Research article

Mathematical modeling and analysis of the effect of the rugose spiraling whitefly on coconut trees

  • Received: 21 February 2022 Revised: 13 April 2022 Accepted: 19 April 2022 Published: 09 May 2022
  • MSC : 34D20, 37N25, 92-10, 92D25, 92D45

  • Coconut trees are severely affected by the rugose spiraling whitefly (Aleurodicus rugioperculatus Martin), which is an exotic pest. The dynamics of the disease caused by this pest are analyzed using a mathematical model. The equilibrium points are proved to be locally and globally asymptotically stable under some conditions. Our study, with sensitivity analysis, reveals that the contact rate plays a crucial role in the system that has a direct impact on disease spread. Further, with optimal control, we evoke the optimum level of spraying insecticide, which results in better control over disease with minimum cost of spraying. Additionally, an approximate analytical solution has been derived using a homotopy analysis method. The $ \hbar $-curves are provided to validate the region of convergence. The analytical results are compared with the results of numerical simulation and they are found to be in good agreement. Our goal is to keep the spread under control so that yield is unaffected. Controlling the contact rate with control measures can reduce the risk of healthy trees becoming infected and the intensity of infection.

    Citation: Suganya Govindaraj, Senthamarai Rathinam. Mathematical modeling and analysis of the effect of the rugose spiraling whitefly on coconut trees[J]. AIMS Mathematics, 2022, 7(7): 13053-13073. doi: 10.3934/math.2022722

    Related Papers:

  • Coconut trees are severely affected by the rugose spiraling whitefly (Aleurodicus rugioperculatus Martin), which is an exotic pest. The dynamics of the disease caused by this pest are analyzed using a mathematical model. The equilibrium points are proved to be locally and globally asymptotically stable under some conditions. Our study, with sensitivity analysis, reveals that the contact rate plays a crucial role in the system that has a direct impact on disease spread. Further, with optimal control, we evoke the optimum level of spraying insecticide, which results in better control over disease with minimum cost of spraying. Additionally, an approximate analytical solution has been derived using a homotopy analysis method. The $ \hbar $-curves are provided to validate the region of convergence. The analytical results are compared with the results of numerical simulation and they are found to be in good agreement. Our goal is to keep the spread under control so that yield is unaffected. Controlling the contact rate with control measures can reduce the risk of healthy trees becoming infected and the intensity of infection.



