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Abstract: Coconut trees are severely affected by the rugose spiraling whitefly (Aleurodicus
rugioperculatus Martin), which is an exotic pest. The dynamics of the disease caused by this pest
are analyzed using a mathematical model. The equilibrium points are proved to be locally and globally
asymptotically stable under some conditions. Our study, with sensitivity analysis, reveals that the
contact rate plays a crucial role in the system that has a direct impact on disease spread. Further, with
optimal control, we evoke the optimum level of spraying insecticide, which results in better control
over disease with minimum cost of spraying. Additionally, an approximate analytical solution has
been derived using a homotopy analysis method. The ~-curves are provided to validate the region of
convergence. The analytical results are compared with the results of numerical simulation and they
are found to be in good agreement. Our goal is to keep the spread under control so that yield is
unaffected. Controlling the contact rate with control measures can reduce the risk of healthy trees
becoming infected and the intensity of infection.
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1. Introduction

The coconut tree (Cocos nucifera) belongs to the palm tree family and is the only living species of
the genus Cocos. The coconut tree deserves to be one of the most useful trees, hence the name “tree
of life”. Coconut is especially known for its diverse usage, ranging from health benefits to building
materials. Coconuts are very distinct from other fruits because of the effective usage of each and
every constituent. Over 93 countries in the world have coconut plantations with a plantation area of
about 12 million hectares, leading to an annual nut production of 59.98 million tonnes. Indonesia leads
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the list with an annual production of 18 million tonnes. The Philippines stands second with 15.86
million tonnes. India holds the third position with 10.56 million tons of coconuts. The major coconut-
producing states in India are Kerala, Karnataka, Tamil Nadu, Orissa, Maharashtra, West Bengal and
Assam. India consumes around 50% of its annual production. Numerous pests pose various risks in
bringing up these coconut trees. The rugose spiraling whitefly (RSW), an invasive whitefly species
belonging to the Aleyrodidae family, originally called a gumbo limbo spiraling whitefly, was first
reported in coconut in 2004 in Belize, Central America [1]. The RSW is an exotic pest affecting
coconut trees since 2016 in India. The pest was reported for the first time on coconut trees in Pollachi,
Tamil Nadu in India during August 2016 [2–4]. This pest was soon reported on various other plants
such as mango, guava, sapota, custard apple and banana plants, as well as on many other economically
important ornamental plants. The RSW invasion will pose high risk to the coconut industry in India
by reducing the overall production rate and quality of the flesh produced and increasing the production
cost for the management of pests [5]. This whitefly affects the host tree since its feeding removes both
the nutrients and water content from the leaves. Further, it leaves sooty mold, which covers the leaf
surface and potentially reduces the photosynthesis process, thereby affecting the yield and growth [6].

The formulation and concept of mathematical models in epidemiology have been explained [7]. The
role of mathematical models explains the dynamics of the interacting population. These models help
to understand the impact and interactions between the variables and parameters and provide biological
interpretation. In obtaining high yield and healthy crops in agriculture, pest control plays a significant
role. The dynamics of plant and vector populations within a locality have been studied for African
cassava mosaic virus disease (ACMD). An unexploited class of model that links vector dynamics and
virus epidemiology for ACMD has been developed in a system of differential equations [8]. The
impact of incubation delay in plant-vector interaction has been studied [9]. A mathematical model
has been formulated in order to examine the effect of farming awareness in controlling the pest [10].
In literature, many models have been developed to reduce the effect of mosaic disease in Jatropha
Curcas plantations. These models incorporate the impact of awareness, roguing and pest control
to examine its dynamics [10–12]. A generalized delay-induced epidemic model with a nonlinear
incidence rate, latency and relapse has been studied [13]. A mathematical study using an SIR model
with a convex incidence rate has been carried out [14]. In any infectious disease, the main concern
lies in the ability of the disease to invade a population. The epidemiological models usually have
a threshold parameter called the basic reproduction number, which can identify whether the disease
could invade the population. The models use the next-generation matrix to examine the reproduction
number [15]. The stability of dynamical systems based on extensions of Lyapunov’s direct method
have been presented for difference and differential equations [16].

In mathematical models related to biological or physical phenomena, the characterization of the
connection between the observed solution and parameters of the system is desirable. This type of
analysis is called sensitivity analysis. The values obtained from the analysis specify the state variable
in the direction of a chosen parameter at a time t [17, 18]. The term integrated control means the
combination of biological methods and chemical control methods. The dynamics of the model with
fixed control has been investigated using MATLAB [19–21].

