-order). We extend several concepts of crisp topology to CmPF topology, such as open sets, closed sets, subspaces and dense sets, as well as the interior, exterior, frontier, neighborhood, and basis of CmPF topology with P-order (R-order). A CmPF topology is a robust approach for modeling big data, data analysis, diagnosis, etc. An extension of the VIKOR method for multi-criteria group decision making with CmPF topology is designed. An application of the proposed method is presented for chronic kidney disease diagnosis and a comparative analysis of the proposed approach and existing approaches is also given.
Citation: Muhammad Riaz, Khadija Akmal, Yahya Almalki, S. A. Alblowi. Cubic m-polar fuzzy topology with multi-criteria group decision-making[J]. AIMS Mathematics, 2022, 7(7): 13019-13052. doi: 10.3934/math.2022721
[1] | Sarker Ashraful Islam, Farhana Kabir Esheta, Md Mahir Shahriar, Dewan Hasan Ahmed . Numerical study of aerodynamic drag reduction of a circular cylinder with an inbuilt nozzle. Metascience in Aerospace, 2024, 1(4): 379-400. doi: 10.3934/mina.2024018 |
[2] | Hussein Kokash, G. Gilou Agbaglah . A two- to three-dimensional wake transition mechanism induced by the angle of attack of a NACA0012 airfoil. Metascience in Aerospace, 2024, 1(3): 329-345. doi: 10.3934/mina.2024015 |
[3] | Jubilee Prasad Rao, Sai Naveen Chimata . Machine learning-based surrogates for eVTOL performance prediction and design optimization. Metascience in Aerospace, 2024, 1(3): 246-267. doi: 10.3934/mina.2024011 |
[4] | Hui Ying WANG, Némo DECAMPS . Effects of oxygen concentration of oxidizer flow on laminar diffusion flame established over liquid fuel beds at microgravity. Metascience in Aerospace, 2024, 1(2): 159-184. doi: 10.3934/mina.2024007 |
[5] | Pasynok Sergey . Cumulative STF coefficients evaluation and validation. Metascience in Aerospace, 2024, 1(4): 371-378. doi: 10.3934/mina.2024017 |
[6] | Dulce M Graciano, Fernando Z Sierra-Espinosa, Juan C García . Numerical simulation of vortex-induced vibration in a bladeless turbine: Effects of separation distance between tandem harvesters. Metascience in Aerospace, 2024, 1(3): 309-328. doi: 10.3934/mina.2024014 |
[7] | James H. Page, Lorenzo Dorbolò, Marco Pretto, Alessandro Zanon, Pietro Giannattasio, Michele De Gennaro . Sensitivity analysis of mixed analysis-synthesis flight profile reconstruction. Metascience in Aerospace, 2024, 1(4): 401-415. doi: 10.3934/mina.2024019 |
[8] | Xu Han, Bin Yu, Hong Liu . Mixing mechanisms in the view of mixing indicators: from passive-scalar mixing to variable-density mixing. Metascience in Aerospace, 2024, 1(1): 1-37. doi: 10.3934/mina.2024001 |
[9] | Weizhen Tang, Jie Dai, Zhousheng Huang . Comprehensive assessment of air pollutant and noise emissions at airports across different altitudes. Metascience in Aerospace, 2024, 1(3): 292-308. doi: 10.3934/mina.2024013 |
[10] | Yuan Hu, Zhihao Jiang, Xintai Yuan, Xifan Hua, Wei Liu . Isometric mapping algorithm based GNSS-R sea ice detection. Metascience in Aerospace, 2024, 1(1): 38-52. doi: 10.3934/mina.2024002 |
The concept of cubic m-polar fuzzy set (CmPFS) is a new approach to fuzzy modeling with multiple membership grades in terms of fuzzy intervals as well as multiple fuzzy numbers. We define some fundamental properties and operations of CmPFSs. We define the topological structure of CmPFSs and the idea of cubic m-polar fuzzy topology (CmPF topology) with P-order (R-order). We extend several concepts of crisp topology to CmPF topology, such as open sets, closed sets, subspaces and dense sets, as well as the interior, exterior, frontier, neighborhood, and basis of CmPF topology with P-order (R-order). A CmPF topology is a robust approach for modeling big data, data analysis, diagnosis, etc. An extension of the VIKOR method for multi-criteria group decision making with CmPF topology is designed. An application of the proposed method is presented for chronic kidney disease diagnosis and a comparative analysis of the proposed approach and existing approaches is also given.
We begin with the following definitions of notations:
N={1,2,3,⋯} and N0:=N∪{0}. |
Also, as usual, R denotes the set of real numbers and C denotes the set of complex numbers.