    加载中


    [1] K. Elango, S. J. Nelson, A. Aravind, Rugose spiralling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera, Aleyrodidae): An invasive foes of coconut, J. Entomol. Res., 44 (2020), 261–266. http://dx.doi.org/10.5958/0974-4576.2020.00046.8 doi: 10.5958/0974-4576.2020.00046.8
    [2] S. Shanas, J. Job, T. Joseph, G. Anju Krishnan, First report of the invasive rugose spiraling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) from the old world, Entomon, 41 (2016), 365–368. Available from: https://www.entomon.in/index.php/Entomon/article/view/227.
    [3] T. Srinivasan, P. A. Saravanan, A. Josephrajkumar, K. Rajamanickam, S. Sridharan, P. M. M. David, et al., Invasion of the rugose spiralling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) in Pollachi tract of Tamil Nadu, India, Madras Agric. J., 103 (2016), 349–353. Available from: http://masujournal.org/index.php.
    [4] R. Sundararaj, K. Selvaraj, Invasion of rugose spiraling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae): A potential threat to coconut in India, Phytoparasitica, 45 (2017), 71–74. http://dx.doi.org/10.1007/s12600-017-0567-0 doi: 10.1007/s12600-017-0567-0
    [5] M. Visalakshi, K. Selvaraj, B. P. B. Sumalatha, Biological control of invasive pest, rugose spirallying whitefly in coconut and impact on environment, J. Entomol. Zool. Stud., 9 (2021), 1215–1218. https://dx.doi.org/10.22271/j.ento doi: 10.22271/j.ento
    [6] K. Elango, S. J. Nelson, S. Sridharan, V. Paranidharan, S. Balakrishnan, Biology, distribution and host range of new invasive pest of India coconut rugose spiralling whitefly Aleurodicus rugioperculatus Martin in Tamil Nadu and the status of its natural enemies, Int. J. Agricul. Sci., 11 (2019), 8423–8426. Available from: http://www.bioinfopublication.org/pages/journal.php?id=BPJ0000217.
    [7] L. J. Allen, F. Brauer, P. Van den Driessche, J. Wu, Mathematical epidemiology, Springer, Berlin, 2019.
    [8] J. Holt, M. J. Jeger, J. M. Thresh, G. W. Otim-Nape, An epidemilogical model incorporating vector population dynamics applied to African cassava mosaic virus disease, J. Appl. Ecol., 34 (1997), 793–806. https://doi.org/10.2307/2404924 doi: 10.2307/2404924
    [9] S. Ray, F. A. Basir, Impact of incubation delay in plant-vector interaction, Math. Comput. Simul., 170 (2020), 16–31. https://doi.org/10.1016/j.matcom.2019.09.001 doi: 10.1016/j.matcom.2019.09.001
    [10] F. A. Basir, A. Banerjee, S. Ray, Role of farming awareness in crop pest management-A mathematical model, J. Theor. Biol., 461 (2019), 59–67. https://doi.org/10.1016/j.jtbi.2018.10.043 doi: 10.1016/j.jtbi.2018.10.043
    [11] F. A. Basir, P. K. Roy, Dynamics of mosaic disease with roguing and delay in Jatropha curcas plantations, J. Appl. Math. Comput., 58 (2018), 1–31. https://doi.org/10.1007/s12190-017-1131-2 doi: 10.1007/s12190-017-1131-2
    [12] E. Venturino, P. K. Roy, F. A. Basir, A. Datta, A model for the control of the mosaic virus disease in Jatropha curcas plantations, Energy Ecol. Environ., 1 (2016), 360–369. http://dx.doi.org/10.1007/s40974-016-0033-8 doi: 10.1007/s40974-016-0033-8
    [13] S. Wang, Z. Ma, X. Li, T. Qi, A generalized delay-induced SIRS epidemic model with relapse, AIMS Math., 7 (2022) 6600–6618. http://dx.doi.org/10.3934/math.2022368 doi: 10.3934/math.2022368
    [14] R. ud Din, K. Shah, M. A. Alqudah, T. Abdeljawad, F. Jarad, Mathematical study of SIR epidemic model under convex incidence rate, AIMS Math., 5 (2020), 7548–7561. http://dx.doi.org/10.3934/math.2020483 doi: 10.3934/math.2020483
    [15] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [16] J. P. LaSalle, The stability of dynamical systems, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1976.
    [17] D. M. Bortz, P. W. Nelson, Sensitivity analysis of a nonlinear lumped parameter model of HIV infection dynamics, Bull. Math. Biol., 66 (2004), 1009–1026. http://dx.doi.org/10.1016/j.bulm.2003.10.011 doi: 10.1016/j.bulm.2003.10.011