There are several methods to solve this kind of nonlinear problem. Analytical methods like
the variational iteration method, Adomian decomposition method, homotopy perturbation methods
and some other methods are applicable to provide approximate solutions for nonlinear differential
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equations [22–24]. Liao proposed an analytical method to solve the nonlinear problems by overcoming
the restrictions of perturbation techniques [25, 26]. This method has the advantage that we can control
and adjust the rate of the approximation series and convergence region by allowing an auxiliary
parameter ~ to vary [27–30]. It gives an exact solution even if the nonlinear problem does not
possess small or large parameters. By selecting alternative sets of base functions, it can be used
to efficiently approximate a nonlinear problem. Recently, a number of mathematical studies and
structures have been carried out on plant epidemics. The infection dynamics for a butterfly pathogen,
mosaic disease with microbial biostimulants and huanglongbing transmission within a citrus tree has
been analyzed [31–34]. A fractional mathematical model for stimulating the dynamics of fungicide
application has been derived and analyzed [35].

To the best of our knowledge, there is no differential equation system that models RSWs affecting
coconut trees. Motivated by the plant-vector interaction model [9], we analyzed the dynamics of
the disease using a mathematical model. We mainly focus on the Pollachi tract in Tamil Nadu, and
the parameter values are considered based on it. We observed its stability at the equilibrium points.
The reproduction number was obtained using a next-generation matrix. For the sensitivity analysis,
we studied the parameters affecting the system. Then, an optimal control problem was formulated
and optimal control was achieved using the Pontryagin minimum principle. Also, we obtained an
approximate analytical solution using a homotopy analysis method (HAM).

2. Mathematical formulation

A plant-vector interaction model [9] without delay was developed by considering the coconut trees
and whitefly population to examine the impact of RSWs on coconut trees. The tree population was
divided into healthy and infected trees, denoted by H and I, respectively. W denotes the whitefly
population. We have considered the population density per square meter as in [8]. The mathematical
model is proposed as follows:

dH
dt

= rH
(
1 −

H + I
k

)
− αHW, (2.1)

dI
dt

= αHW − pI, (2.2)

dW
dt

= qI − ζW, (2.3)

with the following initial conditions:

H(0) = H0, I(0) = I0, W(0) = W0. (2.4)

We assume that H0 > 0, I0 > 0 and W0 > 0. The healthy trees follow logistic growth with the tree
density k measured as density per square meter. Let α be the contact rate between RSWs and healthy
trees, with the unit of pest−1day−1. Let p be the mortality rate for infected trees, r denote the replanting
rate, q denote the birth rate for RSWs and ζ be its mortality rate; the rates are measured as day−1.
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3. Mathematical analysis of the model

3.1. Positivity and boundedness

From the system described by Eqs (2.1)–(2.4), we see that

dH
dt

∣∣∣∣∣
H=0,I>0,W>0

= 0,
dI
dt

∣∣∣∣∣
H>0,I=0,W>0

= αHW ≥ 0,
dW
dt

∣∣∣∣∣
H>0,I>0,W=0

= qI ≥ 0. (3.1)

Hence, the solution exists in the region R3
+, and the solution is positive for some sufficiently small

t > 0.
The total tree population N = H + I satisfies

dH
dt

+
dI
dt

= rH
(
1 −

H + I
k

)
− αHW + αHW − pI,

d(H + I)
dt

+ ηH + ηI = rH
(
1 −

H + I
k

)
− pI + ηH + ηI,

dN
dt

+ ηN ≤ −rH
(N

k

)
+ (r + η)H + (η − p)I,

dN
dt

+ ηN ≤ −
rH2

k
+ (r + η)H,

Here η < p. It is seen that − rH2

k + (r + η)H is quadratic in H and its maximum value is (r+η)2k
4r .

dN
dt

+ ηN ≤ l,

where l =
(r+η)2k

4r .

0 ≤ N(t) ≤ e−ηt

(
N(0) −

l
η

)
+

l
η
. (3.2)

As t → ∞, N(t)→ l
η

since supt→∞ N(t) = l
η
.

Further, dW
dt = qI − ζW implies supt→∞W(t) = l

qη as a result of using the bound of I.
Thus, the biologically feasible region of the system described by Eqs (2.1)–(2.3) is the following
positive invariant set:

Ω =

{
(H, I,W) ∈ R3

+ | 0 ≤ H, I ≤
l
η
,W ≤

l
qη

}
.

3.2. Existence of equilibria

The system given by Eqs (2.1)–(2.3) possess three equilibrium points. They are as follows:
• Trivial equilibrium: E0 = (0, 0, 0)
• Pest-free equilibrium: E1 = (k, 0, 0)
• Coexistence equilibrium: E∗ = (H∗, I∗,W∗)

where H∗ =
pζ
αq
, I∗ =

ζr(αkq − pζ)
αq(ζr + αkq)

, W∗ =
r(αkq − pζ)
α(ζr + αkq)

.
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3.3. Reproduction number

At disease-free equilibrium, we consider the matrices that represent transfer and new infection. The
reproduction number is derived using the next-generation matrix [15].

R0 =
αkq
pζ

.

3.4. Stability analysis

The qualitative behavior of dynamical systems can be studied using local stability analysis. In this
section, we implement the stability analysis for the model given by Eqs (2.1)–(2.3).

The Jacobian matrix of the system is given by

J(E) =


r
(
1 − H+I

k

)
− rH

k − αW − rH
k −αH

αW −p αH
0 q −ζ

 .
Lemma: The system given by Eqs (2.1)–(2.3) around E0 = (0, 0, 0) is always unstable.
Theorem 1. The system given by Eqs (2.1)–(2.3) around the pest-free equilibrium E1 = (k, 0, 0) is
locally asymptotically stable (LAS), provided R0 < 1.
Proof. At E1, the Jacobian matrix of the system is given by

J(E1) =


−r −r −αk
0 −p αk
0 q −ζ

 .
The characteristic equation of the matrix is

(−r − λ)[(−p − λ)(−ζ − λ) − αqk
]

= 0,

which implies
λ3 + λ2(r + p + ζ) + λ(rp + rζ + pζ + αqk) + rpζ − rαqk = 0, (3.3)

which is of the form λ3 + υ1λ
2 + υ2λ + υ3 = 0.

By the Routh-Hurwitz (R-H) criterion, the system is LAS if υ1 > 0, υ3 > 0 and υ1υ2 > υ3. Hence,
E1 is LAS if αqk < pζ, i.e., R0 < 1.
Theorem 2. When R0 > 1, the system given by Eqs (2.1)–(2.3) at the coexistence equilibrium E∗ =

(H∗, I∗,W∗) is LAS if Q1 > 0, Q3 > 0 and Q1Q2 > Q3, i.e., αkq
pζ > 1 and αkq−pζ

ζr+αkq > 1. The terms Q1, Q2

and Q3 are defined in the proof.
Proof. The Jacobian matrix of the system at E∗ is given by

J(E∗) =


r
(
1 − H∗+I∗

k

)
− rH∗

k − αW∗ −rH∗
k −αH∗

αW∗ −p αH∗

0 q −ζ

 .
The matrix J(E∗) gives the characteristic equation after substituting the equilibrium points as
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λ3 + Q1λ
2 + Q2λ + Q3 = 0,

where

Q1 =
2rpζ
αqk

+
r(αkq − pζ)
ζr + αkq

+ p + ζ − r +
r2ζ(αkq − pζ)
αk2q(ζr + αkq)

, (3.4)

Q2 =
2rpζ(p + ζ)

kαq
+

r2 pζ
kαq − pζ

(
αkq

ζr + αkq

)
+ r(p + ζ)

(
αkq − pζ
ζr + αkq

)
− r(p + ζ) +

r2ζ(p + ζ)
kαq

(
αkq − pζ
ζr + αkq

)
,

(3.5)

Q3 =

(
αkq − pζ
ζr + αkq

) (
r2 pζ2

αkq
+ rpζ

)
. (3.6)

The roots of the characteristic equation will have negative real parts when Q1 > 0, Q3 > 0 and
Q1Q2 > Q3. Thus, by R-H criterion, the condition to be LAS is αkq

pζ > 1 and αkq−pζ
ζr+αkq > 1. Hence, the

system given by Eqs (2.1)–(2.3) around E∗ is LAS.
Theorem 3. The system given by Eqs (2.1)–(2.3) around the pest-free equilibrium E1 = (k, 0, 0) is
globally asymptotically stable (GAS) in Ω if R0 < 1.
Proof. We construct a Lyapunov function V(H, I,W) in Ω as

V(H, I,W) =
m1

2
I2. (3.7)

The time derivative of V is computed along the solution of the system as

dV
dt

= m1I
dI
dt
,

where m1 is the positive constant.
dV
dt

= m1I[αHI − pI],

dV
dt

= m1I2[R0 − 1]
ζ

q
,

After choosing m1 =
q
ζ
, we get

dV
dt

= I2[R0 − 1] ≤ 0.

In our model, since all of the parameters are positive and the variables are non-negative, it follows that
dV
dt < 0 for R0 < 1, with dV

dt = 0 if and only if, I = 0. Using the Lyapunov and LaSalle theorems [16],
we conclude that E1 is GAS.
Theorem 4. The coexistence equilibrium E∗, whenever it exists, is GAS if the following inequality
holds:

k < (I + H + H∗),

m2q2 < 2ζ
(
p +

rI
k

)
.
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Proof. We construct a Lyapunov function V∗(H, I,W) in Ω as

V∗(H, I,W) =
1
2

(H − H∗ + I − I∗) +
m2

2
(W −W∗)2, (3.8)

dV∗
dt

= (H − H∗ + I − I∗)
(
dH
dt

+
dI
dt

)
+ m2(W −W∗)

dW
dt
,

where m2 is the positive constant. The time derivative of V∗ is computed along the solution of the
system and, after rearranging the terms, we get

dV∗
dt

= −

( r
k

(I + H + H∗) − r
)

(H − H∗)2 −

( r
k

(2H∗ + H + I∗) − r + p
)

(H − H∗)(I − I∗)

−

(
p +

rI
k

)
(I − I∗)2 − m2ζ(W −W∗)2 + m2q(W −W∗)(I − I∗).

Thus, dV∗
dt will be negative-definite inside the region of attraction provided the following inequalities

are satisfied:

k < (I + H + H∗),

m2q2 < 2ζ
(
p +

rI
k

)
.

It is seen that dV∗
dt < 0 and dV∗

dt = 0 if, and only if, H = H∗, I = I∗ and W = W∗ in Ω. From
this inequality, the positive value of m2 may be chosen provided the inequality is satisfied. Using the
Lyapunov and LaSalle theorems [16], we conclude that E∗ is GAS whenever R0 > 1.

4. Sensitivity analysis

Sensitivity analysis helps to evaluate the sensitive parameters of the system. We used MATLAB
to perform this analysis. This task formulates differential equations by differentiating the original
equations with respect to parameters to calculate the sensitivities. The sensitivity parameters were
chosen as α, q and ζ to perform the analysis. Figure 7 denotes the state variables in the direction of the
parameters, ie., the partial derivative of the state variables with respect to the selected parameters. It is
observed that the contact rate α reduces the healthy tree density and increases the infected tree density.
Furthermore, it is to be noted that the death rate for RSWs is able to slightly increase the healthy tree
density, slightly decrease infected plant density and reduce the whitefly population. Figure 8 describes
the logarithmic sensitivity analysis. The logarithmic sensitivity analysis is the ratio of the relative
change in the variable to the relative change in the parameter, ie., the normalized forward sensitivity
index of a variable X that depends differentiably on a parameter a is defined as ∂logX(t)

∂loga = a
X(t,a) Xa(t, a),

and it indicates the expected percentage change by doubling the parameter (i.e., a 100% change). It can
be seen that doubling the value of α decreases the healthy tree density by 0.39%, increases the infected
tree density by 2.67% and corresponds to a slight increase in the RSW growth rate in 10 days. On
doubling the parameter q, there are slight changes in the species population. The effect of doubling the
parameter ζ increases the healthy tree density by 0.01%, decreases the infected tree density by 0.098%
and corresponds to an RSW population decrease of 5.9%. Hence, comparatively, the spread of the
disease is mainly due to the contact rate α.
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5. Optimal control problem

We implemented this task with an aim to minimize the cost due to insecticide spraying. An optimal
control problem was formulated with the control δ(t). It is assumed that insecticide spraying covers all
of the pest population in a particular area. The reformulated model with the control 0 ≤ δ(t) ≤ 1 is
given by

dH
dt

= rH
(
1 −

H + I
k

)
− (1 − δ)αHW, (5.1)

dI
dt

= (1 − δ)αHW − pI, (5.2)

dW
dt

= (1 − δ)qI − ζW, (5.3)

with the following initial conditions:

H(0) = H0, I(0) = I0, W(0) = W0. (5.4)

We assume that H0 > 0, I0 > 0 and W0 > 0. The control term δ denotes the reduction in the infection
rate due to the effect of insecticide. The cost function incorporating the existence of optimal spraying
is considered in quadratic form, as follows:

J(δ(t)) =

∫ t f

t0

(
RI + Pδ(t)2

)
dt. (5.5)

Here R and P are positive constants. The objective functional is chosen so that the first term represents
crop damage in infected trees and the cost associated with spraying insecticide is represented in the
second term. Our aim was to find an optimal δ(t) for the minimum cost.

The Hamiltonian Ψ to solve the optimal control problem is constructed as follows:

Ψ = RI + Pδ(t)2 + φ1

[
rH

(
1 −

H + I
k

)
− (1 − δ)αHW

]
+φ2

[
(1 − δ)αHW − pI

]
+ φ3

[
(1 − δ)qI − ζW

]
, (5.6)

where φi, i = 1, 2, 3 represents the adjoint variables. For the existence of optimal control, we apply the
Pontryagin minimum principle and obtain the result, as follows:
Theorem 1. If the objective function J(δ) is minimized for the optimal control δ∗(t), then there exists
adjoint variables φi, i = 1, 2, 3, that satisfy the equations below:

dφ1

dt
= −φ1r + φ1r

(
2H + I

k

)
− αW(1 − δ)(φ2 − φ1), (5.7)

dφ2

dt
= −R + φ1r

(H
k

)
+ φ2 p − φ3(1 − δ)q, (5.8)

dφ3

dt
= (1 − δ)αH(φ1 − φ2) + φ3ζ, (5.9)
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with the transversality condition satisfying φi(t f ) = 0, i = 1, 2, 3. The optimal control policy is given
by

δ∗(t) = max
{

0,min
{

1,
αHW (φ2 − φ1) + φ3qI

2P

}}
. (5.10)

Proof. If we apply the Pontryagin minimum principle [19], the optimal control variable δ∗ ∈ (0, 1)
satisfies

∂Ψ

∂δ∗
= 0. (5.11)

From Eqs (5.6) and (5.11), we get

δ∗ =
αHW (φ2 − φ1) + φ3qI

2P
. (5.12)

The boundedness of optimal control takes the form

δ∗ =



0,
αHW (φ2 − φ1) + φ3qI

2P
≤ 0,

αHW (φ2 − φ1) + φ3qI
2P

, 0 <
αHW (φ2 − φ1) + φ3qI

2P
< 1,

1,
αHW (φ2 − φ1) + φ3qI

2P
≥ 1.

(5.13)

Hence, the compact form of δ∗ is given by Eq (5.10). The above equations are the necessary
conditions satisfying the optimal control δ and the state variables of the system. According to [19], the
existence conditions are established by the corresponding adjoint equations:

dφ1

dt
= −

∂Ψ

∂H
,

dφ2

dt
= −

∂Ψ

∂I
,

dφ3

dt
= −

∂Ψ

∂W
. (5.14)

From the set of equations in Eq (5.14), we get Eqs (5.7)–(5.9).

6. Approximate analytical solution

Liao [25, 26] proposed a powerful analytical method for solving nonlinear problems, called the
HAM, to obtain a series of solutions. The basic idea of the HAM is to produce a succession of
approximate solutions that tend to the exact solution of the problem. Since the auxiliary parameter
~ is present in the approximate solution, a family of approximate solutions is produced rather than
a single solution, as with standard perturbation methods. The range and rate of convergence of the
solution series can be adjusted by changing this auxiliary parameter.

To construct the HAM solution for the model, we denote

H(0) = H0(t) = H0, (6.1)

I(0) = I0(t) = I0, (6.2)

W(0) = W0(t) = W0. (6.3)

The auxiliary linear operators L1, L2 and L3 with the embedding parameter ρ ∈ [0, 1] are chosen as

L1[H(t, ρ)] =
dH(t, ρ)

dt
, (6.4)
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L2[I(t, ρ)] =
dI(t, ρ)

dt
, (6.5)

L3[W(t, ρ)] =
dW(t, ρ)

dt
. (6.6)

The constant values L j(A j) = 0, where A j( j = 1, 2, 3) are integral constants. Define the nonlinear
operators as follows:

N1[H, I,W] = Ḣ − rH
[
1 −

H + I
k

]
+ αHW, (6.7)

N2[H, I,W] = İ − αHW + pI, (6.8)

N3[H, I,W] = Ẇ − qI + ζW. (6.9)

The zero-order deformation equations, according to Liao, can be defined as

(1 − ρ)L1[H(t; ρ) − H0(t)] = ρ~1H1(t)N1[H, I,W], (6.10)

(1 − ρ)L2[I(t; ρ) − I0(t)] = ρ~2H2(t)N2[H, I,W], (6.11)

(1 − ρ)L3[W(t; ρ) −W0(t)] = ρ~3H3(t)N3[H, I,W], (6.12)

where ρ ∈ [0, 1] is the embedding parameter, ~ , 0 is a nonzero auxiliary parameter, H(t) , 0 is an
auxiliary function and L is an auxiliary linear operator. It is essential to note that, with the HAM, one
has a considerable deal of flexibility in selecting auxiliary unknowns.

When ρ = 0 and ρ = 1, it follows that

H(t; 0) = H0(t) and H(t; 1) = H(t), (6.13)

I(t; 0) = I0(t) and I(t; 1) = I(t), (6.14)

W(t; 0) = W0(t) and W(t; 1) = W(t). (6.15)

As ρ tends to rise from 0 to 1, the terms H(t; ρ), I(t; ρ) and W(t; ρ) change from the initial guess to the
final solution. With regard to ρ, we can expand these terms in a Taylor series as follows:

H(t; ρ) = H0(t) +

∞∑
m=1

Hm(t)ρm, (6.16)

I(t; ρ) = I0(t) +

∞∑
m=1

Im(t)ρm, (6.17)

W(t; ρ) = W0(t) +

∞∑
m=1

Wm(t)ρm, (6.18)

where
Hm =

1
m!

∂mH(t; ρ)
∂ρm

∣∣∣∣∣
ρ=0

, (6.19)

Im =
1

m!
∂mI(t; ρ)
∂ρm

∣∣∣∣∣
ρ=0

, (6.20)
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Wm =
1

m!
∂mW(t; ρ)
∂ρm

∣∣∣∣∣
ρ=0

. (6.21)

The series converges at ρ = 1 if the auxiliary linear operator, the initial guess, the auxiliary parameter
and the auxiliary function are all chosen suitably. Then, we have

H(t) = H0(t) +

∞∑
m=1

Hm(t), (6.22)

I(t) = I0(t) +

∞∑
m=1

Im(t), (6.23)

W(t) = W0(t) +

∞∑
m=1

Wm(t). (6.24)

We can obtain the so-called mth-order deformation equation by differentiating Eqs (6.10)–(6.12) m
times with regard to the embedding parameter ρ, then setting ρ = 0 and dividing them by m!.

L1[Hm(t) −ΩmHm−1(t)] = ~M1,m(Hm−1(t)), (6.25)

L2[Im(t) −ΩmIm−1(t)] = ~M2,m(Im−1(t)), (6.26)

L3[Wm(t) −ΩmWm−1(t)] = ~M3,m(Wm−1(t)), (6.27)

where

M1,m(t) =
dHm−1(t)

dt
−rHm−1+

r
k

m−1∑
s=0

Hs(t)Hm−1−s(t)+
r
k

m−1∑
s=0

Hs(t)Im−1−s(t)+α
m−1∑
s=0

Hs(t)Wm−1−s(t), (6.28)

M2,m(t) =
dIm−1(t)

dt
− α

m−1∑
s=0

Hs(t)Wm−1−s(t) + pIm−1(t), (6.29)

M3,m(t) =
dWm−1(t)

dt
− qIm−1−s(t) + ζWm−1(t), (6.30)

and

Ωm =

0, m ≤ 1
1, m > 1

.

For m ≥ 1, the mth- order deformation equation becomes

Hm(t) = ΩmHm−1(t) + ~

∫ t

0
M1,m(τ)dτ, (6.31)

Im(t) = ΩmIm−1(t) + ~

∫ t

0
M2,m(τ)dτ, (6.32)

Pm(t) = ΩmWm−1(t) + ~

∫ t

0
M3,m(τ)dτ. (6.33)
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In this way, we may easily derive Hm, Im and Wm for m ≥ 1 at the Mth order. Then, we have

H(t) =

M∑
m=0

Hm(t), I(t) =

M∑
m=0

Im(t) and W(t) =

M∑
m=0

Wm(t). (6.34)

The approximate analytical solution of the system is given by

H(t) = H0 +
t
k

[
(r + ~)(H0 + I0) + H2

0r~ + H0I0r~ − 2~H0kr + 2W0H0kα~ + W0H0k~2

−rH0h~2
]

+
H2

0~
2t2

2k2

[
r2k2 − 2W0k2αr + H2

0α
2k2 − I0qαk2 + ζW0αk2 + 2W0kαr(H0 + I0)

+I0 prk + 3H0r2(I0 − k) + 2H2
0r2 − r2

]
, (6.35)

I(t) = I0 + t
[
2I0 p~ − 2α~H0W0 + ~2(I0 p − αH0W0)

]
+

H0~
2t2

k

[
I0 p2 − I0αW0r −W2

0 H0rα

−kW2
0α

2 − kαW0 p − kζαW0 + krαW0 + kI0qα
]
, (6.36)

W(t) = W0 + t
[
2~ζW0 − 2~I0q − I0q~2 − ζW0~

2
]

+
t2~2

2

[
H0W0αq + ζ2W0 − I0q(p + ζ)

]
. (6.37)

This is the solution for M = 2. We calculated up to the sixth-order solution using Maple. Since we
obtain a more approximate solution for the sixth order, we stopped at this iteration. Similarly, we can
find higher-order solutions until the solution converges [27–30]. It is important to note that the auxiliary
parameter ~ plays a key role in the solution series convergence and accuracy. The approximate solution
given by Eqs (6.35)–(6.37) contains ~. A multiple of ~ - curves were plotted to define a region such
that the solution series is independent of ~. The convergence region for the corresponding solution is
the region where the distributions of H and H′ versus ~ are horizontal lines. The overall convergence
region is the common region between the variable and its derivatives. Such ~ - curves are plotted in
Figures 4–6. These figures clearly show that the appropriate range of ~ is about −1.1 ≤ ~ ≤ −0.9.

7. Results and discussion

To carry out the numerical analysis, we selected values that would provide a reference point for
each parameter. Each coconut tree occupies an area ranging from 7.5 m × 7.5 m to 8.5 m × 8.5
m. We consider this in terms of density per square meter and the initial conditions are assumed to
be H(0) = 0.005m−2 and I(0) = 0.0007m−2. We assume the whitefly population approximately as
W(0) = 2m−2. The parameter values were framed based on the facts and methods in [8]. The carrying
capacity was calculated as density per square meter of a tree. The whitefly population is relevant as in
the case of ACMD given in [8]; hence, we use those values. The replanting rate and mortality rate are
assumed to be one tree in 120 days. The contact rate between RSWs and coconut trees were calculated
as the number of trees infected in adult emergence per RSW, i.e., 0.5–1 tree in 25 days [8]. Table 1
comprises all of the parameter values. The numerical simulations were carried out using MATLAB.
Figure 1 interprets that the contact rate α decreases the healthy tree density. The replanting rate r
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and whitefly death rate ζ increases the healthy tree density. From Figure 2, we see that the contact
rate α increases the infected tree density. ζ and p decrease the infected tree density as expected.
Figure 3 shows the decrease in whitefly population according to its death rate. Figure 4 represents the
~ curve of the sixth-order solution of H(t) at t = 1, where the horizontal line denotes the convergence
region. Figures 5 and 6 represents the ~ curve of the sixth-order solutions of I(t) and W(t) at t = 1,
respectively. The ~ -curves clearly show that the appropriate range of ~ is about −1.1 ≤ ~ ≤ −0.9.
Thus, the maximum error obtained by comparing the analytical and numerical results does not exceed
0.4% for all possible values of parameters. In Figures 7 and 8, we portray the sensitivity analysis with
the parameters α, q and ζ in the proposed model. It is observed that, due to the contact rate α, the tree
density is affected at a higher rate compared to other parameters.
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Figure 1. Profiles of healthy tree density H versus time t, obtained by applying the HAM

solution and numerical simulations. The curves denoted by represent the HAM solution
(Eq (6.35)), and —– represents the numerical simulation.
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Table 1. Parameter values used for analysis, as calculated based on [8].

Symbol Meaning Unit Value taken for analysis Range
k Tree density m−2 0.0138 0.0138 – 0.0178
r Replanting rate day−1 0.0005 0 – 0.008
p Mortality rate for trees day−1 0.0002 0 – 0.008
α Contact rate pest−1day−1 0.0002 0 – 0.002
q Whitefly birth rate day−1 0.1 0.1 – 0.3
ζ Death rate for RSWs day−1 0.006 0.006 – 0.01

0 20 40 60 80 100 120

Time t (days)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

In
fe

c
te

d
 t

re
e

 d
e

n
s

it
y

 I
(t

) 
(m

-2
)

10
-3

 = 0.0005

 = 0.002

 = 0.00005

 = 0.0003

 = 0.0009

 r  = 0.0005

 p  = 0.0001

 q  = 0.2

   = 0.006

 k  = 0.0138

(a)

0 20 40 60 80 100 120

Time t (days)

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

In
fe

c
te

d
 t

re
e

 d
e

n
s

it
y

 I
(t

) 
(m

-2
)

10
-4

 = 0.006, 0.007, 0.008, 0.009, 0.01

 r  = 0.0005

 p  = 0.0001

 q  = 0.2

 k  = 0.0138

  = 0.0002

(b)

0 20 40 60 80 100 120

Time t (days)

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

In
fe

c
te

d
 t

re
e
 d

e
n

s
it

y
 I
(t

) 
(m

-2
)

10
-4

 p = 0.00001, 0.0002, 0.0005, 0.0008, 0.001

 r  = 0.0005

 q  = 0.2

   = 0.006

 k  = 0.0138

  = 0.0002

(c)

Figure 2. Profiles of infected tree density I versus time t, obtained by applying the HAM

solution and numerical simulations. The curves denoted by represent the HAM solution
(Eq (6.36)), and —– represents the numerical simulation.
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solution and numerical simulations. The curves denoted by represent the HAM solution
(Eq (6.37)), and —– represents numerical simulations.
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Figure 4. ~ curves for the sixth-order solutions of (a) H(t) and (b) H′(t) at t = 1.
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Figure 5. ~ curves for the sixth-order solutions of (a) I(t) and (b) I′(t) at t = 1.
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Figure 6. ~ curves for the sixth-order solutions of (a) W(t) and (b) W ′(t) at t = 1.
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Figure 7. Sensitivity index for the species parameters α, q and ζ. This figure denotes the
partial derivative of the interacting population with respect to each sensitivity parameters.
The parameter values used for analysis are k = 0.0138, r = 0.0005, p = 0.0002, α =

0.0002, q = 0.1 and ζ = 0.006.
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Figure 8. Logarithmic sensitivity analysis in the direction of indicated parameters versus
time. Here, a is used as a common term to denote the selected parameters. The parameter
values used for analysis are k = 0.0138, r = 0.0005, p = 0.0002, α = 0.0002, q = 0.1 and
ζ = 0.006.

Figure 9 indicates the population dynamics of our model with and without the optimal control effect.
The initial conditions for the optimal control problem were set as H0 = 20, I0 = 5 and W0 = 10. Based
on the initial conditions, the value of the tree density k was set to be 70. The main reason for using the
control term is to reduce the infected tree density so that its growth and yield are not affected. It can
be seen that there are measurable differences between the models with and without the control effect
for the healthy trees, infected trees and whitefly population. Figure 10 denotes the control effect δ(t)
versus time. The control can be achieved by insecticide spraying. Thus, optimal spraying is needed to
control the spread of the disease.
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Figure 9. Comparison of the population densities of the system given by Eqs (2.1)–(2.3) with
the system given by Eqs (5.1)–(5.3). The values for the initial conditions and parameters used
for the analysis are H(0) = 20, I(0) = 5, W(0) = 50, k = 70, r = 0.0005, p = 0.0002, α =

0.0002, q = 0.1 and ζ = 0.006. The use of control increases the healthy tree density and
reduces the infection.
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Figure 10. Plot of the control function δ(t) versus time, with the parameter values given in
Table 1.
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8. Conclusions

In this paper, the impact of the dynamics of interacting species’ population and parameters on
the system were analyzed. We focused on the interaction between RSWs and coconut trees within
a locality. The equilibrium points and the conditions to be LAS and GAS have been analyzed. A
sensitivity analysis was carried out to observe the system dynamics and the state variables in the
direction of selected parameters. An optimal control model has been proposed and analyzed using the
Pontryagin minimum principle. An approximate analytical solution has been derived using the HAM.
To validate the convergence region, ~-curves were derived. From the comparison of the numerical
simulation results and analytical results, we found good agreement between them. From the above
study, it is strongly indicated that the contact rate α stands as a crucial determining factor. Thus, by
decreasing the contact rate with the effective usage of control measures can help the farmers, in a great
way, to control the disease.
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