The two variable Laguerre polynomials Ln(u,v) [1] are defined by the Taylor expansion about τ=0 (also popularly known as generating function) as follows:
∞∑p=0Lp(u,v)τpp!=evτC0(uτ), |
where is the 0-th order Tricomi function [19] given by
C0(u)=∞∑p=0(−1)pup(p!)2 |
and has the series representation
Lp(u,v)=p∑s=0p!(−1)svp−sus(p−s)!(s!)2. |
The classical Euler polynomials Ep(u), Genocchi polynomials Gp(u) and the Bernoulli polynomials Bp(u) are usually defined by the generating functions (see, for details and further work, [1,2,4,5,6,7,9,11,12,20]):
∞∑p=0Ep(u)τpp!=2eτ+1euτ(|τ|<π), |
∞∑p=0Gp(u)τpp!=2τeτ+1euτ(|τ|<π) |
and
∞∑p=0Bp(u)τpp!=τeτ−1euτ(|τ|<2π). |
The Daehee polynomials, recently originally defined by Kim et al. [9], are defined as follows
∞∑p=0Dp(u)τpp!=log(1+τ)τ(1+τ)u, | (1.1) |
where, for u=0, Dp(0)=Dp stands for Daehee numbers given by
∞∑p=0Dpτpp!=log(1+τ)τ. | (1.2) |
Due to Kim et al.'s idea [9], Jang et al. [3] gave the partially degenarate Genocchi polynomials as follows:
2log(1+τλ)1λeτ+1euτ=∞∑p=0Gp,λ(u)τpp!, | (1.3) |
which, for the case u=0, yields the partially degenerate Genocchi numbers Gn,λ:=Gn,λ(0).
Pathan et al. [17] considered the generalization of Hermite-Bernoulli polynomials of two variables HB(α)p(u,v) as follows
(τeτ−1)αeuτ+vτ2=∞∑p=0HB(α)p(u,v)τpp!. | (1.4) |
On taking α=1 in (1.4) yields a well known result of [2,p. 386 (1.6)] given by
(τeτ−1)euτ+vτ2=∞∑p=0HBp(u,v)τpp!. | (1.5) |
The two variable Laguerre-Euler polynomials (see [7,8]) are defined as
∞∑p=0LEp(u,v)τpp!=2eτ+1evτC0(uτ). | (1.6) |
The alternating sum Tk(p), where k∈N0, (see [14]) is given as
Tk(p)=p∑j=0(−1)jjk |
and possess the generating function
∞∑r=0Tk(p)τrr!=1−(−eτ)(p+1)eτ+1. | (1.7) |
The idea of degenerate numbers and polynomials found existence with the study related to Bernoulli and Euler numbers and polynomials. Lately, many researchers have begun to study the degenerate versions of the classical and special polynomials (see [3,10,11,12,13,14,15,16,18], for a systematic work). Influenced by their works, we introduce partially degenerate Laguerre-Genocchi polynomials and also a new generalization of partially degenerate Laguerre-Genocchi polynomials and then give some of their applications. We also derive some implicit summation formula and general symmetry identities.
Let λ,τ∈C with |τλ|≤1 and τλ≠−1. We introduce and investigate the partially degenerate Laguerre-Genocchi polynomials as follows:
∞∑p=0LGp,λ(u,v)τpp!=2log(1+λτ)1λeτ+1evτC0(uτ). | (2.1) |
In particular, when λ→0, LGp,λ(u,v)→LGp(u,v) and they have the closed form given as
LGp,λ(u,v)=p∑q=0(pq)Gq,λLp−q(u,v). |
Clearly, u=0 in (2.1) gives LGp,λ(0,0):=Gp,λ that stands for the partially degenerate Genocchi polynomials [3].
Theorem 1. For p∈No, the undermentioned relation holds:
LGp,λ(u,v)=p∑q=0(pq+1)q!(−λ)qLGp−q−1(u,v). | (2.2) |
Proof. With the help of (2.1), one can write
∞∑p=0LGp,λ(u,v)τpp!=2log(1+λτ)1λeτ+1evτC0(uτ)=τ{∞∑q=0(−1)qq+1(λτ)q}{∞∑p=0LGp(u,v)τpp!}=∞∑p=0{p∑q=0(pq)(−λ)qq+1q!LGp−q(u,v)}τp+1p!, |
where, LGp−q(u,v) are the Laguerre-Genocchi polynomials (see [8]). Finally, the assertion easily follows by equating the coefficients τpp!.
Theorem 2. For p∈No, the undermentioned relation holds:
LGp+1,λ(u,v)=p∑q=0(pq)λq(p+1)LGp−q+1(u,v)Dq. | (2.3) |
Proof. We first consider
I1=1τ2log(1+λτ)1λeτ+1evτC0(uτ)={∞∑q=0Dq(λτ)qq!}{∞∑p=0LGp(u,v)τpp!}=∞∑p=1{p∑q=0(pq)(λ)qDqLGp−q(u,v)}τpp!. |
Next we have,
I2=1τ2log(1+λτ)1λeτ+1evτCo(uτ)=1τ∞∑p=0LGp,λ(u,v)τpp!=∞∑p=0LGp+1,λ(u,v)p+1τpp!. |
Since I1=I2, we conclude the assertion (2.3) of Theorem 2.
Theorem 3. For p∈N0, the undermentioned relation holds:
LGp,λ(u,v)=pp−1∑q=0(p−1q)(λ)qLEp−q−1(u,v)Dq. | (2.4) |
Proof. With the help of (2.1), one can write
∞∑p=0LGp,λ(x,y)τpp!={τlog(1+λτ)λτ}{2eτ+1evτC0(uτ)}=τ{∞∑q=0Dq(λτ)qq!}{∞∑p=0LEp(u,v)τpp!}=∞∑p=0{p∑q=0(pq)(λ)qDqLEp−q(u,v)}τp+1p!. |
Finally, the assertion (2.4) straightforwardly follows by equating the coefficients of same powers of τ above.
Theorem 4. For p∈No, the following relation holds:
LGp,λ(u,v+1)=p∑q=0(pq)LGp−q,λ(u,v). | (2.5) |
Proof. Using (2.1), we find
∞∑p=0{LGp,λ(u,v+1)−LGp,λ(u,v)}τpp!=2log(1+λτ)1λeτ+1×e(v+1)τC0(uτ)−2log(1+λτ)1λeτ+1evτC0(uτ)=∞∑p=0LGp,λ(u,v)τpp!∞∑q=0τqq!−∞∑p=0LGp,λ(u,v)τpp!=∞∑p=0{p∑q=0(pq)LGp−q,λ(u,v)−LGp,λ(u,v)}τpp!. |
Hence, the assertion (2.5) straightforwardly follows by equating the coefficients of τp above.
Theorem 5. For p∈No, the undermentioned relation holds:
LGp,λ(u,v)=p∑q=0q∑l=0(pq)(ql)Gp−qDq−lλq−lLl(u,v). | (2.6) |
Proof. Since
∞∑p=0LGp,λ(u,v)τpp!=2log(1+λτ)1λeτ+1evτC0(uτ)={2τeτ+1}{2log(1+λτ)λτ}evτC0(uτ)={∞∑p=0Gpτpp!}{∞∑q=0Dq(λτ)qq!}{∞∑l=0Ll(u,v)τll!}, |
we have
∞∑p=0LGp,λ(u,v)τpp!=∞∑p=0{p∑q=0q∑l=0(pq)(ql)Gp−qDq−lλq−lLl(u,v)}τpp!. |
We thus complete the proof of Theorem 5.
Theorem 6. (Multiplication formula). For p∈No, the undermentioned relation holds:
LGp,λ(u,v)=fp−1f−1∑a=0LGp,λf(u,v+af). | (2.7) |
Proof. With the help of (2.1), we obtain
∞∑p=0LGp,λ(u,v)τpp!=2log(1+λτ)1λeτ+1evτC0(uτ)=2log(1+λτ)1λeτ+1C0(uτ)f−1∑a=0e(a+v)τ=∞∑p=0{fp−1f−1∑a=0LGp,λf(u,v+af)}τpp!. |
Thus, the result in (2.7) straightforwardly follows by comparing the coefficients of τp above.
Consider a Dirichlet character χ and let d(d∈N) be the conductor connected with it such that d≡1(mod2) (see [22]). Now we present a generalization of partially degenerate Laguerre-Genocchi polynomials attached to χ as follows:
∞∑p=0LGp,χ,λ(u,v)τpp!=2log(1+λτ)1λefτ+1f−1∑a=0(−1)aχ(a)e(v+a)τC0(uτ). | (3.1) |
Here, Gp,χ,λ=LGp,χ,λ(0,0) are in fact, the generalized partially degenerate Genocchi numbers attached to the Drichlet character χ. We also notice that
limλ→0v=0 LGp,χ,λ(u,v)=Gp,χ(u), |
is the familiar looking generalized Genocchi polynomial (see [20]).
Theorem 7. For p∈N0, the following relation holds:
LGp,χ,λ(u,v)=p∑q=0(pq)λqDqLGp−q,χ(u,v). | (3.2) |
Proof. In view of (3.1), we can write
∞∑p=0LGp,χ,λ(u,v)τpp!=2log(1+λτ)1λefτ+1f−1∑a=0(−1)aχ(a)e(v+a)τC0(uτ) |
={log(1+λτ)λτ}{2τefτ+1f−1∑a=0(−1)aχ(a)e(v+a)τC0(uτ)} |
={∞∑q=0Dqλqτqq!}{∞∑p=0LGp,χ(u,v)τpp!}. |
Finally, the assertion (3.2) of Theorem 7 can be achieved by equating the coefficients of same powers of τ.
Theorem 8. The undermentioned formula holds true:
LGp,χ,λ(u,v)=fp−1f−1∑a=0(−1)aχ(a)LGp,λf(u,a+vf). | (3.3) |
Proof. We first evaluate
∞∑p=0LGp,χ,λ(u,v)τpp!=2log(1+λτ)1λefτ+1f−1∑a=0(−1)aχ(a)e(v+a)τC0(uτ)=1ff−1∑a=0(−1)aχ(a)2log(1+λτ)fλefτ+1e(a+vf)fτC0(uτ)=∞∑p=0{fp−1f−1∑a=0(−1)aχ(a)LGp,λf(u,a+vf)}τpp!. |
Now, the Theorem 8 can easily be concluded by equating the coefficients τpp! above.
Using the result in (3.1) and with a similar approach used just as in above theorems, we provide some more theorems given below. The proofs are being omitted.
Theorem 9. The undermentioned formula holds true:
LGp,χ,λ(u,v)=p∑q=0Gp−q,χ,λ(v)(−u)qp!(q!)2(p−q)!. | (3.4) |
Theorem 10. The undermentioned formula holds true:
LGp,χ,λ(u,v)=p,l∑q=0Gp−q−l,χ,λ(v)q(−u)lp!(p−q−l)!(q)!(l!)2. | (3.5) |
Theorem 11. The undermentioned formula holds true:
LGl+h,λ(u,ν)=l,h∑p,n=0(lp)(hn)(u−v)p+nLGl+h−n−p,λ(u,v). | (4.1) |
Proof. On changing τ by τ+μ and rewriting (2.1), we evaluate
e−v(τ+μ)∞∑l,h=0LGl+h,λ(u,v)τlμhl!h!=2log(1+λ(τ+μ))1λeτ+μ+1Co(u(τ+μ)), |
which, upon replacing v by u and solving further, gives
e(u−v)(τ+μ)∞∑l,h=0LGl+h,λ(u,v)τlμhl!h!=∞∑l,h=0LGl+h,λ(u,ν)τlμhl!h!, |
and also
∞∑P=0(u−v)P(τ+u)PP!∞∑l,h=0LGl+h,λ(u,v)τlμhl!h!=∞∑l,h=0LGl+h,λ(u,ν)τlμhl!h!. | (4.2) |
Now applying the formula [21,p.52(2)]
∞∑P=0f(P)(u+v)PP!=∞∑p,q=0f(p+q)upp!vqq!, |
in conjunction with (4.2), it becomes
∞∑p,n=0(u−v)p+nτpμnp!n!∞∑l,h=0LGl+h,λ(u,v)τlμhl!h!=∞∑l,h=0LGl+h,λ(u,ν)τlμhl!h!. | (4.3) |
Further, upon replacing l by l−p, h by h−n, and using the result in [21,p.100 (1)], in the left of (4.3), we obtain
∞∑p,n=0∞∑l,h=0(u−v)p+np!n!LGl+h−p−n,λ(u,v)τlμh(l−p)!(h−n)!=∞∑l,h=0LGl+h,λ(u,ν)τlμhl!h!. |
Finally, the required result can be concluded by equating the coefficients of the identical powers of τl and μh above.
Corollary 4.1. For h=0 in (4.1), we get
LGl,λ(u,ν)=l∑ρ=0(lρ)(u−v)pLGl−ρ,λ(u,v). |
Some identities of Genocchi polynomials for special values of the parameters u and ν in Theorem 11 can also be obtained. Now, using the result in (2.1) and with a similar approach, we provide some more theorems given below. The proofs are being omitted.
Theorem 12. The undermentioned formula holds good:
LGp,λ(u,v+μ)=p∑q=0(pq)μqLGp−q,λ(u,v) |
Theorem 13. The undermentioned implicit holds true:
∞∑p=0LGp,λ(u,v)τpp!=2log(1+λτ)1λeτ+1evτCo(uτ)=p∑q=0(pq)Gp−q,λLp(u,v) |
and
LGp,λ(u,v)=p∑q=0(pq)Gp−q,λ(u,v)Lp(u,v). |
Theorem 14. The undermentioned implicit summation formula holds:
LGp,λ(u,v+1)+LGp,λ(u,v)=2pp−1∑q=0(p−1q)(−λ)qq!q+1Lp−q−1(u,v). |
Theorem 15. The undermentioned formula holds true:
LGp,λ(u,v+1)=p∑q=0LGp−q,λ(u,v). |
Symmetry identities involving various polynomials have been discussed (e.g., [7,9,10,11,17]). As in above-cited work, here, in view of the generating functions (1.3) and (2.1), we obtain symmetry identities for the partially degenerate Laguerre-Genocchi polynomials LGn,λ(u,v).
Theorem 16. Let α,β∈Z and p∈N0, we have
p∑q=0(pq)βqαp−qLGp−q,λ(uβ,vβ)LGq,λ(uα,vα) |
=p∑q=0(pq)αqβp−qLGp−q,λ(uα,vα)LGq,λ(uβ,vβ). |
Proof. We first consider
g(τ)={2log(1+λ)βλ}(eατ+1){2log(1+λ)αλ}(eβτ+1)e(α+β)vτC0(uατ)C0(uβτ). |
Now we can have two series expansion of g(τ) in the following ways:
On one hand, we have
g(τ)=(∞∑p=0LGp,λ(uβ,vβ)(ατ)pp!)(∞∑q=0LGq,λ(uα,vα)(βτ)qq!)=∞∑p=0(p∑q=0(pq)βqαp−qLGp−q,λ(uβ,vβ)LGq,λ(uα,vα))τpp!. | (5.1) |
and on the other, we can write
g(τ)=(∞∑p=0LGp,λ(uα,vα)(βτ)pp!)(∞∑q=0LGq,λ(uβ,vβ)(ατ)qq!)=∞∑p=0(p∑q=0(pq)αqβp−qLGp−q,λ(uα,vα)LGq,λ(uβ,vβ))τpp!. | (5.2) |
Finally, the result easily follows by equating the coefficients of τp on the right-hand side of Eqs (5.1) and (5.2).
Theorem 17. Let α,β∈Z with p∈N0, Then,
p∑q=0(pq)βqαp−qα−1∑σ=0β−1∑ρ=0(−1)σ+ρLGp−q,λ(u,vβ+βασ+ρ)Gq,λ(zα) |
=p∑q=0(pq)αpβp−qβ−1∑σ=0α−1∑ρ=0(−1)σ+ρLGp−q,λ(u,vα+βασ+ρ)Gq,λ(zβ). |
Proof. Let
g(τ)={2log(1+λ)αλ}(eατ+1)2{2log(1+λ)βλ}(eβτ+1)2e(αβτ+1)2e(αβ)(v+z)τ[Cs0(uτ)]. |
Considering g(τ) in two forms. Firstly,
g(τ)={2log(1+λ)αλ}eατ+1eαβvτCo(uτ)(eαβτ+1eβτ+1)×{2log(1+λ)βλ}eβτ+1eαβzτ(eαβτ+1eατ+1) |
={2log(1+λ)αλ}eατ+1eαβvτC0(uτ)(α−1∑σ=0(−1)σeβτσ)×{2log(1+λ)βλ}eβτ+1eαβτzC0(uτ)(β−1∑ρ=0(−1)ρeατρ), | (5.3) |
Secondly,
g(τ)=∞∑p=0{p∑q=0(pq)βqαp−qα−1∑σ=0β−1∑ρ=0(−1)σ+ρLGp−q,λ(uα,vβ+βασ+ρ)Gq,λ(αz)}τpp!=∞∑p=0{p∑q=0(pq)αqβp−qα−1∑σ=0β−1∑ρ=0(−1)σ+ρLGσ−ρ,λ(u,vα+αβσ+ρ)Gq,λ(zβ)}τpp!. | (5.4) |
Finally, the result straightforwardly follows by equating the coefficients of τp in Eqs (5.3) and (5.4).
We now give the following two Theorems. We omit their proofs since they follow the same technique as in the Theorems 16 and 17.
Theorem 18. Let α,β∈Z and p∈N0, Then,
p∑q=0(pq)βqαp−qα−1∑σ=0β−1∑ρ=0(−1)σ+ρLGp−q,λ(u,vβ+βασ)Gq,λ(zα+αβρ)=p∑q=0(pq)αqβp−qβ−1∑σ=0α−1∑ρ=0(−1)σ+ρLGp−q,λ(u,vα+αβσ+ρ)LGq,λ(zβ+βαρ). |
Theorem 19. Let α,β∈Z and p∈N0, Then,
p∑q=0(pq)βqαp−qLGp−q,λ(uβ,vβ)q∑σ=0(qσ)Tσ(α−1)Gq−σ,λ(uα)=p∑q=0(pq)βp−qαqLGp−q,λ(uα,vα)q∑σ=0(qσ)Tσ(β−1)Gq−σ,λ(uβ). |
Motivated by importance and potential for applications in certain problems in number theory, combinatorics, classical and numerical analysis and other fields of applied mathematics, various special numbers and polynomials, and their variants and generalizations have been extensively investigated (for example, see the references here and those cited therein). The results presented here, being very general, can be specialized to yield a large number of identities involving known or new simpler numbers and polynomials. For example, the case u=0 of the results presented here give the corresponding ones for the generalized partially degenerate Genocchi polynomials [3].
The authors express their thanks to the anonymous reviewers for their valuable comments and suggestions, which help to improve the paper in the current form.
We declare that we have no conflict of interests.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[2] |
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
![]() |
[3] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 |
[4] |
K. T. Atanassov, Intuitionistic fuzzy sets: Theory and applications, Springer-Verlag Berlin Heidelberg GmbH, 283 (2012), 1–322. https://doi.org/10.1007/978-3-7908-1870-3 doi: 10.1007/978-3-7908-1870-3
![]() |
[5] | R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[6] |
R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
![]() |
[7] |
R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2017), 1220–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
![]() |
[8] | W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, NAFIPS/IFIS/NASA94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, The Industrial Fuzzy Control and Intellige., (1994), 305–309. https://doi.org/10.1109/IJCF.1994.375115 |
[9] |
W. R. Zhang, (Yin)(Yang) bipolar fuzzy sets, IEEE International Conference on Fuzzy Systems Proceedings, IEEE World Congress Comput. Intell., 1 (1998), 835–840. https://doi.org/10.1109/FUZZY.1998.687599 doi: 10.1109/FUZZY.1998.687599
![]() |
[10] |
J. Chen, S. Li, S. Ma, X. Wang, m-Polar fuzzy sets: An extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 1–8. https://doi.org/10.1155/2014/416530 doi: 10.1155/2014/416530
![]() |
[11] | F. Smarandache, A unifying field in logics, neutrosophy: Neutrosophic probability, set and logic, Amer. Res. Press: Rehoboth, DE, USA., (1999). 1–141. |
[12] |
F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287–297. https://doi.org/10.1089/blr.2005.24.297 doi: 10.1089/blr.2005.24.297
![]() |
[13] | B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032 |
[14] |
Z. S. Xu, Intuitionistic fuzzy aggregation operators, IEEE Trans. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
![]() |
[15] |
H. Garg, Nancy, Linguistic single-valued neutrosophic prioritized aggregation operators and their applications to multiple-attribute group decision-making, J. Ambient. Intell. Human. Comput., 9 (2018), 1975–1997. https://doi.org/10.1007/s12652-018-0723-5 doi: 10.1007/s12652-018-0723-5
![]() |
[16] |
D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[17] |
N. agman, S. Enginoglu, Soft set theory and uniint decision making, Eur. J. Oper. Res., 207 (2010), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004 doi: 10.1016/j.ejor.2010.05.004
![]() |
[18] | Y. B. Jun, C. S. Kim, K. O. Yang, Cubic Sets, Annal. Fuzzy Math. Inform., 4 (2012), 83–98. |
[19] |
M. Riaz, M. R. Hashmi, MAGDM for agribusiness in the environment of various cubic m-polar fuzzy averaging aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 3671–3691. https://doi.org/10.3233/JIFS-182809 doi: 10.3233/JIFS-182809
![]() |
[20] |
M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
![]() |
[21] |
M. Riaz, M. R. Hashmi. H. Kalsoom, D. Pamucar, Y. M. Chu, Linear Diophantine fuzzy soft rough sets for the selection of sustainable material handling equipment, Symmetry., 12 (2020), 1–39. https://doi.org/10.3390/sym12081215 doi: 10.3390/sym12081215
![]() |
[22] |
M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
![]() |
[23] |
P. Liu, Z. Ali, T. Mahmood, N. Hassan, Group decision-making using complex q-rung orthopair fuzzy Bonferroni mean, Int. J. Comput. Intell. Syst., 13 (2020), 822–851. https://doi.org/10.2991/ijcis.d.200514.001 doi: 10.2991/ijcis.d.200514.001
![]() |
[24] |
P. Liu, P. Wang, Multiple attribute group decision making method based on intuitionistic fuzzy Einstein interactive operations, Int. J. Fuzzy Syst., 22 (2020), 790–809. https://doi.org/10.1007/s40815-020-00809-w doi: 10.1007/s40815-020-00809-w
![]() |
[25] | A. Jain, J. Darbari, A. Kaul, P. C. Jha, Selection of a green marketing strategy using MCDM under fuzzy environment, In: Soft Computing for Problem Solving, (2020), https://doi.org/10.1007/978-981-15-0184-5_43 |
[26] | C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190. https://doi.org/10.1016/0022-247X(68)90057-7 |
[27] |
D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets Syst., 88 (1997), 81–89. https://doi.org/10.1016/S0165-0114(96)00076-0 doi: 10.1016/S0165-0114(96)00076-0
![]() |
[28] |
M. Olgun, M. Unver, Yardimci, Pythagorean fuzzy topological spaces, Complex Intell. Syst., 5 (2019), 177–183. https://doi.org/10.1007/s40747-019-0095-2 doi: 10.1007/s40747-019-0095-2
![]() |
[29] | N. Cagman, S. Karatas, S. Enginoglu, Soft topology, Comput. Math. Applic., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 |
[30] |
A. Saha, T. Senapati, R. R. Yager, Hybridizations of generalized Dombi operators and Bonferroni mean operators under dual probabilistic linguistic environment for group decision-making, Int. J. Intell. Syst., 11 (2021), 6645–6679. https://doi.org/10.1002/int.22563 doi: 10.1002/int.22563
![]() |
[31] |
A. Saha, H. Garg, D. Dutta, Probabilistic linguistic q-rung orthopair fuzzy generalized Dombi and Bonferroni mean operators for group decision-making with unknown weights of experts, Int. J. Intell. Syst., 12 (2021), 7770–7804. https://doi.org/10.1002/int.22607 doi: 10.1002/int.22607
![]() |
[32] |
C. Jana, G. Muhiuddin, M. Pal, D. Al-Kadi, Intuitionistic fuzzy Dombi hybrid decision-making method and their applications to enterprise financial performance evaluation, Math. Prob. Eng., 2021 (2021), 1–14. https://doi.org/10.1155/2021/3218133 doi: 10.1155/2021/3218133
![]() |
[33] |
C. Jana, M. Pal, J. Wang, Bipolar fuzzy Dombi prioritized aggregation operators in multiple attribute decision making, Soft Comput., 24 (2020), 3631–3646. https://doi.org/10.1007/s00500-019-04130-z. doi: 10.1007/s00500-019-04130-z
![]() |
[34] |
M. Akram, G. Ali, J. C. R. Alcantud, Attributes reduction algorithms for m-polar fuzzy relation decision systems, Int. J. Approx. Reas., 140 (2022), 232–254. https://doi.org/10.1016/j.ijar.2021.10.005 doi: 10.1016/j.ijar.2021.10.005
![]() |
[35] |
M. Akram, A. Luqman, J. C. R. Alcantud, Risk evaluation in failure modes and effects analysis: Hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information, Neural Comput. Applic., 33 (2021), 5675–5703. https://doi.org/10.1007/s00521-020-05350-3 doi: 10.1007/s00521-020-05350-3
![]() |
[36] |
S. Ashraf, S. Abdullah, Decision aid modeling based on sine trigonometric spherical fuzzy aggregation information, Soft Comput., 25 (2021), 8549–8572. https://doi.org/10.1007/s00500-021-05712-6 doi: 10.1007/s00500-021-05712-6
![]() |
[37] |
A. O. Almagrabi, S. Abdullah, M. Shams, Y. D. Al-Otaibi, S. Ashraf, A new approach to q-linear Diophantine fuzzy emergency decision support system for COVID19, J. Ambient. Intell. Human. Comput., 13 (2021), 1687–1713. https://doi.org/10.1007/s12652-021-03130-y doi: 10.1007/s12652-021-03130-y
![]() |
[38] |
M. Ali, I. Deli, F. Smarandache, The theory of neutrosophic cubic sets and their applications in pattern recognition, J. Intell. Fuzzy Syst., 30 (2016), 1957–1963. https://doi.org/10.3233/IFS-151906 doi: 10.3233/IFS-151906
![]() |
[39] |
M. Ali, L. H. Son, I. Deli, N. D. Tien, Bipolar neutrosophic soft sets and applications in decision making, J. Intell. Fuzzy Syst., 33 (2017), 4077–4087. https://doi.org/10.3233/JIFS-17999 doi: 10.3233/JIFS-17999
![]() |
[40] |
J. Zhao, X. Y. You, H. C. Liu, S. M. Wu, An extended VIKOR method using intuitionistic fuzzy sets and combination weights for supplier selection, Symmetry, 9 (2017), 1–16. https://doi.org/10.3390/sym9090169 doi: 10.3390/sym9090169
![]() |
[41] |
R. Joshi, S. Kumar, An intuitionistic fuzzy information measure of order-(α,β) with a new approach in supplier selection problems using an extended VIKOR method, J. Appl. Math. Comput., 60 (2019), 27–50. https://doi.org/10.1007/s12190-018-1202-z doi: 10.1007/s12190-018-1202-z
![]() |
[42] | J. H. Park, H. J. Cho, J. S. Hwang, Y. C. Kwun, Extension of the VIKOR method to dynamic intuitionistic fuzzy multiple attribute decision making, Third International Workshop on Advanced Computational Intelligence, (2010), 189–195. https://doi.org/10.1109/IWACI.2010.5585223 |
[43] |
Z. Shouzhen, C. S. Ming, K. L. Wei, Multiattribute decision making based on novel score function of intuitionistic fuzzy values and modified VIKOR method, Inform. Sci., 488 (2019), 76–92. https://doi.org/10.1016/j.ins.2019.03.018 doi: 10.1016/j.ins.2019.03.018
![]() |
[44] |
V. Arya, S. Kumar, A novel VIKOR-TODIM Approach based on Havrda-Charvat-Tsallis entropy of intuitionistic fuzzy sets to evaluate management information system, Fuzzy Inform. Eng., 11 (2019), 357–384. https://doi.org/10.1080/16168658.2020.1840317 doi: 10.1080/16168658.2020.1840317
![]() |
[45] |
K. Devi, Extension of VIKOR method in intuitionistic fuzzy environment for robot selection, Expert Syst. Applic., 38 (2011), 14163–14168. https://doi.org/10.1016/j.eswa.2011.04.227 doi: 10.1016/j.eswa.2011.04.227
![]() |
[46] |
X. Luo, X. Wang, Extended VIKOR method for intuitionistic fuzzy multiattribute decision-making based on a new distance measure, Math. Prob. Eng., 2017 (2017), 1–16. https://doi.org/10.1155/2017/4072486 doi: 10.1155/2017/4072486
![]() |
[47] |
T. Y. Chen, Remoteness index-based Pythagorean fuzzy VIKOR methods with a generalized distance measure for multiple criteria decision analysis, Inf. Fus., 41 (2018), 129–150. https://doi.org/10.1016/j.inffus.2017.09.003 doi: 10.1016/j.inffus.2017.09.003
![]() |
[48] |
F. Zhou, T. Y. Chen, An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decision-making problems, Neural Comput. Applic., 33 (2021), 11821–11844. https://doi.org/10.1007/s00521-021-05829-7 doi: 10.1007/s00521-021-05829-7
![]() |
[49] |
G. Bakioglu, A. O. Atahan, AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles, Appl. Soft Comput., 99 (2021), 1–19. https://doi.org/10.1016/j.asoc.2020.106948 doi: 10.1016/j.asoc.2020.106948
![]() |
[50] |
A. Guleria, R. K. Bajaj, A robust decision making approach for hydrogen power plant site selection utilizing (R, S)-Norm Pythagorean Fuzzy information measures based on VIKOR and TOPSIS method, Int. J. Hydr. Energy., 45 (2020), 18802–18816. https://doi.org/10.1016/j.ijhydene.2020.05.091 doi: 10.1016/j.ijhydene.2020.05.091
![]() |
[51] |
M. Gul, Application of Pythagorean fuzzy AHP and VIKOR methods in occupational health and safety risk assessment: the case of a gun and rifle barrel external surface oxidation and colouring unit, Int. J. Occup. Safety Ergon., 26 (2020), 705–718. https://doi.org/10.1080/10803548.2018.1492251 doi: 10.1080/10803548.2018.1492251
![]() |
[52] |
M. Kirisci, I. Demir, N. Simsek, N. Topa, M. Bardak, The novel VIKOR methods for generalized Pythagorean fuzzy soft sets and its application to children of early childhood in COVID-19 quarantine, Neural Comput. Applic., 34 (2021), 1877–1903. https://doi.org/10.1007/s00521-021-06427-3 doi: 10.1007/s00521-021-06427-3
![]() |
[53] |
S. Dalapati, S. Pramanik, A revisit to NC-VIKOR based MAGDM strategy in neutrosophic cubic set environment, Neutrosophic Sets Sy., 21 (2018), 131–141. https://doi.org/10.20944/preprints201803.0230.v1 doi: 10.20944/preprints201803.0230.v1
![]() |
[54] |
S. Pramanik, S. Dalapati, S. Alam, T. K. Roy, NC-VIKOR based MAGDM strategy under neutrosophic cubic set environment, Neutrosophic Sets Sy., 20 (2018), 95–108. https://doi.org/10.20944/preprints201803.0230.v1 doi: 10.20944/preprints201803.0230.v1
![]() |
[55] |
S. Pramanik, S. Dalapati, S. Alam, T. K. Roy, VIKOR based MAGDM strategy under bipolar neutrosophic set environment, Neutrosophic Sets Sy., 19 (2018), 57–69. https://doi.org/10.20944/preprints201801.0006.v1 doi: 10.20944/preprints201801.0006.v1
![]() |
[56] |
L. Wang, H. Y. Zhang, J. Q. Wang, L. Li, Picture fuzzy normalized projection-based VIKOR method for the risk evaluation of construction project, Appl. Soft Comput., 64 (2018), 216–226. https://doi.org/10.1016/j.asoc.2017.12.014 doi: 10.1016/j.asoc.2017.12.014
![]() |
[57] |
V. Arya, S. Kumar, A picture fuzzy multiple criteria decision-making approach based on the combined TODIM-VIKOR and entropy weighted method, Cogn. Comput., 13 (2021), 1172–1184. https://doi.org/10.1007/s12559-021-09892-z doi: 10.1007/s12559-021-09892-z
![]() |
[58] |
R. Joshi, A novel decision-making method using R-Norm concept and VIKOR approach under picture fuzzy environment, Expert Syst. Applic., 147 (2020), 1–12. https://doi.org/10.1016/j.eswa.2020.113228 doi: 10.1016/j.eswa.2020.113228
![]() |
[59] |
V. Arya, S. Kumar, A new picture fuzzy information measure based on shannon entropy with applications in opinion polls using extended VIKOR-TODIM approach, Comp. Appl. Math., 39 (2020), 1–24. https://doi.org/10.1007/s40314-020-01228-1 doi: 10.1007/s40314-020-01228-1
![]() |
[60] |
M. J. Khan, P. Kumam, W. Kumam, A. N. A. Kenani, Picture fuzzy soft robust VIKOR method and its applications in decision-making, Fuzzy Inf. Eng., 13 (2021), 296–322. https://doi.org/10.1080/16168658.2021.1939632. doi: 10.1080/16168658.2021.1939632
![]() |
[61] |
C. Yue, Picture fuzzy normalized projection and extended VIKOR approach to software reliability assessment, Appl. Soft Comput., 88 (2020), 1–13. https://doi.org/10.1016/j.asoc.2019.106056. doi: 10.1016/j.asoc.2019.106056
![]() |
[62] |
P. Meksavang, H. Shi, S. M. Lin, H. C. Liu, An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry, Symmetry., 11 (2019), 1–19. https://doi.org/10.3390/sym11040468. doi: 10.3390/sym11040468
![]() |
[63] |
A. Singh, S. Kumar, Picture fuzzy Choquet integral-based VIKOR for multicriteria group decision-making problems, Gran. Comput., 6 (2021), 587–601. https://doi.org/10.1007/s41066-020-00218-2. doi: 10.1007/s41066-020-00218-2
![]() |
1. | Sarker Ashraful Islam, Farhana Kabir Esheta, Md Mahir Shahriar, Dewan Hasan Ahmed, Numerical study of aerodynamic drag reduction of a circular cylinder with an inbuilt nozzle, 2024, 1, 2996-0800, 379, 10.3934/mina.2024018 |