    [18] A. K. Misra, M. Verma, Modeling the impact of mitigation options on abatement of methane emission from livestock, Nonlinear Anal.-Model., 22 (2017), 210–229. https://doi.org/10.15388/NA.2017.2.5 doi: 10.15388/NA.2017.2.5
    [19] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Mathematical theory of optimal processes, Inderscience, New York, 1962.
    [20] S. Lenhart, J. T. Workman, Optimal control applied to biological models, CRC Press, New York, 2007.
    [21] X. Wang, Solving optimal control problems with MATLAB: Indirect methods, Technical report ISE. Dept., NCSU, 2009.
    [22] T. Vijayalakshmi, R. Senthamarai, An analytical approach to the density dependent prey-predator system with Beddington-Deangelies functional response, AIP Conf. Proc., 2112 (2019), 020077. https://doi.org/10.1063/1.5112262 doi: 10.1063/1.5112262
    [23] R. Senthamarai, L. Rajendran, System of coupled non-linear reaction diffusion processes at conducting polymer-modified ultramicroelectrodes, Electrochimica Acta, 55 (2010), 3223–3235. https://doi.org/10.1016/j.electacta.2010.01.013 doi: 10.1016/j.electacta.2010.01.013
    [24] M. Abbasi, D. D. Ganji, I. Rahimipetroudi, M. Khaki, Comparative analysis of MHD boundary-layer flow of viscoelastic fluid in permeable channel with slip boundaries by using HAM, VIM, HPM, Walailak J. Sci. Technol., 11 (2014), 551–567. Available from: https://103.58.148.28/index.php/wjst/article/view/619.
    [25] S. Liao, Beyond perturbation: Introduction to the homotopy analysis method, CRC Press, New York, 2003.
    [26] S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499–513. https://doi.org/10.1016/S0096-3003(02)00790-7 doi: 10.1016/S0096-3003(02)00790-7
    [27] S. Noeiaghdam, M. Suleman, H. Budak, Solving a modified nonlinear epidemiological model of computer viruses by homotopy analysis method, Math. Sci., 12 (2018), 211–222. https://doi.org/10.1007/s40096-018-0261-5 doi: 10.1007/s40096-018-0261-5
    [28] P. A. Naik, J. Zu, M. Ghoreishi, Stability analysis and approximate solution of SIR epidemic model with Crowley-Martin type functional response and holling type II treatment rate by using homotopy analysis method, J. Appl. Anal. Comput., 10 (2020), 1482–1515. http://dx.doi.org/10.11948/20190239 doi: 10.11948/20190239
    [29] J. Duarte, C. Januário, N. Martins, C. C. Ramos, C. Rodrigues, J. Sardanyés, Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells, Numer. Algorithms, 77 (2018), 261–288. https://doi.org/10.1007/s11075-017-0314-0 doi: 10.1007/s11075-017-0314-0
    [30] P. A. Naik, J. Zu, M. Ghoreishi, Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method, Chaos Soliton. Fract., 131 (2020), 109500. https://doi.org/10.1016/j.chaos.2019.109500 doi: 10.1016/j.chaos.2019.109500
    [31] P. Kumar, V. S. Erturk, Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative, Chaos Soliton. Fract., 144 (2021), 110672. https://doi.org/10.1016/j.chaos.2021.110672 doi: 10.1016/j.chaos.2021.110672
    [32] P. Kumar, V. S. Erturk, H. Almusawa, Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana-Baleanu derivatives, Results Phys., 24 (2021), 104186. https://doi.org/10.1016/j.rinp.2021.104186 doi: 10.1016/j.rinp.2021.104186
    [33] P. Kumar, D. Baleanu, V. S. Erturk, M. Inc, V. Govindaraj, A delayed plant disease model with Caputo fractional derivatives, Adv. Cont. Discrete Model., 1 (2022), 1–22. https://doi.org/10.1186/s13662-022-03684-x doi: 10.1186/s13662-022-03684-x
    [34] P. Kumar, V. Suat Ertürk, K. S. Nisar, Fractional dynamics of huanglongbing transmission within a citrus tree, Math. Method. Appl. Sci., 44 (2021), 11404–11424. https://doi.org/10.1002/mma.7499 doi: 10.1002/mma.7499
    [35] P. Kumar, V. S. Erturk, V. Govindaraj, S. Kumar, A fractional mathematical modeling of protectant and curative fungicide application, Chaos Soliton. Fract., 8 (2022), 100071. https://doi.org/10.1016/j.csfx.2022.100071 doi: 10.1016/j.csfx.2022.100071
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1754) PDF downloads(109) Cited by(4)

Article outline

Figures and Tables

Figures(10)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog